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Hydrodynamic interactions in topologically linked ring polymers
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Despite decades of interdisciplinary research on topologically linked ring polymers, their dynamics remain
largely unstudied. These systems represent a major scientific challenge as they are often subject to both topolog-
ical and hydrodynamic interactions (HI), which render dynamical solutions either mathematically intractable or
computationally prohibitive. Here we circumvent these limitations by preaveraging the HI of linked rings. We
show that the symmetry of ring polymers leads to a hydrodynamic decoupling of ring dynamics. This decoupling
is valid even for nonideal polymers and nonequilibrium conditions. Physically, our findings suggest that the
effects of topology and HI are nearly independent and do not act cooperatively to influence polymer dynamics.
We use this result to develop highly efficient Brownian dynamics algorithms that offer enormous performance
improvements over conventional methods and apply these algorithms to simulate catenated ring polymers at
equilibrium, confirming the independence of topological effects and HI. The methods developed here can be
used to study and simulate large systems of linked rings with HI, including kinetoplast DNA, Olympic gels, and
poly[n]catenanes.
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I. INTRODUCTION

The dynamical interplay between polymer topology and
hydrodynamic interactions (HI) has been a topic of consider-
able interest [1], particularly within the context of unknotted
[2–11] and knotted [12–16] ring polymers. In contrast, the
dynamics of linked rings in solution has received limited
attention [17], despite being a fixture of the biophysics liter-
ature for decades [18–21] and a frequent target of chemists
[22,23]. Recent simulations have shown that the dynamics
of these systems exhibit pronounced topological effects [24],
even within single polymers [25]. In particular, the dynamics
of linked rings are considerably slower than their unlinked
counterparts, a result that appears to hold for all ring sizes,
suggesting that the topological constraints act on the length
scale of the entire ring. However, only rings of moderate
size have been characterized thus far, and only Kanaeda and
Deguchi [26] have studied such systems with HI. Even then,
only the diffusion coefficient of very small catenanes was
considered, leaving important questions unaddressed. For in-
stance, dynamical scaling relations for these systems have not
yet been firmly established, and it is not clear how (or if)
topological interactions and HI act cooperatively to influence
ring dynamics. These same questions are also important in
larger interlocked systems such as kinetoplasts [27,28] and
Olympic gels [29], which have attracted attention in recent
years.

Here we use theory and Brownian dynamics (BD) simula-
tions to investigate the dynamics of linked ring polymers with
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HI. These systems present two major challenges: (1) HI and
topological effects render the equations of motion analytically
intractable, and (2) numerical simulations are highly computa-
tionally demanding. We address the former by using averaged
HI [30] and show that the symmetries of ring molecules
greatly simplify the situation. Physically, this result suggests
that the effects of topology and HI are roughly independent.
It also allows us to tackle the computational challenge by
designing highly efficient BD algorithms, which we use to
simulate catenated ring polymers at equilibrium to validate
the theoretical predictions. From a theoretical perspective, our
results demonstrate how the symmetries of ring polymer sys-
tems can be used to simplify otherwise intractable problems.
Meanwhile, the algorithms developed here enable effi-
cient simulations of large interlocked polymer systems with
HI.

II. THEORY

Consider a group of n linked ring polymers, each com-
prising m identical interacting Brownian particles, containing
N = n × m particles in total. We assume that there are no
disconnected (or free) rings. Using the bead radius a, the ther-
mal energy kBT , and the bead diffusion time τ0 = 6πηa3/kBT
(with η the solvent viscosity) as the units of length, en-
ergy, and time, respectively, the dynamics of the particles at
equilibrium are described by the dimensionless Langevin
equation [31]:

dR
dt

= −H · ∂U

∂R
+

√
2B · dW , (1)
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where R is a vector of particle positions, H is the N × N
mobility or hydrodynamic interaction (HI) matrix whose el-
ements H i j are tensors that describe the direction-dependent
hydrodynamic coupling between beads i and j, U is the sys-
tem interaction potential, dW is an increment of the Wiener
process, and BBT = H per the fluctuation-dissipation theo-
rem. Normally, a divergence term of the form ∂/∂R · H is
included in Eq. (1), but this will be neglected as it does
not affect our results (see Supplemental Material [32]) and
vanishes due to solvent incompressibility for many commonly
employed forms of H i j (e.g., Oseen-Burgers [31], Rotne-
Prager-Yamakawa [36,37], and Zylka-Öttinger [38] tensors).

