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Microscopic origin of shear banding as a localized driven glass transition
in compressed colloidal pillars
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Here we report on compression experiments of colloidal pillars in which the evolution of a shear band can be
followed at the particle level during deformation. Quasistatic deformation results in dilation and anisotropic
changes in coordination in a localized band of material. Additionally, a transition from solid- to liquidlike
mechanical response accompanies the structural change in the band, as evidenced by saturation of the packing
fraction at the glass transition point, a diminishing ability to host anelastic strains, and a rapid decay in
the long-range strain correlations. Overall, our results suggest that shear banding quantitatively resembles a
localized, driven glass transition.
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I. INTRODUCTION

Shear banding—the irreversible localization of strain in
thin bands of a solid driven beyond its yield stress—is a fea-
ture common to disordered solids. Shear bands are observed
in both “hard” disordered solids, where atomic forces dictate
the energy of the system [1,2], and in “soft” disordered solids,
whose behavior is governed by weaker interparticle forces
[3–5]. Also common to both hard and soft disordered solids
is a glass transition, whereby decreasing the temperature,
increasing the particle number density, or some combination
thereof results in a dramatic slowing of the dynamics in
comparison to the supercooled liquid [6–9]. The common-
alities in plasticity and glassy dynamics found in a diverse
set of disordered solids have motivated a search for unifying
physics. Specifically, the interpretation of shear banding as a
localized, driven glass transition remains controversial.

Numerical and experimental studies support a connection
between mechanical yield and the glass transition. Metal-
lic glasses (MGs) exhibit shear bands and a temperature-
dependent yield stress when deformed plastically at tempera-
tures well below their glass transition temperature Tg [1,2,10].
Equating the mechanical work done in the formation of a
shear band and the heat necessary to induce a glass transition
[11] results in a scaling of the yield strength with temperature
that agrees well with experimental data. Further support for
a shear band-glass transition connection is found in the self-
similarity of isoviscosity curves with proximity to the glass
transition and magnitude of applied stress [12–15], which is
suggestive of an equivalence between the glass transition and
stress required for flow. However, the studies in Refs. [12–14]
do not specify whether plasticity is spatially homogeneous or
localized in shear bands, while other studies draw a distinction
between shear banding and the glass transition. In experiments
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on a sheared colloidal glass, Chikkadi et al. [16] find a dis-
continuity in a dynamical order parameter that distinguishes
shear banding from a glass transition, in which the order pa-
rameter changes continuously [6]. Similarly, a structural order
parameter that segregates pre- and postyield glasses classifies
mechanical yield as a first-order transition [17]. Others have
delineated between the glass transition and mechanical yield
by contrasting the microstates induced by strain and increased
temperature [18] and anisotropy of dynamical correlations
[19], which are different for the thermal and mechanical
transitions.

While it appears that mechanical yielding in disordered
solids shares some characteristics with the glass transition,
the extent of the correlation is not agreed on. The mi-
croscopic details of shear bands as they mature to macro-
scopic localization have yet to be elucidated. In this arti-
cle, we report on uniaxial compression experiments of col-
loidal pillars. Unlike other studies on deformed colloidal
glasses, our specimens are free of confining boundaries that
may alter the mechanism by which shear banding proceeds
[3,4,16,20]. Moreover, the pillar geometry lends itself di-
rectly to comparison with compression experiments per-
formed on MGs [21,22]. In the unconfined geometry, dilation
is free to occur and any localized softening can proceed
unhindered.

During compression, we observe strong localization of
strain in a band of the pillar. As deformation proceeds, the
sheared region continues to dilate until the packing fraction
φ approaches the colloidal glass transition, φg � 0.58 [23],
at which point dilation terminates. While the transition in
mechanical response bears some resemblance to a melting
condition in thermal, atomic systems, we emphasize that
our system of colloidal spheres is athermal. We quantify
the extent of correlations in strain and find that it decreases
as φ → φg and find evidence of a diminished capability
to support anelastic strain from anisotropic pair distribution
functions (PDFs).
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FIG. 1. A (a) top-down and (b) side view of the experimental
setup. The capillary tube containing the colloidal micropillar is
secured to a glass coverslip, which is fixed above a fluid reservoir. A
piston with a flat punch is used to compress the exposed micropillar.
(c) A low-magnification image of an extruded micropillar and the
punch. (d) A high-magnification image of the colloidal particles that
compose the micropillar. (e) A three-dimensional reconstruction of
the pillar section imaged during the experiments using the identified
particle positions. The particles are shaded by coordination number,
highlighting the curved free surface.

