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Phase bistability between anticipated and delayed synchronization in neuronal populations
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Two dynamical systems unidirectionally coupled in a sender-receiver configuration can synchronize with a
nonzero phase lag. In particular, the system can exhibit anticipated synchronization (AS), which is characterized
by a negative phase lag, if the receiver also receives a delayed negative self-feedback. Recently, AS was shown to
occur between cortical-like neuronal populations in which the self-feedback is mediated by inhibitory synapses.
In this biologically plausible scenario, a transition from the usual delayed synchronization (with positive phase
lag) to AS can be mediated by the inhibitory conductances in the receiver population. Here we show that
depending on the relation between excitatory and inhibitory synaptic conductances the system can also exhibit
phase bistability between anticipated and delayed synchronization. Furthermore, we show that the amount of
noise at the receiver and the synaptic conductances can mediate the transition from stable phase locking to a
bistable regime and eventually to a phase drift. We suggest that our spiking neuronal populations model could
be potentially useful to study phase bistability in cortical regions related to bistable perception.

DOI: 10.1103/PhysRevE.102.032412

I. INTRODUCTION

Multistable perception is the brain’s ability to alternate
between two or more perceptual states that occur when sen-
sory information is ambiguous [1]. It has been hypothesized
that the perception of two different features of the same
visual cue such as in the Necker cube [2] [see Fig. 1(a),
which can be interpreted to have either the upper-left or the
lower-right square as its front side] should be related to the
nonlinear interaction between brain rhythms [3]. This means
that an almost fixed anatomical connectivity should allow
flexible changes from one functional connectivity pattern to
another on timescales relevant to behavior. Recently it has
been reported that bistable phase differences in magnetoen-
cephalography recordings appear when participants listening
to bistable speech sequences that could be perceived as two
distinct word sequences repeated over time [4]. This result
suggests that phase bistability in cortical regions could be
related to bistable perception.

Here we propose a model of two neuronal populations
that can synchronize with a bistable phase lag. Typically,
when two dynamical systems are unidirectionally coupled
they can synchronize with a positive phase lag in which
the sender is also the leader. This regime is called de-
layed synchronization (DS). However, it has been shown
that in a sender-receiver configuration, if the receiver is
subjected to a delayed self-feedback, the system can syn-
chronize with a negative phase lag [5]. This counterintuitive
situation indicates that the receiver leads the sender, and it
is called anticipated synchronization (AS). Formally, Voss
has shown that if a system is described by the following

*fernanda@fis.ufal.br

equations:

Ṡ = f (S(t )),

Ṙ = f (R(t )) + K[S(t ) − R(t − td )], (1)

with arbitrary continuous f and coupling matrix K, it may has
a stable solution R(t ) = S(t − td ), which characterizes AS,
i.e., the receiver predicts the sender.

In the last two decades AS has been verified in both theo-
retical [5–14] and experimental [15–17] studies. AS can also
occur if the delayed self-feedback is replaced by different
parameter mismatches at the receiver [18–20], including in-
hibitory loops mediated by chemical synapses [21–26]. In
particular it has been shown that a faster internal dynamics
of the receiver could promote AS between unidirectionally
coupled oscillators [26–29].

Recently AS has been verified between unidirectionally
coupled cortical-like populations [29,30]. The neuronal pop-
ulation model exhibits a smooth transition from DS to AS
that can be mediated by synaptic conductances as well as by
external noise. The model could explain electrophysiologi-
cal results in nonhuman primates showing that unidirectional
Granger causality can be accompanied by both a positive
or negative phase difference between cortical areas [30–33].
Furthermore, AS in the alpha band has been recently reported
between synchronized electrodes in human electroencephalo-
gram [34] as well as in human behavior [35,36].

Here we show that a simple biologically plausible motif
with two unidirectionally coupled neuronal populations can
exhibit phase bistability between delayed and anticipated syn-
chronization regimes. In particular our populations present a
bimodal distribution of phase differences with a positive (DS)
and a negative (AS) peak. In Sec. II we describe our motif as
well as neuronal and synaptic models. In Sec. III we report our
results, showing that the phase bistability can be mediated by
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FIG. 1. (a) Necker cube [2] as an example of bistable percep-
tion. Both the upper-left and the lower-right square can be the front
side. (b) Schematic representation of two cortical areas coupled in a
sender-receiver configuration. The inhibitory feedback is controlled
by the synaptic conductance gI at the receiver population.

synaptic couplings and noise. Concluding remarks and a brief
discussion of the significance of our findings for neuroscience
are presented in Sec. IV.

