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The origins of the large differences observed in the rates at which diverse particles are conveyed along axonal
microtubules are still a matter of debate in the literature. There is evidence that certain neurodegenerative diseases
may be triggered by disturbances in the related transport processes. Motivated by this, we employ a model to
investigate mobility properties of certain cargoes whose dynamics are coupled with that of molecular motors
on crowded microtubules. For certain initial and boundary conditions, we use the method of characteristics to
resolve perturbatively the pair of equations of Burgers type resulting from a mean-field approach to the original
microscopic stochastic model. Extensions to nonperturbative limits are explored numerically. In this context, we
are able to figure out conditions under which the cargoes’ average velocities may differ up to orders of magnitude
just by changing the number of motors on the considered track. We then discuss possibilities to connect these
theoretical predictions with available experimental data about axon transport.
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I. INTRODUCTION

The diverse types of particles that are usually transported
along axons can be grouped into two major categories char-
acterized by the average speed v at which this transport
is put into effect. The group of fast-moving particles with
v ∼ 0.5–5.0 μm/s comprises membranous organelles such
as the Golgi-derived vesicles, mitochondria, endosomes, and
lysosomes, among others. The groups of slow-moving par-
ticles with v ∼ 0.003–0.030 μm/s for slow component a
(SCa) and v ∼ 0.02–0.09 μm/s for slow component b (SCb)
comprise nonmembranous neurofilaments, cytoskeletals, and
cytosolic proteins, among others.

The general biological interest of related studies relies on
the fact that certain neurological diseases are believed to be
directly associated with failures of the system to keep the
transport at the right rates leading, eventually, to local particle
accumulation [1]. The review of Roy [2] offers a historical
account of experimental achievements in this field and of the
major hypotheses in the literature to explain the huge differ-
ences in the rates of particle transport along axons. One of the
first models used in these studies, the dynamic recruitment
model proposed to explain the slow movement, requires the
presence of a common carrier structure [3,4] or even fast-
moving cargo vesicles [5] to which cytosolic proteins would
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transiently get attached. The slow rate with which these pro-
teins are conveyed along the axon would then be attributed to
the relatively large intervals of time along which they stay de-
tached from the carrier [6]. A stochastic model accounting for
these ideas is considered in [7]. The other major hypothesis,
the stop and go model, attributes the causes of slow movement
to the ability of neurofilaments, for example, to pause during
transit. The duration of such pauses would be a determinant
of the resulting slow rates, although their origins and eventual
mechanisms of control still need clarification.

Evidence indicating that individual cytoskeletal polymers
conveyed by slow transport in axons can also move as fast
as membranous organelles suggests that both fast and slow
transport in axons may be due to a single mechanism. Ac-
tually, a unified view of axonal transport had already been
proposed by Ochs [8], according to which the only actual
directed movement would be that of fast cargoes and the
detected slow movement would be due to local and casual
rearrangements of particles, not resulting in long-range trans-
port. In line with this, it is argued these days that such a unified
mechanism is supported by the dynamics of molecular motors
and their ability to transport a variety of particles, referred to
generically as cargoes, as they move on structured “tracks,”
i.e., along axonal microtubules [9]. However, one still may
question the specific motors that would drive cargoes at such
slow rates as shown by SCa and SCb [1]. In view of this, we
believe that although the description based on molecular mo-
tors seems promising, it requires complement by mechanisms
that regulate cargo-motor interactions, able to explain such
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huge differences between the rates of slow and fast transport
in the absence of a putative carrier. Our intention here is to
contribute in this regard.

To that end, we investigate specific properties of a stochas-
tic model proposed elsewhere [10–12]. It is conceived from
the idea that the transport of cargoes by molecular motors
is based on a mechanism of cargo hopping among
motors which in turn depends crucially on the number of
motors available on the track. Here we seek quantitative
predictions for the cargoes’ average velocities under these
conditions. We explore situations under which motor conges-
tion may actually act to promote cargo transport.