II. EXPERIMENTAL DETAILS

The micropillars, of diameter Dpillar ≈ 300 μm, are com-
posed of fluorescent poly(methyl methacrylate) (PMMA)
particles of diameter Dpart = 3.3 μm. The micropillars are
formed by injecting a suspension of the particles into a capil-
lary tube. Polydispersity of between 6 and 8% in the particle
sizes suppresses crystallization, resulting in an amorphous
packing. The suspension is dried and rewetted using cyclo-
hexylbromide (CXB, which matches the index of refraction of
the particles) to increase the cohesion between the particles,
holding the extruded specimen together. The pillar is then
forced out of the capillary tube to form a free-standing com-
pression specimen, which is secured in a fluid reservoir filled
with CXB (see Fig. 1), eliminating capillary forces. Opposing
the pillar is a punch affixed to a piston. The top of the reservoir
is sealed with a thin piece of coverglass to allow for imaging
using a laser-scanning confocal microscope operating in fluo-
rescence mode with an excitation wavelength of 488 nm. The

compression experiment proceeds by displacing the punch
using a piezoelectric actuator and then collecting a sequence
of micrographs of the pillar. Typical displacement increments
were 0.6 μm (∼0.2Dpart). A computer algorithm identifies the
centers of particles in each three-dimensional (3D) volume
with uncertainty in the particle positions of ∼0.03Dpart. The
analysis proceeds by the same stages as the classic algorithm
by Grier and Crocker [24]: image filtering, peak finding, and
centroid finding. This process and an uncertainty analysis
are detailed in Appendices A and B. After particle centers
are identified, the positions at each time step are linked
into trajectories that span the duration of the compression
experiment. Particles within three particle diameters of the
punch are removed from the analysis, since shadowing during
imaging resulted in high uncertainty in their positions.

III. RESULTS AND DISCUSSION

A. Volume fraction

During compression, we observe strain concentrated in a
region near the interface with the punch. The shear band is
defined here as those particles with shear strain γ > 0.07
(calculated from the affine deformation tensor as detailed in
Eq. (2)) that have at least three neighbors which also satisfy
this strain threshold. This neighbor condition filters out non-
contiguous particles. The effect of adjusting the parameters
used in this definition is shown in Fig. 2: the local volume
fraction in the as-defined shear band shows little sensitivity to
the shear strain threshold or neighbor filtering except at the
first time steps when the number of particles in the shear band
is small. Those particles not in the shear band are termed “the
matrix.” A time step t refers to a specific 3D volume with
t = 0 corresponding to the first volume collected.

The initial packing fraction and Voronoi volume distri-
bution indicate that the shear band was somewhat deformed
before the first time step, so that nascent nucleation of the
shear band is not captured in this experiment. However, we
are able to observe the evolution of this already-nucleated
shear band as deformation proceeds [Fig. 3(b)] and find,
based on a number of metrics, that its maturation shows
a striking resemblance to a localized, shear-driven colloidal
glass transition. The first metric is the local packing frac-
tion: the shear band region dilates such that the volume
fraction φ = 4πr3/(3V Voronoi ), where V Voronoi is the mean
of the Voronoi volumes of the particles in the shear band,
decreases to approximately the colloidal glass transition value
φg ≈ 0.58 [Fig. 3(c)]. We expect our nearly athermal system
to be in a glassy state between 0.58 < φ < 0.64, below which
it fluidizes and above which it is jammed [25]. We note
that the exact value of φg for hard-sphere colloids remains
uncertain and may depend on the polydispersity of the sys-
tem [23,26,27], and thus the saturation point (where further
compression does not significantly change φ) is either at
the transition or in the supercooled colloidal liquid [28,29].
Dilation is also visible in the evolution of the distribution of
Voronoi volumes P(VVoronoi ) [Figs. 3(d) and 3(e)], which shifts
to a higher mean value and develops a large-volume tail. The
matrix, on the other hand, has constant φ near the random

032605-2



MICROSCOPIC ORIGIN OF SHEAR BANDING AS A … PHYSICAL REVIEW E 102, 032605 (2020)

FIG. 2. Saturation behavior of the volume fraction φ in the shear
band and matrix using various parameter cutoffs in the shear band
definition: (a) variation of the cutoff in shear strain γ and (b) vari-
ation of the requisite number of nearest neighbors which also meet
the shear strain condition, which serves to filter out noncontiguous
sheared particles. φ shows little sensitivity to these parameters in this
range, except at the first time step where there are few particles in the
shear band.

close-packing limit of 0.64 (indicating that our particles have
RMS roughness <0.05 [30]).