II. NEURONAL POPULATIONS MODEL

Our neuronal motif is composed of two unidirectionally
coupled cortical-like neuronal populations: a sender (S) and
a receiver (R); see Fig. 1(b). Each one is composed of 400
excitatory and 100 inhibitory neurons [30] described by the
Izhikevich model [37]:

dv

dt
= 0.04v2 + 5v + 140 − u +

∑

x

Ix, (2)

du

dt
= a(bv − u). (3)

In Eqs. (2) and (3) v is the membrane potential and u the
recovery variable, which accounts for activation of K+ and
inactivation of Na+ ionic currents. Ix are the synaptic currents
provided by the interaction with other neurons and external
inputs. If v � 30 mV, v is reset to c and u to u + d . To account
for the natural heterogeneity of neuronal populations, which
can exhibit a variety of neuronal dynamics (regular spiking,
bursting, chattering, fast spiking, etc. [38]), the dimension-
less parameters are randomly sampled as follows: (a, b) =
(0.02, 0.2) and (c, d ) = (−65, 8) + (15,−6)σ 2 for excita-
tory neurons and (a, b) = (0.02, 0.25) + (0.08,−0.05)σ and
(c, d ) = (−65, 2) for inhibitory neurons, where σ is a random
variable uniformly distributed on the interval [0,1] [37,38].
Equations were integrated with the Euler method and a time
step of 0.05 ms.

The connections between neurons in each population are
assumed to be fast unidirectional excitatory and inhibitory
chemical synapses mediated by AMPA and GABAA. The
synaptic currents are given by

Ix = gxrx(v − Vx ), (4)

where x = E , I (excitatory and inhibitory mediated by AMPA
and GABAA, respectively), VE = 0 mV, VI = −65 mV, gx is
the maximal synaptic conductance, and rx is the fraction of
bound synaptic receptors whose dynamics is given by

τx
drx

dt
= −rx + D

∑

k

δ(t − tk ), (5)

where the summation over k stands for presynaptic spikes at
times tk . D is taken, without loss of generality, equal to 0.05.
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FIG. 2. Characterizing the phase-locking regimes. Left column:
delayed synchronization (DS, gE = 0.8 nS and gI = 0.02 nS) in
which the sender population leads the receiver on average with a
positive mean time delay τ = 4.5 ms. Right column: anticipated
synchronization (AS, gE = 0.5 nS and gI = 0.8 nS) in which the
receiver population leads the sender on average with a negative mean
time delay τ = −35.8 ms. (a, b) Mean membrane potential of each
neuronal population (the sender in black and the receiver in light
purple). (c, d) Time delay τi in each cycle. (e, f) Histograms of time
delays per cycle.

The time decays are τE = 5.26 ms and τI = 5.6 ms. Each
neuron is subject to an independent noisy spike train described
by a Poisson distribution with rate R. The input mimics exci-
tatory synapses (with conductances gP) from n pre-synaptic
neurons external to the population, each one spiking with a
Poisson rate R/n, which, together with a constant external
current Ic, determine the main frequency of the mean mem-
brane potential of each population. Unless otherwise stated,
we have employed R = 2400 Hz and Ic = 0. We have fixed
the Poissonian synaptic conductance at the sender population
gS

P = 0.5 nS and varied gP only at the receiver population.
Connectivity within each population randomly targets 10%

of the neurons, with excitatory conductances set at gS
E =

gR
E = 0.5 nS. Inhibitory conductances are fixed at the sender

population gS
I = 4.0 nS, and gI at the receiver population is

varied throughout the study (see Fig. 1). Each neuron at the R
population receives 20 fast synapses (with conductance gE )
from random excitatory neurons of the S population. The
bistability studied in this paper happens only when the synap-
tic conductances gE , gI , and gP have comparable values. The
phase-locking regimes presented by the model for gE � 0.5
nS and gI � 1.0 nS have been studied in Ref. [30].

A. Characterizing time delay in the model

The mean membrane potential Vx (x = S, R) is calculated
as the total sum of the membrane potential v of each neuron in
the x population in a given time t , divided by the total number
of neurons in that population. Figures 2(a) and 2(b) show
examples of VS and VR in different regimes. Since Vx, which
we assume as a crude approximation of the measured local
field potential (LFP), is noisy, we average within a sliding
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window of width 5–8 ms to obtain a smoothed signal, from
which we can extract the peak times {t x

i } (where i indexes the
peak). The period of a given population in each cycle is thus
T x

i ≡ t x
i+1 − t x

i . For a sufficiently long time series, we compute
the mean period Tx and its variance.