We should remark that there are always two main aspects
concerning the dependence of cargo transport on molecular
motors in such systems. One of these is related to the mi-
croscopic mechanisms of motor-cargo binding affinity. The
other concerns the dependence of the transport on the num-
ber of available motors on the track, not only on the type
of motor directly bound to each cargo [13–15]. In order to
investigate the dependence on motor occupation on the track,
we base our quantitative analysis on a model that describes
the microscopic dynamics of motors and cargoes coupled
through stochastic processes of asymmetric simple exclusion
process (ASEP) type. The model embodies two microscopic
mechanisms for cargo movement. One of these describes the
movement of cargo while bound to a motor; the other de-
scribes cargo hopping between pairs of neighboring motors
on a track. There is only one type of motor with bias in a
definite direction; without prejudice for the analysis, this is
defined anterograde. We have already studied the possibility
of observing bidirectional movement in similar model systems
[10–12]. The main concern of the present study is related to
quantitative estimations for the average velocities developed
by cargoes subject to these two mechanisms. We show con-
ditions under which the average cargo speed may vary up to
orders of magnitude simply by adjusting the number of motors
available on axons. These results may be promising in offering
possibilities to understand the differences observed in the rates
of transport depicted by real axons in quantitative terms and
under a unified perspective.

In Sec. II we derive the mean-field equations for the model.
The resulting nonlinear coupled equations of Burgers type is
studied analytically in the Appendix for certain initial and
boundary conditions using the method of characteristics. As
we will show, such solutions to this particular system of equa-
tions are achieved under a perturbative approximation. The
analytical expressions obtained in this way indicate the rele-
vant regions of parameters and particular initial and boundary
values illustrating the role of each mechanism in producing
such differences in the average cargo velocities, as observed.
For more general conditions, away from the perturbative lim-
its, we base our analysis on a numerical study to resolve
the particular system of nonlinear equations of interest [16],
explained in Sec. III. The results are discussed in Sec. IV. We
summarize and discuss our conclusions in Sec. V.

II. CARGO HOPPING MODEL

The kind of ASEP model we will consider to describe
the stochastic dynamics of molecular motors and cargoes
has already been proposed elsewhere to study the so-called
bidirectional movement [10–12]. The model version analyzed
here embraces both mechanisms of cargo transport at the
microscopic level, namely, the isolated motion of a cargo
attached to a motor and also the mechanism of cargo hopping
from motor to motor. The idea is to circumvent difficulties for
long-range cargo transport due to motor jamming (congestion)
on axons [17]. Accordingly, an axonal track is represented by
a one-dimensional lattice whose sites may be occupied at each
time either by an unloaded motor or by a loaded motor or
else it can be empty. The model is defined by the dynamics of
occupation, as follows:

10 → 01 with probability p [process (a)],

20 → 02 with probability q [process (b)],

12 → 21 with probability f [process (c)],

12 → 12 with probability g [process (d)].

(1)

Label 0 is assigned to an empty site. Label 1 is assigned
to a site that is occupied by a motor carrying no cargo: an
unloaded motor. Label 2 is assigned to a site occupied by a
motor attached to a cargo: a loaded motor.

The pairs shown in (1) indicate that each of the possible
processes is represented by the occupation of two neighboring
sites. The parameters p, q, f , and g are the probabilities for
the occurrence of each process per time interval �t . Process
(a) represents an elementary movement of a biased motor
from the cell body towards the axon’s terminal (anterograde
direction). Process (b) represents an elementary process of
the kind considered in (a) of a motor when carrying a cargo
particle. The remaining processes describe the exchange of
cargoes between neighboring motors, either to the left (c) or
to the right (d). A condition for processes (a) and (b) to take
place is that the site to the right of the motor remains empty
during the time interval �t . The two processes of exchange
depend on the presence of a free motor to the right (c) or to
the left (d) of the one attached to the cargo.