It has long been recognized that shear transformations
in amorphous solids result in an increase in the free vol-
ume in the region around the shear transformation [31–34].
In thermal systems, the competition between shear-induced
generation and diffusion-driven annihilation of free volume
results in temperature- and strain rate–dependent flow behav-
ior [35–37]. At high temperatures and low strain rates, free
volume diffusion and annihilation can suppress runaway free
volume generation, resulting in homogeneous plastic flow. At
lower temperatures and high strain rates, annihilation cannot
keep up with free volume generation, and strain localization,
or heterogeneous plastic flow, occurs. For our nearly athermal,
hard-sphere system, we expect that the annihilation of excess
free volume is insignificant in comparison to the shear-driven
generation, thereby resulting in overall dilation with increas-
ing strain [33]. What is striking, however, is how abruptly

FIG. 3. (a) The particles in this experiment, colored by shear
strain. The shear band is defined as those particles with γ > 0.07
which have at least three neighbors also with γ > 0.07. (b) The
evolution of the shear band shape over time, visualized as the alpha
shape with the smallest alpha radius which encloses all particles in
the shear band. (c) The volume fraction φ of the shear band and
matrix regions, with glass transition indicated with a blue shaded
region. [(d) and (e)] The distribution of Voronoi volumes in the shear
band and matrix at various time steps.

the dilation process in our experiments terminates at the
transition φg.

B. Pair distribution function

The dilation and Voronoi statistics measured in the shear
band clearly indicate that the structure in the shear band is
evolving during deformation. To further describe this change,
anisotropic pair distribution functions that discriminate be-
tween particle pairs coordinated in different directions, g(r) =
g(r, ω), where ω is the angle between the loading axis and a
selected direction, detect structural changes when symmetry
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FIG. 4. (a) Pair distribution function plots measured for the shear
band particles (solid lines) and matrix particles (dashed lines), along
the parallel and perpendicular directions to the loading. Local min-
ima and maxima, calculated using a polynomial fit, are indicated with
markers. Curves are offset for clarity. (b) Plots of the difference in
g(r) between shear band and matrix for each direction. (c) Fractional
peak height differences between shear band and matrix for the
transverse and (d) loading directions. Peak shifts are indicated by
the vertical bars, where a positive (upward) bar indicates a shift to
greater r in the shear band relative to the matrix.

is broken by anisotropic loading [38,39]:

g(r, ω) = 1

f (r, ω)

V

N2dV
2

N−1∑
i=0

N∑
j>i

δ

(
r−dr

2
< ri j < r + dr

2

)

× δ

(
ω − dω

2
< ωi j < ω + dω

2

)
, (1)

where V is the total volume and N is the number of particles
in the shear band, dV = 2r2drdω is the volume element of
a spherical shell (at r and with thickness dr) constrained by
azimuthal angle ω between the x axis and the vector separating
a given i, j pair (always positive), and δ is the Kronecker delta.
Here dr = 0.04Dpart and dω = π/10. f (r, ω) is the shape
factor that normalizes the pair distribution function for a finite
sample volume, calculated as the pair density for the contin-
uum bounded by the the shear band (i.e., points spaced apart
by a distance r � Dpart) divided by the pair density for an
unbounded, infinite sample. This shear band volume is calcu-
lated as the union of all shear band particle Voronoi volumes.

Examining the pair distribution functions along the loading
axis and the perpendicular direction, g(r, ‖) = g(r, ω = 0) and
g(r,⊥) = g(r, ω = π/2), respectively, we identify peaks in
g(r), which mark the location of the nearest-neighbor shells,
as well as local minima [Fig. 4(a)]. In both directions, peak
heights in g(r) decrease in the shear band (relative to the
matrix particles at the same time step), while the relative min-
ima increase. This peak broadening indicates a less structured
packing. The split second peak in the matrix, which reflects
local icosahedral order [40], is also absent in the shear band,
particularly at later time steps and along the loading direction.