Equation (1) represents a set of coupled, nonlinear equa-
tions since both H and the forces (−∂U/∂R) depend on the
particle positions. Zimm [30] replaced H with its equilib-
rium average, 〈H〉eq, thereby simplifying the mathematical
treatment of mobility. The success of these “preaveraged” HI
[39] inspired the closely related “consistently averaged” HI
under nonequilibrium conditions [40–42] and “iterative aver-
aging” for simulations [4]. In general, these methods are most
appropriate when conformational fluctuations are negligible,
typically at or near equilibrium. Here we follow this well-
established family of approximations and study the dynamical
consequences in the context of catenated polymers.

To begin, we establish a useful indexing convention: the
vector R is broken up into blocks of size m, each of which rep-
resents the position of the beads within a single ring, denoted
Rα with α = 1, 2, . . . , n. Following this convention, H may
be written as a n × n block matrix with each m × m block Hαβ

representing the HI between the beads on rings α and β. The
on-diagonal blocks represent the coupling between beads on
the same ring polymer, while the off-diagonal blocks represent
the coupling between beads on different rings.

We now consider the equilibrium average of the mobility
matrix, 〈H〉 (the subscript “eq” has been dropped for brevity).
The elements 〈H i j〉 depend on the details of the system, e.g.,
chemical composition, solvent, m, etc., and must be deter-
mined by simulation except for simple models. However, for
the time being, we are not concerned with the value(s) of
〈H〉, but rather with its mathematical structure. In particular,
the form of the averaged blocks 〈H〉αβ is constrained by
continuous symmetries: all particles within ring polymers are
statistically identical. Since the indexing of beads is there-
fore arbitrary, each row in a given block 〈H〉αβ is identical
to the other rows but for a shift in indices; in mathemat-
ical terms, the blocks are circulant [43]. The eigenvectors
of circulant matrices are simply the Fourier modes ωq =
δ/

√
m(1,wq,w

2
q, . . . ,w

m−1
q ) where δ is the identity tensor,

q = 0, 1, . . . , m − 1, wq = exp(2π iq/m) and i = √−1, sug-
gesting a convenient coordinate basis for the system.

The off-diagonal blocks 〈H〉αβ (α �= β ) have even greater
symmetry. Since the average must not depend on the indexing
of either ring, all elements are equal:

〈H〉αβ = hαβ

0

m

⎡⎢⎢⎢⎣
1 1 . . .

1 1
...

. . .
1

⎤⎥⎥⎥⎦ ≡ hαβ

0

m
1 (α �= β ), (2)

where we have defined the m × m “ones” matrix 1 in the
second equality and the factor 1/m is included for later nor-
malization.

Having determined the form of 〈H〉, we can now diago-
nalize each of its blocks using the Fourier modes. Denoting
by ω the m × m matrix whose columns are given by the
modes ωq, we define the orthonormal block-diagonal matrix
� ≡ ω ⊗ In, where In is the n × n identity matrix. The matrix
� will be used to transform Eq. (1). Before continuing, it is
important to make a key observation: the Fourier modes are
physically equivalent to the Rouse modes for ring polymers
[43–45]. For ring α, we have Xα = ω†Rα . Accordingly, the
mode q = 0 corresponds to the ring center-of-mass (CM)
position while the modes q > 0 describe the internal configu-
ration of the polymer.

Substituting 〈H〉 into Eq. (1) and multiplying by �†, we
have

dX
dt

= −Ĥ · ∂U

∂X
+

√
2B̂ · dZ, (3)

where Ĥ = �†〈H〉�, B̂ = �†〈B〉�, and dZ = �†dW . The
fluctuation-dissipation theorem and the orthonormality of �

imply B̂B̂
T = Ĥ .

We now consider the form of Ĥ , which inherits the block
structure of H . The on-diagonal blocks Ĥ

αα
are themselves

diagonal with elements given by the eigenvalues of 〈H〉αα ,
denoted hαα

q with q = 0, 1, . . . , m − 1. This result indicates
that in the preaveraging approximation, the various internal
modes of the rings do not hydrodynamically couple to one
another [43].