In a similar way we can define the time delay between the
sender and the receiver populations in each cycle τi = tR

i − t S
i

[Figs. 2(a) and 2(b)]. Then, if τi obeys a unimodal distribu-
tion, we calculate τ as the mean value of τi and στ as its
variance. If TS ≈ TR and τ is independent of the initial condi-
tions, the populations exhibit oscillatory synchronization with
a phase-locking regime. In all those calculations we discard
the transient time.

III. RESULTS

A. Phase-locking regimes: Delayed and
anticipated synzhronization

In order to mimic the oscillatory activity in cortical regions
we simulated the sender population in such a way that the ex-
ternal noise and the internal coupling are enough to allow the
mean membrane potential to oscillate with f � 8 Hz (equiv-
alent to T S

i � 125 ms). Depending on the internal parameters
of the receiver population, the sender-receiver coupling gE can
synchronize the activity of both areas or not. The phase-locked
regimes present nonzero phase lags. In Figs. 2(a) and 2(b)
we show simulated time series of the S and R population.
Figures 2(c) and 2(d) show the time delay τi in the ith period
as a function of the period index i, and Figs. 2(e) and 2(f)
display their probability densities.

The phase lockings can be characterized by the mean time
delay τ and its standard deviation. For sufficiently large gE the
mean time delay τ is positive, which indicates that the sender
population leads the receiver. This is the usual delayed syn-
chronization regime (DS). The left panels of Fig. 2 show an
example of DS for gE = 0.8 nS and gI = 0.02 nS. For this set
of parameters, the peak at the receiver population occurs on
average ≈4.5 ms after the peak of the sender, which is close
to the magnitude of the synaptic timescales (as mentioned in
Sec. II: τE = 5.26 ms)

For larger values of inhibition gI , the receiver population
leads the sender on average, which is characterized by a nega-
tive mean time delay: τ < 0. This nonintuitive situation is the
so-called anticipated synchronization [5,30]. The right panels
in Fig. 2 exhibit an example of AS with gE = 0.5 nS and
gI = 0.8 nS. For this set of parameters, the system exhibits
τ � −35.8 ms. Such a value could not be inferred from any
model parameter, such as the synaptic timescales. This means
that the anticipation time is a result of the nonlinear dynamics
of the system. Furthermore, the anticipation does not occur
every cycle, but the distribution of τi [see Fig. 2(f)] clearly
shows that in the AS regime the majority of the peaks happens
in the receiver-sender order.

B. Bistability between DS and AS

A system that spends the vast majority of time near two
well-separated regions exhibits a stationary density with two
sharp peaks. This phenomenon characterizes bistability. The
Kramers problem is a standard example of a bistable system,
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FIG. 3. Characterizing the phase bistability (excitatory and in-
hibitory conductances, respectively, gE = 0.6 nS and gI = 0.4 nS).
(a) Mean membrane potential of S and R populations during a tran-
sition from AS to DS. (b) Time delay per cycle, which alternates
from positive to negative time delays every few cycles in a nonde-
terministic way. (c) Bimodal probability distribution of time delays
characterizing the bistable phase.

which consists of diffusion in a double-well potential in the
presence of noise. The distribution of the time spent in each
region before a transition depends on the amount of noise.

Here we show that depending on the relation between ex-
citatory and inhibitory conductances the system can present
a bistable regime between a DS and an AS regime (see
Fig. 3). The time delay τi is positive for a few cycles, with
a well-defined mean value and standard deviation, which is
similar to a DS regime for a certain amount of time. Then the
system randomly switches for different dynamics in which
τi is negative during a few other cycles. By analyzing the
system only for these few periods of oscillation, one could
wrongly characterize the system as in an AS regime. But, then,
suddenly again, the system can jump back to the first attractor
close to DS. Therefore, the histogram of time delays between
the two populations is a bi-Gaussian with one positive and one
negative peak as shown in Fig. 3(c). In this regime, the system
cannot be simply characterized by the mean time delay τ .

If the system remains close to the DS attractor (AS attrac-
tor) for more than two cycles we define this as a DS event (AS
event). The DS events are represented by the upper states in
Fig. 3(b), whereas AS events are the lower states in the figure.
We define the event size as the number of cycles in which
the system stays close to one of the two regions. Since the
mean period of oscillation of the sender is 125 ms we can use
the size of the event as a proxy for the temporal dynamics of
the bistable regime. For example, an event that lasts for eight
cycles would have ≈1 s duration. This would be especially
useful if one needs to compare the temporal dynamics of the
model with behavioral data.