FIG. 5. The anisotropic PDF decomposed by spherical harmon-
ics. (a) In the unsheared matrix particles, the peaks of g0

2,affine(r), are
fit to the observed g0

2(r), giving the fraction of the observed strain
relative to the elastic (applied) strain ε [38,42,43]. This fraction is
plotted and offset by 1, for ease of viewing. (b) In the shear band,
such a fit is not possible, since the observed g0

2(r) does not deviate
symmetrically from the affine curve. The first time step plotted here,
t = 4, is subject to sampling errors in the normalization since the
particle number is small in the shear band at early time steps.

The g(r) difference plots in Fig. 4(b) shows in more detail that
the magnitude of the peaks in g(r) decreases in the loading
direction significantly more than in the transverse direction,
while the intensity at the minima in g(r) increases more in
the transverse directions. This indicates that nearest-neighbor
“bonds” are broken primarily along the loading direction,
and particles move to the spaces between nearest-neighbor
shells in the transverse direction. See Suzuki et al. 1987 [39]
for schematic illustrations of such rearrangements. Based on
percentage changes in peak heights [Figs. 4(c) and 4(d)] the
nearest-neighbor shell within the shear band is ∼10% less
populated in the loading direction compared to the matrix,
while in the transverse direction the first local minimum (the
space between the first two shells) is more populated by
>20%, and the second minimum is ∼15% more populated.
The higher-r local extrema (at r > 4Dpart) have <6% change.

These changes in g(r) suggest that the presence of anelastic
strain in the shear band which serves to screen the imposed
stress manifest as particle rearrangements from the loading
direction to the transverse direction. This mechanism has been
observed in x-ray scattering experiments on metallic glasses,
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FIG. 6. (a) The spherical coordinate conventions used to determine the average coordination along a given direction. Note that the azimuthal
angle ω is used as an elevation angle in the pair distribution definition function above. The angular coordination in the matrix, row (b), and the
shear band, row (c), at three time steps. Little change in the coordination is observed in the matrix. The shear band, however, shows a decrease
in the mean coordination and a decrease in the anisotropy of the coordination. The changes in Z in the matrix and shear band (here defined
generously as a rectangular region) are quantified in (d) and (e), respectively, which show the evolution of the mean and minimum of Z with
time step. The error bars represent the standard deviation in Z .

as well as in molecular dynamics simulations on similar
systems [38,41,42]. The peak height differences in the parallel
direction and local minimum differences in the transverse
direction decrease in magnitude and reach a stable value by
t = 10 (i.e., during dilation), indicating a diminished capacity
to support anelastic strains, as expected in a fluidized region.
The short-range spatial extent of rearrangements (i.e., vanish-
ing differences in g(r) for r > 4Dpart) is in good agreement
with studies on crept metallic glasses and molecular dynamics
glass models, which observe a cutoff in local (anelastic)
strains at r = 4Dpart [38,43].

To quantify this anelastic activity, we also compare
g0

2(r), the l = 2 spherical harmonic of the anisotropic PDF,
to the values expected to arise from affine deformation,
where g0

2(r) ∝ g(r‖) − g(r⊥) and g0
2,affine(r) ∝ εr dg0(r)

dr [39].
As shown in Fig. 5, in the matrix this reveals short-range
anelastic strains like those seen in MGs, which screen 20–40%
of the elastic strain for r under 2 − 4Dpart [38,42,43]. In the
shear band, however, the observed g0

2(r) does not deviate
symmetrically from the affine (elastic) assumption g0

2,affine(r),
indicating that the shear band does not support elastic strain
but preventing quantification of anelastic strain.

C. Directional coordination

Another detailed measure of the local structure is the direc-
tional coordination, which can be extracted from g(r). A cone
with its axis along a direction vector (with azimuthal angle ω

and elevation angle θ ) is defined so that the solid angle of the
cone is given by 	. Note that the azimuthal angle ω is used as
an elevation angle in the pair distribution function definition
above. All points within the cone are selected, and then the

directionally dependent coordination Z (θ, ω) = ∫ rmin

0 ηg(r)dr
is calculated, where rmin is the value of r at the first minimum
in g(r) and η is the particle number density N/V .