To determine the form of the off-diagonal blocks of Ĥ , we
first calculate ωT 1ω = mδC where C is the m × m “corner”
matrix with elements Ci j = δi1δ j1, so-called because only the
upper-left element is nonzero. Using this result along with
Eq. (2), we obtain

Ĥ =

⎡⎢⎢⎢⎢⎣
Ĥ

11
h12

0 C . . .

h12
0 C Ĥ

22

...
. . .

Ĥ
nn

⎤⎥⎥⎥⎥⎦. (4)

We again emphasize that the on-diagonal blocks Ĥ
αα

are
diagonal. The matrix B̂ can also be written in a similar manner
with diagonal on-diagonal blocks B̂

αα
having nonzero entries

bαα
q (q = 0, 1, . . . , m − 1) and off-diagonal blocks bαβ

0 C (see
Supplemental Material [32]). From Eq. (4), the elements of
the off-diagonal matrices, which represent HI between modes
on different rings, all vanish except those which describe
coupling between the “zeroth” modes. But as discussed above,
these modes simply correspond to the ring CMs. Using this
result, Eq. (3) can be separated into two sets of equations: one
for the CM modes Xα

0 and another for the intraring modes, Xα
q

(q > 0):

dXα
0

dt
=

n∑
β=1

{
−hαβ

0

∂U

∂Xβ

0

+
√

2bαβ

0 dZβ

0

}
, (5a)

dXα
q

dt
= −hαα

q

∂U

∂Xα
q

+
√

2bαα
q dZα

q . (5b)
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Thus, by a combination of preaveraging and choosing a
suitable coordinate basis, the set of nm coupled vector equa-
tions, Eq. (1), has been reduced to n coupled equations and
n(m − 1) (hydrodynamically) independent ones.

According to Eq. (5b), the internal dynamics of the rings
(q > 0) are hydrodynamically decoupled from one another:
the only direct coupling between rings exists at the coarse
CM level, Eq. (5a). In essence, topology and HI do not act
cooperatively to influence the ring dynamics, at least in a
direct sense. Of course, the dynamics of the rings will still be
coupled through the forces (−∂U/∂X ), but these primarily re-
flect the topological constraints; hydrodynamic contributions
are higher-order effects (see below). This result is particularly
striking as it does not actually require that the average be
taken over the equilibrium distribution. Rather, the decoupling
was obtained purely on the basis of symmetries in the rings,
which still exist even in nonideal (non-Gaussian) polymers
or in nonequilibrium conditions. In such cases, Eqs. (5) still
hold, but with generally anisotropic tensors hαβ and bαβ . In
addition, the precise details of the topological linking do not
affect the result, which should therefore hold for arbitrary link
complexity.

Since there is no direct coupling between topology and
HI, we now turn our attention to how the two may couple
indirectly. Equations (5) suggest two mechanisms. First, the
values hαα

q may be altered by topological constraints. While
this is likely important far from equilibrium, it is negligible
for simple links in equilibrium (see Supplemental Material
[32]). Second, the non-local-in-time force correlations be-
tween modes or segments (which are sensitive to topology) are
modified, either by deviations of hαα

q from the freely draining
value(s), δ, or by ring CM dynamics, which are still hydrody-
namically correlated via Eq. (5a). These effects are expected
to be small, as they describe how the force on a given mode is
affected by changes in the dynamics of other modes at earlier
times. The small magnitude of the indirect coupling, and the
absence of a direct coupling, indicate that topology and HI are
pseudo-independent, provided the averaging approximation is
valid.

If topology and HI were in fact independent, the con-
sequences of topological linking would be comparable for
systems with and without HI. In the remainder of this paper,
we develop and apply Brownian dynamics simulations to test
this result and quantify the importance of the higher-order
effects described above. Before continuing, we note that al-
though the theory and methods presented here were developed
in the context of linked ring polymers, they are equally valid
for isolated or knotted ring polymers.

III. METHODS AND ALGORITHMS

Equations (5) suggest an efficient scheme for BD sim-
ulations, in which the forces are calculated in real space,
while the particle positions are updated in the Fourier mode
representation. The advantage of this approach is that the
products H · ∂U/∂R and B · dW required for integrating
Eq. (1) [typically O(N2) operations] are no longer necessary
in integrating Eqs. (5), where such products are only needed

for the CM modes. Thus, the position update is split into
a O(nm) operation for modes q > 0 and a O(n2) operation
for modes q = 0. Of course, one must constantly transform
back-and-forth between the real-space and Fourier-space rep-
resentations, but with fast Fourier transforms the scaling of
these operations is only O(nm log m). As a result, this al-
gorithm provides substantial improvements in computational
performance compared to typical conformationally averaged
simulations [4]. For the largest systems studied here (see
below), the performance is improved by over an order of
magnitude [32].