Continuous limit and mean-field approximation

In order to obtain the mean-field equations corresponding
to processes (1) for continuous-time and space intervals, we
follow the procedure described in [18] that nevertheless ac-
counts only for one type of particle. In order to extend it to
take into account the two types of particles present in our
model, we define the vector

Pt [n1, n2, n3, . . . , ni, ni+1, . . . , ni+k, . . . , nN ]. (2)

For any n j = {0, 1, 2}, j = 1, . . . , N , it represents the prob-
ability of any configuration of particles and holes occupying
the sites of the one-dimensional lattice at time t . The marginal
probabilities are defined accordingly,

Pt
i [ni, ni+1, . . . , ni+k] =

∑
{n j }

(1 � j < i; i + k < j � N )

Pt [n1, n2, n3, . . . , ni, ni+1, . . . , ni+k, . . . , nN ], (3)
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where N is the total number of lattice sites. With this, we represent the average densities of particles 1 and 2 at each site i by

ρt
i [1] = Pt

i [1]/N, ρt
i [2] = Pt

i [2]/N. (4)

The temporal behavior of the density at any site i can now be evaluated by relating it to the incoming flux of particles into that
site, observing the processes defined through (1), as

1

�t
(Pt+�t

i [1] − Pt
i [1]) = 1

�t

{
pPt

i−1[10] − pPt
i [10] + gPt

i [21] − gPt
i−1[21] + f Pt

i−1[12] − f Pt
i [12]

}
(5)

and
1

�t
(Pt+�t

i [2] − Pt
i [2]) = 1

�t

{
qPt

i−1[20] − qPt
i [20] + gPt

i−1[21] − gPt
i [21] + f Pt

i [12] − f Pt
i−1[12]

}
. (6)

The mean-field approximation consists in neglecting correlations by taking, for example,

Pt
i−1[20] = (

Pt
i−1[2]Pt

i [0]
)/

N,

Pt
i [21] = (

Pt
i [2]Pt

i+1[1]
)/

N
(7)

and analogous expressions for the remaining two-point probability vectors. With these, we write

1

�t

(
Pt+�t

i [1] − Pt
i [1]

) = l

�t

(
− p

Nl
�i

(
Pt

i [1]Pt
i+1[0]

) + g

Nl
�i

(
Pt

i [2]Pt
i+1[1]

) − f

Nl
�i

(
Pt

i [1]Pt
i+1[2]

))
,

1

�t

(
Pt+�t

i [2] − Pt
i [2]

) = l

�t

(
− q

Nl
�i

(
Pt

i [2]Pt
i+1[0]

) + f

Nl
�i

(
Pt

i [1]Pt
i+1[2]

) − g

Nl
�i

(
Pt

i [2]Pt
i+1[1]

))
, (8)

where the notation �i on the right-hand side indicates the
difference between the product inside the parenthesis and
an analogous one obtained by shifting i → i − 1. Using that
Pt

i [0] = 1 − Pt
i [1] − Pt

i [2] and taking the continuous limit for
which both the length l of the lattice sites and �t → 0, the
two expressions become

∂u

∂t
= −α

∂

∂z
[u(1 − u) − θ (uc)],

∂c

∂t
= −β

∂

∂z
[c(1 − c) − η(uc)]. (9)

This system of quasilinear hyperbolic equations describes the
coupled dynamics of both quantities of interest, namely, the
local density of free motors (i.e., motors that are not attached
to cargoes) defined accordingly as

u(z, t ) = lim
il→z,l→0,N→∞

Pt
i [1]

N

and the local density of motors transiently attached to cargoes

c(z, t ) = lim
il→z,l→0,N→∞

Pt
i [2]

N

at each time t and position z of the axon. From now on, we will
refer to c(z, t ) simply as the cargo density and to u(z, t ) as the
motor density. The parameters α, β, θ , and η introduced above
are defined in terms of parameters of the original stochastic
(microscopic) model as

α = pξ, β = qξ,

θ = p − ( f − g)

p
, η = q + ( f − g)

q
, (10)

where ξ = lim�t→0;l→0 l/�t is the scale.
The pair of hyperbolic coupled equations derived above (9)

are of Burgers type. Due to the complexity of the mathemat-
ical problem, we consider certain initial and boundary values

that allow for analytical solutions using the method of char-
acteristics [19,20]. It is then possible to demonstrate that for
small differences between the numbers of cargoes and motors
distributed along the track at initial times and for a broad range
of numerical values for the model parameters (Table I), the
system engenders two distinct values for the average veloc-
ities attained by wavelike profiles of cargo density that may
differ by orders of magnitude. This suggests a quantitative
relationship with the corresponding quantities measured in
fast and slow axonal transport modes [2]. These solutions to
the system (9), for the chosen initial and boundary conditions,
are presented in the Appendix within a perturbative approach.