Figures 6(b) and 6(c) show the angular coordination in the
matrix and shear band, respectively, at three time steps. It is
apparent that the shear band, which was predeformed at t = 0,
is on average undercoordinated with respect to the matrix,
with particular undercoordination along {θ ≈ π/2, ω ≈ π}
[see Figs. 6(d) and 6(e)]. As deformation proceeds, Z in
the shear band continues to decrease and becomes more
anisotropic, which is reflected in the increasing standard devi-
ation in Z [Fig. 6(e)], with the most undercoordinated direc-
tions finally lying along {θ ≈ π,ω ≈ π} and {θ ≈ 0, ω ≈ 0}.
The closest-packed directions are along {θ ≈ π/4, ω ≈ π/2}
and {θ ≈ 3π/4, ω ≈ 3π/2}, which correspond to directions
of minimum (deviatoric) shear for the uniaxial compres-
sion geometry. This result is in contrast to previous stud-
ies, which find more coordination along directions of high
shear [44].

In stark contrast, Z in the matrix shows little change in
both the mean and minimum coordination [see Fig. 6(d)]. On
average, the shear band lacks one neighbor in comparison to
the matrix, with the most undercoordinated directions having
only ∼10 neighbors in comparison to the matrix’s mean value
of 12. The evolution of Z in the shear band shows the same
behavior as φ in that it remains static after t = 10.

D. Strain correlation function

These structural signatures collectively point to a solid-
to liquidlike transition wherein the shear band prior to
the transition can sustain elastic stress due to anelastic
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FIG. 7. Slices along the x-y, x-z, and y-z planes of the strain correlation functions in both the (a) shear band and (b) the matrix. An ellipsoid
is fit to an isointensity surface of the 3D correlation. The anisotropy of the ellipsoid is quantified by the ratio of the major axis length to the
minor axis length.

rearrangements, whereas after the transition the rearrange-
ments in the shear bad become fully plastic to relax the
internal stresses. In metallic glasses, it has been shown that
structural rejuvenation via thermal or mechanical processing
can increase the material’s capacity for plastic strain prior to
catastrophic failure [45,46]. Our measurements of structural
change directly in the shear band of a colloidal glass suggest
an upper bound to the extent of rejuvenation possible in a
finite volume of material. To establish a link between structure
and local mechanical response, we analyze the spatial extent
of local shear deformation as measured by the shear strain
correlation function χγ , calculated as follows.

We find the best affine deformation tensor Jk for particle k
that maps particle k’s neighbors at time t to their positions at
time t + �t by minimizing the total nonaffine displacement
D2

min,k = 1/N
∑N

i=1[ ri(t + �t ) − Jkri(t )] 2 [47]. A cut-off
distance of 2Dpart to identify a particle’s neighbors was em-
ployed. The strain tensor εk is found by extracting the sym-
metric part of Jk as εk = 1

2 [Jk + JT
k ] , which allows for the

calculation of the shear strain γk =
√

1
2 Tr(εk − �kI), where

�k = 1
3 Tr(εk) is the hydrostatic strain invariant. At each time

step, the spatial autocorrelation of γ (r) is computed as:

χγ (dr) = 〈γ (r)γ (r + dr)〉 − 〈γ (r)〉2

〈γ (r)2〉 − 〈γ (r)〉2
. (2)

χγ is found to be quite anisotropic, but generally ellip-
soidal, as shown in Fig. 7, with particular directions ex-
hibiting strong correlation at large distances, as expected in
shear-dominated dynamics [48]. To quantify changes in the
correlations as deformation proceeds, an ellipsoid is fit to an
isointensity surface for each χγ (dr). The value of χγ as a
function of distance σ = r/Dpart along the ellipsoid’s major
axis is a measure of the maximum extent of the correlation
in strain and is plotted in Figs. 8(a) and 8(b). At each time
step, we fit χγ to an exponential form χγ = exp (−σ/ζ ) to
extract the correlation length ζ , an approximate measure of
rearrangement size [49].