For systems with large conformational fluctuations, av-
eraged HI may not provide qualitatively correct results.
However, the algorithm above can be modified such that some
time-dependent variation in HI is preserved. At each time
step, the time-dependent HI matrix H (t ) is calculated and
each of the on-diagonal blocks Hαα (t ) is averaged along its
diagonals, such that it becomes circulant. The off-diagonal
blocks Hαβ (t ) (α �= β) are then averaged over all elements
to obtain the form of Eq. (2). Moving to the Fourier space,
the time-dependent matrix Ĥ (t ) will again have the form of
Eq. (4), and B̂(t ) may be computed with complexity O(nm) +
O(n3) (see Supplemental Material [32]). The remainder of
the algorithm is identical to that described above. In general,
the interring couplings hαβ

0 and the intraring eigenvalues hαα
q

are not isotropic tensors. However, as discussed before, this
anisotropy does not invalidate the hydrodynamic decoupling
in Eqs. (5).

Unlike the preaveraged matrix 〈H〉, the time-dependent
“instantaneously averaged” matrix Ĥ (t ) still contains some
information regarding the polymer conformation at any given
moment in time and may therefore capture the effects of
large-scale conformational fluctuations with minimal compu-
tational expense. Moreover, the equilibrium-averaged matrix
〈H〉 need not be known beforehand. These advantages make
instantaneously averaged HI well suited to nonequilibrium
BD simulations. The two algorithms described above are pre-
sented more formally in the Supplemental Material [32]. Note
that both methods include the mechanisms of indirect HI-
topology coupling described earlier. Since these algorithms
are considerably more efficient than ordinary BD simulations,
they can be used to study large, complex interlocked materi-
als, such as kinetoplasts, Olympic gels, or poly[n]catenanes
[23] with HI both at equilibrium and nonequilibrium con-
ditions. A sample code implementing these algorithms
in the Python programming language [46] is available
online [47].

To test the theoretical results presented above, we have
conducted BD simulations of unlinks (n = 1) and Hopf links
(i.e., [2]catenanes, n = 2) in equilibrium at theta-solvent con-
ditions. We consider ring sizes of m = 16, 32, 48, 64, 96,
128, 256, and 512 and include HI at four different levels:
freely draining (no HI), full HI (typical BD simulation), and
pre- and instantaneously averaged HI (see above); see Sup-
plemental Material [32] for details. For the systems with full
HI, only ring sizes up to m = 96 could be simulated owing to
the considerable computational demands; only with the more
efficient algorithms developed above can the larger systems be
simulated with HI.
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FIG. 1. (a) Longest ring relaxation times, τ , and (b) diffusion
coefficients, D, for linked and unlinked ring polymers as a function of
ring size, m, with various levels of HI. Error bars are approximately
the size of the data points. Dashed lines indicate the Zimm scaling
predictions.

IV. RESULTS AND DISCUSSION

We focus on the long-time, large-length-scale dynamics, as
these are the most sensitive to topological effects [24,25]. In
particular, we examine the longest relaxation times of the indi-
vidual rings (τ , determined from the autocorrelation function
of the lowest Rouse mode) and the diffusion coefficient of the
whole polymer assembly (D, determined by linear regression
on the CM mean-squared displacement), shown in Fig. 1.

We begin by assessing the validity of the averaging ap-
proximations, i.e., how well pre- and instantaneous averaging
reproduce the correct values of τ and D. At small m, the
averaging algorithms show considerable deviations in τ com-
pared to the full HI simulations. However, as m increases,
these deviations are reduced and are only about 10% by
the time m = 96, comparable to the statistical uncertainty in
the results. In general, D shows better agreement, exhibit-
ing differences of only 5%–10% throughout the range of m
values.