III. NUMERICAL STUDY

The results shown in the Appendix for the behavior of
both motor and cargo densities achieved analytically for cer-
tain initial and boundary conditions are limited to situations
for which shocks among characteristic lines and rarefaction
regions are either absent or can be neglected within the consid-
ered perturbative limit. Because of this, numerical simulations
have been performed in parallel to study the temporal behavior
of u(z, t ) and c(z, t ). The aim is to extend the scope of applica-
tions, attempting to approach more closely the available data
on axonal transport. In this section we briefly discuss some
features of the numerical code developed to this end.

The nonlinearity of the set of equations (9) can create
solutions with both discontinuities and small-scale smooth
structures. These features, together with the expectation that
the system develops velocities at very different orders of
magnitude, led us to choose, from the many numerical meth-
ods available, a finite difference (FD) with a high-resolution
shock-capturing (HRSC) scheme, widely used in astrophysi-
cal and cosmological codes [21–23].

The FD method has been chosen since it does not require
the solutions of Riemann problems at each interface between
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TABLE I. Model parameters: (a) parameter identification, (b) meaning, (c) possible relationship with the biological system, and (d) diagram
of the microscopic process.

(a) (b) (c) (d)

p
jumping probability (anterograde)

unloaded motor
motor/track
interaction

q
jumping probability (anterograde)

loaded motor
motor/track
interaction

f
cargo jumping probability

(retrograde direction)
motor/cargo

attach/detach

g
cargo jumping probability
(anterograde direction)

motor/cargo
attach/detach

ξ speed scale - -
α = pξ = γ + ε scaled parameter - -
β = qξ = γ − ε scaled parameter - -

ε/γ small parameter - -
l lattice space motor step size -

h
excess motor density on track

at initial time
- -

x(z, t)
excess motor density on position z

of the track at time t
- -

y(z, t)
excess cargo density on position z

of the track at time t
- -

xr = x(0, t) excess motor density at reservoir - -
yr = y(0, t) excess cargo density at reservoir - -

computational cells [16], reducing in this way time costs in
comparison to the time used in performing the conventional
finite-volume method. The HRSC method offers a high order
of accuracy, sharp descriptions of discontinuities, and conver-
gence to the physically correct solution. It has the advantage
of treating discontinuous solutions consistently and automati-
cally wherever they appear in the flow [24].

In this work we implement our own numerical code us-
ing modern FORTRAN with a modular approach. The code
uses up to fifth-order reconstruction in the characteristic
fields and a local Lax-Friedrichs flux splitting [25]. For a
reconstruction scheme, we implement the classic weighted
essentially nonoscillatory (WENO) schemes with third-order
(WENO3) and fifth-order (WENO5) [16,26] and two differ-
ent improved methods, a third-order WENO3p [27] and a
fifth-order WENO5Z [28]. In addition to the aforementioned
references, a brief and practical explanation of these methods
can be found in Ref. [23]. The time integration of the ordi-
nary differential equations obtained from the discretization of
Eqs. (9) is made using a third-order strong stability-preserving
Runge-Kutta scheme [29].