In Fig. 4 we show the size of the events and their his-
tograms. The distribution of the number of occurrences of a
specific size is different for DS events and AS events. The
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FIG. 4. Temporal dynamics of the bistability. The same parame-
ters as in Fig. 3: gE = 0.6 nS and gI = 0.4 nS. (a) Size of each DS
event in number of cycles (or periods of the sender) that the system
remains close to the DS atrractor. These values could be converted
to time since each period takes ≈125 ms long. (b) Size of the AS
events. Distribution of the size events (c) close to DS and (d) close to
AS.

probability to find very small events (up to nine cycles) or very
large events (larger than 300 cycles) is larger for DS than for
AS events. On the other hand, events of intermediate sizes are
more probable close to the AS region. The distributions are
qualitatively comparable to temporal dynamics of binocular
rivalry during fMRI [39]. However, investigating in more de-
tail the statistical properties of these distributions, to compare
with cognitive data would require a significative computa-
tional effort to simulate even longer time series, which is out
of the scope of this study.

C. Phase-drift regime

For small values of the sender-receiver coupling gE , the
system can also exhibit a PD regime in which the receiver is
faster than the sender (TS > TR). Figure 5 shows an example
of such a regime: the time delay τi changes every cycle in a
quasiperiodic configuration. The histogram of τi for gE = 0.3
nS seems flattened. In the limit of gE = 0, which characterizes
the totally uncoupled situation, every τi is equiprobable. As in
the bistable regime, in the PD, we do not use the mean time
delay τ to characterize the regime.

In Fig. 6 we display a heat map of the return map τi

versus τi−1 which is useful to illustrate the different dynamical
regimes. Several features in those curves are important to
mention. Due to the noise, in every regime, there is a probabil-
ity to find both positive and negative time delays per cycle τi.
However, in the DS regime, the probability density is clearly
larger at the first quadrant, whereas in the AS the system
remains for longer times in the third quadrant. Therefore, the
bistable regime presents two denser regions: one in the first
and the other in the third quadrant. In the PD regime there are
continuous regions of the return map that are almost equally
accessed by the system [see Fig. 6(d)]. This reflects the fact

10023 10025t (s)
-70
-65
-60
-55
-50

V 
(m

V
)

47400 47500
ith cycle

-50

0

50

τ i (m
s)

-60 -40 -20 0 20 40 60
τ (ms)

0

0.01

0.02

0.03

P(
τ)

(a)

(b)

(c)

FIG. 5. Example of a phase-drift regime in which the receiver
is faster than the sender (gE = 0.3 nS and gI = 0.4 nS). (a) Mean
membrane potential of S and R populations. (b) Time delay per cycle.
(c) Distribution of time delays characterizing the phase drift.

that the time delay varies from positive to negative in small
steps during a few cycles [see Fig. 5(b)].

D. Scanning parameter space

The dependence of the system’s dynamics on the synaptic
conductances gE and gI is shown in Fig. 7. As one could
expect, for small enough sender-receiver coupling there is no
phase-locked regime. As we decrease the gE the system even-
tually reaches the PD. It is worth emphasizing that, similarly
to previous results on AS [29,30], the transition from DS to
AS can be mediated by both internal inhibition and external
noise at the receiver. However, differently from the previous

(a) (b)

(c) (d)

FIG. 6. The return map of the time delays τi versus τ(i−1) in a
heat map for each regime: (a) delayed synchronization, (b) antici-
pated synchronization, (c) phase bistability, and (d) phase drift. Same
parameters as in previous examples of Figs. 2, 3, and 5.
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FIG. 7. Two-dimensional projections of the phase diagram of our
model: DS (blue), AS (red), bistability (BI, green), PD (orange). The
effect of the relation between excitation and inhibition at the receiver
is shown by gE versus gI . For this set of parameters, the transition
from DS to AS occurs only via bistability. For small enough gE the
system eventually reaches a phase drift.

studies [29,30], here the DS-AS transition does not occur via
zero-lag synchronization but through a bistable regime.