These correlation lengths are plotted against the local vol-
ume fraction φ at the corresponding time step in Fig. 8(c). In
the matrix, the correlations are relatively unchanged through-
out the experiment, with zero correlation beyond σ = 4,
suggestive of minimal plastic activity and a shedding of any
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FIG. 8. (a) Decay of the strain correlation χγ along the major
ellipsoidal axis in the shear band and (b) matrix at different time
steps. (c) The correlation lengths ζ from a fit to exponential decay
χγ = exp(−σ/ζ ) plotted versus volume fraction. Data points for
t � 15 [not shown in (a) and (b)] have the same coloring. Error bars
mark the standard deviation of the errors of the fit, obscured by plot
markers in most cases.

elastic stresses in favor of localized plastic deformation in the
shear band. In the shear band, the spatial extent of the cor-
relations decays as deformation proceeds. At φ > φg, the cor-
relation at σ = 10 is significant with χγ (σ = 10) ≈ 0.2–0.6,
and correlation lengths are high, indicative of cooperative
rearrangements system-spanning shear band, as has been ob-
served in glass models at the yielding point [50]. Further
dilation, however, reduces ζ . Notably, the time step where
ζ reaches a minimum corresponds to the same time step,
t = 10, where both φ and Z sharply saturate. This decay in
the correlation lengths in shear strain signifies a transition
from a solidlike to liquidlike response, which accompanies the
changing structure within the shear band [50,51]. We also find
that the anisotropy of the correlation, quantified by the ratio
of the ellipsoid’s major to minor axis, decays with dilation in
the shear band from ∼3 to ∼1.5 (see Fig. 7). The correlation
in the matrix is isotropic, with anisotropy values ∼1.1 that
persist throughout the experiment. We note that while the
correlation lengths of the developing shear band tend to those
of the matrix [Fig. 8(c)], they reflect different physics, as
evident in the full dependence of the strain correlations with
distance [Figs. 8(a) and 8(b)]. In the shear band, the long-
range correlation in strain at early time steps is reminiscent
of perfect slip along two planes. As the band fluidizes at
later time steps, the correlation length between plastic events
decays to ∼5Dpart. In contrast, the matrix remains relatively
undeformed once the shear band forms and only isolated

plastic rearrangements occur in a manner that is relatively
insensitive to the progression of the experiment, as has been
observed in quiescent and deformed colloidal solids [52].
These results show the structural and mechanical transitions,
as measured by φ, g(r, ω), and χγ , to be quite abrupt and
consistent with a short-range transition in structure.

IV. CONCLUSION

Overall, our results quantitatively support the interpreta-
tion of shear banding as a driven, localized glass transition.
Quasistatic deformation drives a reduction in φ in a thin band
of the solid until φ approaches φg, at which point there is a
sharp transition and dilation ceases. Dilation is accompanied
by a decay in the extent and anisotropy of spatial correla-
tions in strain as well as a diminished capacity to support
anelastic strains, which would give rise to memory effects
before the onset of full plasticity, signifying a transition from
solidlike to liquidlike response [33]. While we cannot rule out
a first-order transition in the particle dynamics, the observed
continuous changes in structure and mechanical response are
consistent with the behavior of a glass as it approaches the
glass transition from the solid phase. By definition, the spatial
extent of the changes in structure and response is hetero-
geneous, and the resulting microstructure is clearly distinct
from a microstructure that may be obtained from isotropic
dilation, which is consistent with the conclusions drawn in
Refs. [18,19]. Our results providing the microscopic origins
of such driven transitions lend credence to an equivalency
between mechanical shear banding and the glass transition
provided that careful consideration of the spatial extent of the
system is given.
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APPENDIX A: CONFOCAL MICROGRAPH ANALYSIS

1. Image filtering

Since our samples are polydisperse, we filter the orig-
inal images with a three-dimensional, scale-free Laplacian
of Gaussian kernel, L(x, y, z). The filter operation is imple-
mented as a convolution operation I = I∗L, computed by the
fft method along each dimension [53]. This kernel is given
explicitly as:

L(x, y, z) = 1

A

(
x2

/
σ 2

x + y2
/
σ 2

y + z2
/
σ 2

z − 3
)

× exp
[−(

x2
/
σ 2

x + y2
/
σ 2

y + z2
/
σ 2

z

)/
2
]
, (A1)

where the normalization constant is A = 2
√

2π3/2σxσyσz.
This functional form of L(x, y, z) was originally suggested
by Lindeberg [54]. Lindeberg showed that it is necessary
to normalize Laplacian operators by σ 2 in order to remove
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the systematic dependence of the Laplacian operator on the
probing size, enabling the comparison of the response of
objects of different sizes on even terms. This allows the signal
of small particles near large particles to be recovered without
doing a prohibitively slow multisize search algorithm, with
polydispersities even as large as a few hundred percentages.
Here the kernel widths σi are chosen such that the full-width
half-max of the kernel equals the mean particle size in pixels
along each dimension, σi = Ri/

√
2ln(2).