In order to ensure accuracy in the implementation of the
code, we first wrote it for the classical Euler equations to
run some of the usual validation tests. We then performed a
few minor changes to fit the code for our purposes. Figure 1

depicts the results for the density curves obtained from three
different tests and corresponding reconstruction schemes. In
Fig. 1(a) we show the Sod test [30] evolved up to the time
tend = 0.2 with 100 cells. This test does not impose signif-
icant computational difficulties. Analytical solutions to the
equations allow us to check for the accuracy with which the
discontinuities are described by the implemented schemes.
The blast wave considered in the second test [Fig. 1(b)] has
been evolved up to tend = 0.015 also with 100 cells. This is a
stronger test because the initial profile presents a gradient of
five orders of magnitude in pressure. The evident differences
in accuracy reached by the different schemes indicates the
superiority of fifth order methods. Finally, the results using
the iterative blast waves [31] are shown in Fig. 1(c) up to
tend = 0.038 for 400 cells. These results suggest that the best
accuracy among the methods considered is provided by the
WENO5Z method, which solves slightly better for the peaks
and valleys than the classic WENO5 method. Since this prob-
lem does not present analytical solutions, we compare the
results for 400 cells with the outcomes of a more accurate
calculation, referred to as “exact,” obtained using the WENO5
method with 2000 cells.

All the above tests suggest that the methods have been
implemented well for the classical one-dimensional Euler set
composed of three equations for four unknowns (mass density,

032410-4



FAST AND SLOW AXONAL TRANSPORT: A UNIFIED … PHYSICAL REVIEW E 102, 032410 (2020)

(a) (b)

(c) (d)

FIG. 1. Density profiles for validation of numerical tests: (a) Sod’s problem, (b) blast wave problem, (c) interactive blast waves, and
(d) linearized gas.

velocity, pressure, and energy density) which must be com-
plemented with an equation of state providing in this way a
relationship among the unknowns. The equations considered
in the present work compose a closed set with two equations
and two unknowns (the motor and cargo densities), making
it possible to perform some simplifications with respect to the
application to the Euler problem, in order to improve the com-
putational costs. An additional test applied to the linearized
gas dynamics was then performed [32]. This corresponds to
a classical Riemann problem with a fluid at rest and density
equal to 1.0 on the left-hand side and 0.5 on its right. We
then investigate the evolution of the density and velocity pro-
files of an ideal gas with transmissive boundary conditions.
Figure 1(d) shows the results for density and velocity profiles
obtained both analytically and also by means of a simulation
run for 100 cells using a WENO5Z scheme. The two solutions
are in good agreement with each other, even near discontinu-
ities.

IV. DISCUSSION OF RESULTS:
THEORY AND SIMULATIONS

The results presented in the Appendix for the loaded motor
density c(z, t ), referred to as the cargo density, and for the

unloaded motor density u(z, t ) are restricted to the perturba-
tive regimes for which both parameter ε

γ
� 1 and x(z, t ) and

y(z, t ) at initial times (t = 0) and at the boundary (z = 0)
also assume small values. The quantities x(z, t ) and y(z, t )
represent differences in motor and cargo densities with respect
to the defined background at 1

4 in Eq. (A12). However, the
results obtained for the two eigenvalues λ1 and λ2 in Eq. (A5)
are only restricted by the smallness of ε

γ
. This suggests that

the speed of the interface separating the quiet region (QR)
from the region Z1, which in the absence of shocks is given by
vc = λ2(x∗, y∗) � λ2(h, 0), can be analyzed for any h within
the interval − 1

4 < h < 3
4 . The parameter h is defined as the

excess motor density with respect to the background at initial
times (A17). It is then possible to predict that for |h| � 1 the
speed of the interface approaches its maximum value λmax

2 =
0.5 whereas for h ∼ 0.5 the speed λ2(h, 0) of the referred
interface attains very small values. Therefore, although the
expressions derived for λ1 and λ2 in terms of the excesses
x and y (see the Appendix) do not provide exact results for
the speed of the interfaces, especially in cases for which
shock and rarefaction of characteristics are determinants of
the dynamics, these are useful as guides in our numerical
experiments in order to scrutinize the parameter space and
investigate the behavior of the quantities of interest.
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TABLE II. Analytical and numerical results for density wave profiles and accompanying velocities within the perturbative regime.

xr yr vc vnum x∗ y∗ x∗
num y∗

num

Case h (10−2) (10−2) (10−1 μm/s) (10−1 μm/s) (10−2) (10−2) (10−2) (10−2)