To better understand the effects of external noise in the
dynamical regimes, we vary the synaptic conductance gP of
the Poissonian input received by each neuron of the receiver
population. This external input mimics synaptic currents re-
ceived from other cortical regions that are not included in our
simple two-population model (see Sec. II for more details).
Figure 8 displays a two-dimensional (gI , gP) projection of
parameter space. The effect of increasing the noise at the
receiver gP is similar to the effect of decreasing the sender-
receiver coupling gE . In the PD regime, the time delay in

FIG. 8. The effect of noise at the receiver population is sum-
marized at the (gI , gP) projection of parameter space: DS (blue),
AS (red), bistability (BI, green), PD (orange). The sender-receiver
coupling is gE = 0.5 nS.
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FIG. 9. The effect of external input in the dynamical regimes.
Distribution of time delays τi between S and R population in each
cycle for different values of external noise gP. For gE = 0.5 nS and
gI = 0.6 nS the system exhibits AS if sender and receiver are sub-
jected to the same amount of noise (gP = gS

P = 0.5 nS). Increasing
the noise at the receiver (gP � gS

P), the system undergoes a transition
from AS to PD. Decreasing the noise at R (gP � gS

P) the AS gives
rise to the bistable regime and eventually to DS.

each cycle varies almost continuously, whereas in the bistable
regime τi suddenly changes from positive to negative values
in a nonpredictable way.

Figure 9 shows illustrative examples of the time delay
distribution as we change the external Poissonian input at
the receiver population gP (along the vertical line gI = 0.6
nS in Fig. 8.). By choosing conductances in such a way that
the system presents AS when the amount of noise in both
populations is the same (gP = gS

P = 0.5 nS, gE = 0.5 nS, and
gI = 0.6 nS), as we increase the noise at the R population
(gP > 0.5 nS) the system goes to a PD regime. The AS-PD
transition has been previously reported in neuronal microcir-
cuits [21,26] but not in neuronal populations. On the other
hand, by decreasing the noise at R (gP > 0.484 nS) the system
undergoes an AS-DS transition via bistability.

We vary the Poissonian conductance gP every 0.001 nS
and the other synaptic conductances gE and gI every 0.1 nS
in order to capture all the qualitative important features of
the diagrams in Figs. 7 and 8. The conditions to define the
boundaries between the regimes in Figs. 7 and 8 have been
determined by analyzing the time delay distributions as in
Fig. 9. For the DS regime the only required condition is a
positive τ . For the AS regime, besides a negative τ , the system
should present an AS peak at least three times larger than
the DS peak. If this is not the case, the system could be in
a bistable regime or a phase drift. In the bistable regime the
smallest peak should be at least seven times higher than the
probability to find intermediate values of τi between the peaks,
otherwise it is a PD.

IV. CONCLUDING REMARKS

To summarize, we have shown that a simple but bio-
physically plausible model of two unidirectionally connected
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neuronal populations can present phase bistability between
anticipated and delayed synchronization. To the best of our
knowledge, this the first verification of such a regime. Unlike
previous studies on AS in neuronal models [21,26,29,30], here
the transition from DS to AS does not occur via zero-lag
synchronization, but through the bistable regime. We have
also shown that the interplay among the inhibitory conduc-
tance at the receiver, the sender-receiver coupling, and the
external noise determines the dynamical regime. Moreover,
for sufficiently large noise or small coupling the system can
eventually reach a phase-drift regime in which the receiver
population is faster than the sender.

Multistability of neuronal networks has been suggested as
the mechanism underlying switches between different per-
ceptions or behaviors [3,39,40]. Recently multistability has
also been associated with different oscillatory states of brain
dynamics [41,42]. In particular, perceptual neuronal states
models based on noise and adaptation have been used to
qualitatively describe neurophysiological experiments on hu-
man visual bistable perception [43,44]. This model alternates
between two different active states and reproduces probabil-
ity distributions of dominance durations and their relation
with the amount of noise. However, these studies were not
investigating phase relations during ambiguous perception.
Therefore, we suggest that our results, using populations of

spiking neurons, could be potentially useful to study phase
bistability in cortical regions during bistable perception [4]. In
fact, our model shows fixed structural connectivity that allows
flexible dynamics which could change in timescales relevant
for behavior. As far as we know, this is the first spiking neu-
ronal population model to present a bistable regime between
two synchronized regimes with a positive and a negative phase
difference.

Our results offer a number of possibilities for further
investigation. The DS-AS transition could possibly explain
commonly reported short latency in visual systems [45–50],
olfactory circuits [51], songbirds’ brains [28], and human
perception [52,53]. Future studies can be conducted in the
light of understanding the functional significance of the diver-
sity in the phase relations between oscillatory brain regions
[54]. Furthermore, including the effects of synaptic plasticity,
especially spike-timing-dependent plasticity [22,55,56], in the
bistable regime is a natural next step which we are currently
pursuing.
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