2. Peak finding

The peak find algorithm is identical in outline to the
original implementation by Grier and Crocker. Our implemen-
tation seeks to vectorize and memory manage the operations
to optimize the analysis of three-dimensional image stacks.
For each voxel, we compare its intensity to every neighbor in
a 3×3×3 region. This operation is vectorized to the number
of voxels that can be simultaneously held in memory. For each
local region, we use grayscale dilation and erosion operations
to identify the locations of local maximum and local minimum
intensities and test whether the center voxel concides with
either. Voxels that align with regional maxima in intensity are
kept as candidate centers for refinement by centroiding.

3. Centroiding

For subvoxel centroiding, we return to the original images
and apply a simple a low-pass filter by convolving with a
three-dimensional Gaussian kernel. The centroiding operation
is performed on a region centered on the pixel-accurate lo-
cation obtained from the previous analysis stage. In dense
samples, this operation can suffer from systematic errors de-
pending on the proximity to other particles and the properties
of the point-spread function (PSF) of the imaging apparatus.
One possible, but computationally expensive, approach to
resolve this problem is to try to deconvolve the PSF effects
directly and then perform centroiding. We choose an alterna-
tive approach, which is to cut off the effects of neighboring
particles over distances comparable to the particle size by
using a spherical binary mask, with the window size given
by the expected particle size. Then, to localize the particles
in this subpixel region, we perform a recursive centroiding
algorithm, referred to as fracshift in Ref. [55], that consists of
repeating the centroiding operation about the new position es-
timates until the result converges by some criterion. Gao et al.
[55] showed that this recursive centroiding method is neces-
sary to achieve subvoxel positions without voxel locking. Our
implementation follows their algorithm, with some accuracy
improvements by the use of a more accurate noncircular areal
interpolation in place of the circular shift operation used in
the core of the original code to perform multiple passes of
the centroiding operator in a local region without reloading
regions from memory for every iteration. We find that the ma-
jority of particles (>95%) typically converge within 20 itera-
tions. We implement a combination of a global convergence
criterion based on a fixed maximum number of iterations for
all particles (used for computational convenience to prevent
excessive analysis of individual particles), but we allow each
particle to perform the required number of iterations until the

FIG. 9. D2
min as a function of strain for four magnitudes of

random particle displacements. The experimental noise floor in
D2

min (red markers) lies between the 50- and 100-nm random dis-
placements, which agrees with the position uncertainty estimate
of ∼60–80 nm from the RMS displacement values.

change in positions is less than a fixed tolerance. This allows
the algorithm to converge rapidly for very well-defined peaks
and spend more time refining more challenging peaks. We
confirm the validity of the subvoxel positions by a number of
standard tests, such as computing the distribution of subpixel
values in the positions and the noise floor in dynamical
quantities.

APPENDIX B: UNCERTAINTY IN PARTICLE POSITIONS

We make two estimates of the experimental uncertainity
in locating particle centers by (1) measuring the root-mean-
squared displacement, σ�x =

√
〈�x2〉, in the matrix from t

to t + 1 and (2) adding noise to the positions at t = 0 and
measuring the resulting noise floor in D2

min.

1. RMS displacements

As an upper bound on the uncertainty in particle positions,
we measure the root-mean-squared displacement in x, y, and
z in the matrix for each incremental time step t to t + 1.
The mean value over the duration of the experiment in each
dimension is given below.

Dimension σ�x (μm) σ�x/Dpart

x 0.0589 0.0178
y 0.0588 0.0178
z 0.0804 0.0244

2. Noise floor in D2
min

As a second estimate on the uncertainty in particle po-
sitions, we add a displacement of fixed magnitude and ran-
dom direction to the positions identified at t = 0. Using
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the displaced positions, we calculate D2
min according to the

procedure outlined in the main text. The noise floors in D2
min

for displacement magnitudes of 20, 50, 100, and 250 nm are

shown in Fig. 9. The experimental noise floor lies between 50
and 100 nm of random noise, which agrees well with the RMS
displacement uncertainty estimate of ∼60–80 nm.
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