1 0.01 2.0 −1.0 4.3 4.3 2.0 −1.0 2.0 −1.0
2 −0.01 1.0 −2.0 4.5 4.5 9.0 −1.9 9.0 2.1
3 0.05 0 5.0 3.9 4.0 −3.0 5.0 0 5.0
4 −0.05 −2.5 −2.5 4.8 4.9 −2.4 −2.4 −2.3 −2.3
5 0.01 0 1.0 4.3 4.3 0 1.0 0 1.0
6 −0.01 2.0 −3.0 4.5 4.5 2.1 −2.1 −1.9 −3.1

The time evolution of motor and cargo density profiles
for small values of |h| are expected to display very different
shapes compared to those for h ∼ 0.5. Although we could not
predict the fates of the motor and cargo density profiles at
these relatively high values of h, we indeed envisioned, on
the basis of the results (A19), that the interface separating
the QR from its neighboring region might travel at extremely
low speeds in comparison to the corresponding speeds at
small values of |h|. The following examples support these
expectations. To ease the access to these studies and for future
reference, we compile in Table I the model parameters and
main quantities defined in the Appendix.

Cases 1–6 shown in Table II illustrate the behavior of
the excess of cargoes and motors for |h| � 1 at the initial
x0 = h and y0 = 0 and boundary values xr = x(0, t ) and yr =
y(0, t ) as indicated. Listed are the speeds of the corresponding
interfaces between the QR and Z1 at fixed values p = 0.9 (un-
loaded motor) and q = 0.85 (loaded motor). Although other
possibilities could be validated, these choices keep the expan-
sion parameter at small values 2ε

γ
= 0.06. The cargo hopping

rates between neighbor motors are fixed at f = g = 0.2.
Setting f = g leads to η = θ = 1 (10), which is consistent
with the development in Sec. II. The choices for h and bound-
ary values xr and yr in each example and the corresponding

numerical vnum and predicted (calculated) vc values obtained
using the results in the Appendix are compiled in Table II. The
quantity vc = λ2(x∗, y∗) characterizes the velocity of sharp
interfaces between the QR and Z1.

The results for x∗ and y∗ evaluated with help of the
expressions (A24) for h > 0 or (A28) for h < 0 and the cor-
responding x∗

num and y∗
num obtained by numerical simulation

for the excess of motors and cargoes within region Z1 are
also shown in Table II. Represented in Fig. 2 are the wave
density profiles for cases 2 and 3 at different instants of
time, as indicated. These are chosen from examples at typical
boundary values xr and yr and for which the system presents
at initial times either slight depletion of motors h < 0 or
slight excess h > 0 with respect to the background at u = 1

4 .
The corresponding differences in the average cargo velocities
reflect the effects due to motor jamming. The analytical results
achieved for the velocities and density profiles are in fact very
well represented by their corresponding numerical results.
This supports the idea of using these expressions to guide the
choice of parameters in order to investigate the behavior of
the quantities of interest in axon transport within regions away
from the perturbative limits.

Table III shows results from numerical simulation for the
speed v

p
q of the wavefront invading the QR as time passes.

FIG. 2. Time evolution of motor (gray) and cargo (black) density profiles for illustrative examples taken from Table II: (a) case 2, with
xr = 0.01 and yr = −0.02, and (b) case 3, with xr = 0 and yr = 0.05. The initial cargo occupation is at c(z, 0) = 0.25 and for the scale factor
we use ξ = 1 μm/s, which sets α = p and β = q [see Eq. (10)].
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TABLE III. Cargo average velocities vp
q for motor hopping parameters p (unloaded) and q (loaded) and excess motors on the track h at

initial times as indicated, within the nonperturbative regime.