Despite these differences, all data show the same scaling
behavior. Zimm theory predicts τ ∼ R3

g,r and D ∼ R−1
g [39]

FIG. 2. Relative mobility of Hopf links and unlinks as calculated
from either the diffusion coefficient or the ring relaxation times (see
main text for details). Error bars are roughly the size of the data
points, except where explicitly shown.

where Rg is the polymer radius of gyration and Rg,r is the
radius of gyration of an individual ring (for unlinked rings,
these are identical). Since our systems are near the theta
point, we expect Rg ∼ Rg,r ∼ m1/2 and therefore τ ∼ m3/2 and
D ∼ m−1/2. This is indeed the case for all algorithms used, as
shown in Fig. 1.

We now quantify the effects of topological linking on the
system dynamics. As in previous works, the relaxation times
of the rings are increased by the presence of threading seg-
ments [24,25]. However, this is expected since topological
linking also causes the rings to swell relative to the unlinked
state [25,48,49], which should increase the relaxation times
according to the scaling relations above. Meanwhile, the in-
creased mass and overall size of the Hopf links compared to
the unlinks will naturally favor smaller diffusion coefficients;
this effect is also observed in the simulation data.

To understand whether the topology-dependent dynamical
properties are simply the result of changes in ring size, we
introduce effective mobilities μτ (T ) ≡ R3

g,r/τ and μD(T ) ≡
(RgD)−1 where T represents the topological state of the rings,
either unlinks, U , or Hopf links, H. According to the scal-
ing predictions above, these mobilities should be independent
of m but may still depend on T . To isolated and quantify
topological effects, we consider the ratios of the effective
mobilities, μτ (H)/μτ (U ) and μD(H)/μD(U ), which we dub
relative mobilities.

In a similar manner, we wish to assess whether topological
effects are manifested differently in the presence of HI to test
the theoretical results presented above. To do so, we note
that without HI, relaxation times scale as τ ∼ mR2

g,r [39],
suggesting an effective mobility μ0(T ) ≡ mR2

g,r/τ . As above,
the relative mobility μ0(H)/μ0(U ) is the quantity of interest.
Note that any mobility calculated from D in freely draining
systems is not meaningful, as these systems have D = 1/N
identically, regardless of polymer architecture or topology.

The relative mobilities are shown in Fig. 2. As expected,
these data are essentially independent of m. The values cal-
culated from D are approximately unity for all algorithms,
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suggesting that the overall motion of the polymer is controlled
primarily by its size, so topological effects are only important
insofar as they affect polymer dimensions. However, in freely
draining systems, the relative mobility calculated from τ is
on average ∼0.6 due to topological effects, in agreement with
previous results [24,25]. In the presence of full HI, the relative
mobility is slightly larger, ∼0.74, suggesting that there is in-
deed some coupling between topology and HI. Nevertheless,
this difference is surprisingly modest, given how dramatically
both HI and topology alter polymer dynamics. Furthermore,
when the higher-order, indirect effects are included through
pre- and instantaneously averaged HI, much of this difference
is eliminated, with relative mobilities of ∼0.67.

The remaining discrepancy between the relative mobili-
ties of averaged and full HI represents the direct coupling
of topology and HI. This coupling is likely caused by the
heterogeneous hydrodynamic environment of the systems.
HI effectively “shield” segments from solvent drag forces;
the more beads nearby, the more shielding and the faster
the segmental dynamics. Averaging procedures neglect any
heterogeneity in this shielding, which breaks the symmetry
of the rings such that the Fourier modes are not truly hy-
drodynamically decoupled. The data in Fig. 1 suggest that
this approximation leads to some errors even in the case of
unlinked ring polymers. These discrepancies may be exacer-
bated in Hopf links, where segments on the same polymer may
be either surrounded by the beads of the linked ring or dis-
tantly separated from them. This may explain why simulations
with averaged HI exhibit poorer agreement for Hopf links
versus unlinks (Fig. 1). Nevertheless, the relative mobilities
are still quite close to one another, differing by just ∼10%,
and supporting the theoretical result that there is little direct
coupling between topology and HI and that the two effects are
pseudo-independent at equilibrium.

V. CONCLUSIONS

This work represents a first step in the study of the dy-
namics of topologically linked polymers in solution. We have
shown that by leveraging the symmetries inherent to ring
polymers, the effects of topology and HI may be considered
approximately independently. Furthermore, we have devel-
oped efficient Brownian dynamics algorithms which allow for
simulations of large interlocking polymer systems and long
timescales. Taken together, these advances have brought us
into a position from which to pose and answer a range of
questions concerning the dynamics of linked ring polymers
in solution that could not be addressed before.
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