h = 0.50 h = 0.05 h = −0.05

v0.90
0.85 v0.90

0.25 v0.70
0.50 v0.30

0.25 v0.90
0.85 v0.90

0.25 v0.70
0.50 v0.30

0.25 v0.90
0.85 v0.90

0.25 v0.70
0.50 v0.30

0.25

Case f g (nm/s) (nm/s) (nm/s) (nm/s) (nm/s) (nm/s) (nm/s) (nm/s) (nm/s) (nm/s) (nm/s) (nm/s)

1 0.01 0.01 0.6 0.6 0.6 0.6 400.0 120.0 28.0 130.0 490.0 330.0 340.0 160.0
2 0.01 0.20 100.0 74.0 92.0 79.0 420.0 110.0 260.0 110.0 490.0 190.0 320.0 130.0
3 0.20 0.01 8.2 5.6 5.6 24.0 440.0 330.0 330 150.0 520.0 440.0 400.0 130.0
4 0.20 0.20 0.6 0.6 0.6 0.6 400.0 120.0 280.0 130.0 490.0 340.0 360.0 160.0
5 0.20 0.40 110.0 77.0 94.0 81.0 420.0 98.0 260.0 110.0 490.0 180.0 320.0 130.0
6 0.40 0.20 9.0 0.6 7.0 25.0 440.0 340.0 330.0 150.0 520.0 450.0 400.0 170.0

These are indexed by the values for the parameters p and q
as shown in each column. We use (p = 0.9, q = 0.85), (p =
0.7, q = 0.5), (p = 0.2, q = 0.1), and (p = 0.3, q = 0.25).
These results for v

p
q cannot be reproduced by the expressions

derived in the Appendix because the initial and boundary val-
ues have been fixed at h = 0.5 and at xr = −0.1 and yr = 0.1,
respectively, which do not fully satisfy the perturbative con-
ditions. Nonetheless, we expect in these cases that the pulse
fixed by the boundary values advancing as a wave profile
over Z1 in each case does that at very small velocities, as
suggested by the expression for λ2 in Eq. (A16). The results
below illustrating the dependence of v

p
q on the microscopic

parameters f and g corroborate these predictions: For large
h, i.e., h = 0.5, the numerical values depicted for v

p
q are typ-

ically orders of magnitude less than the values v
p
q obtained

for |h| = 0.05. Figure 3 illustrates the corresponding cargo
and motor wave density profiles at different instants of time
obtained numerically for two situations, case 5 [Fig. 3(a)] and
case 6 [Fig. 3(a)], taken from Table III. For certain choices
of parameters f and g we compare the numerical results for
cargo density profiles for the two initial conditions h = 0.5
and h = −0.05 at fixed p = 0.95 and q = 0.85. These results

suggest that associated with the relatively large differences
depicted by cargo velocities are large differences from the
corresponding wave profile, as observed in experimental data
[2].

Table III depicts typical behavior of the average speed v
p
q

at which cargoes from the boundary at z = 0 advance over the
QR. We observe the following.

(i) The average speed v
p
q decreases as the excess of motors

h on the track at initial times increases. As h reaches 0.5 and
the remaining parameters are kept at fixed values, v

p
q may

decrease to such small values up to three orders of magnitude
smaller than those reached at |h| = 0.05. This is due to an
increase of the motor traffic jam that impairs loaded-motor
motion through process q. In this case, the important mecha-
nism for driving cargo movement is cargo hopping regulated
by rates g (forward) and f (backward). In turn, this may
related to the existence of variations in the velocity of slow
components that travel on axons known as SCa and SCb,
whose speed may differ from each other up to one order of
magnitude. These variations are compatible with results in
Table III as the parameters g and f change at high values
of h.

FIG. 3. Time evolution of motor (gray) and cargo (black) density profiles for illustrative examples taken from Table III, for p = 0.90 and
q = 0.85 and reservoir excesses xr = −0.10 and yr = 0.10: (a) case 5, with h = 0.5, and (b) case 6, with h = −0.05. For the scale factor we
use ξ = 1 μm/s, which sets α = p and β = q.
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FIG. 4. Behavior of the average cargo velocity with respect to the difference g − f between cargo hopping rates for (a) h = 0.5 and
(b) h = −0.05: p = 0.1 and q = 0.9 (crosses), p = 0.9 and q = 0.1 (pluses), and p = 0.9 and q = 0.85 (circles).

(ii) If f = g and for h not too large, p and q become the
dominant processes to drive cargoes. The relatively high val-
ues of v

p
q reached at |h| = 0.05 (Table III) reflect the success

of mechanisms p and q in the absence of a heavy traffic jam
(congestion).

(iii) In general, v
p
q increases with the parameters p and q,

as expected. However, the effects of increasing p (unloaded
motors) and q (loaded motors) in a situation of high motor
density should not result in a significant increase of velocities
since the traffic jam is the determinant effect in this case, as
mentioned. Consistently with this, we expect that the effect of
increasing v

p
q with p and/or q will be noticeable at low motor

densities, as observed in the results depicted above.
(iv) In connection to (ii) and (iii) above, it is interesting

to examine the behavior of average cargo velocity v
p
q with

respect to the difference g − f between the two cargo hopping
rates. As a general feature, the data in Fig. 4 indicate that
at a fixed value of h, the magnitude of v

p
q does not change

considerably by changing p or q, at least within the regions of
parameters examined. However, there are noticeable changes
in the behavior of v

p
q as f − g varies. For h = 0.5 and exclud-

ing the region for which g � f , we observe that v
p
q increases

with g − f [Fig. 4(a)]. This behavior can be understood since
hopping of cargoes among motors is the dominant process for
driving cargoes at high motor densities. We should then expect
in these situations that v

p
q increases by increasing the forward

(anterograde) hopping rate g with respect to f . Figure 4(b)
shows that even for small h = −0.05 a similar effect may be
expected if p � q. In this case, fast loaded motors may deliver
their cargo through process g to the clusters assembled of slow
unloaded motors in the front, favoring in this way cargo mo-
bility towards the forward direction as g increases with respect
to f . On the other hand, Fig. 4(b) shows also that for q � p
or p � q, the average cargo velocity v

p
q decreases as g − f

increases. The reasoning for this is that fast unloaded motors
would accumulate at the back end of (slow) loaded motors. As
f increases with respect to g, cargoes would be more prone
to hopping backward to accumulate at the back end of the
cluster just formed. This process may create shock waves (of
cargoes) whose wavefronts would move rather fast toward the
forward direction. A similar effect could be responsible for
the decrease of v

p
q for p � q and g � f shown in Fig. 4(a). We

also observe in Fig. 4(b) that for h small, the highest velocities

of the corresponding wave fronts are reached when p � q,
possibly due to a balance among the processes just discussed.

For example, the results achieved here may be related to
those reported from experiments performed to investigate the
effects of kinesin-binding protein (KBP) on the transport of
particles along microtubules [13]. In that study, the authors
investigated the effects on particle mobility under variation
of the amount of KBP in the systems considered. The ef-
fects of increasing KBP have been correlated with a decrease
of KIF1A motors attached to the microtubules and with an
increase in the average velocities of the remaining moving
KIF1A motors after the introduction of KBP. On the contrary,
it is observed in another series of experiments that the aver-
age velocities of kinesin-based mobile Rab vesicles (cargoes)
decrease at increasing KBP (i.e., decreasing the number of
motors attached). Figure 5 depicts the predictions of the model
for the behavior of average velocities under variations of the
excess h for certain choices of parameters, as indicated. Both
velocities present a unique global maximum at h = hmax that
depends on the choices for f and g. This behavior can be
understood as resulting from two effects. On the one hand,
increasing the excess of motors at low densities (h < hmax)
would contribute to driving the cargoes that are released from
the reservoir. On the other hand, effects due to a traffic jam
would prevail at large motor densities (h > hmax), as discussed
above. We may then suggest that the data in [13] might be
understood as resulting from a balance between these two ef-
fects under the condition that the related experiments explore
different regions of motor densities.

V. CONCLUSION

Our model describes axon transport of different particles in
a unified framework as these are conveyed directly by molec-
ular motors, in the absence of intermediates carriers such as
vesicles or any other putative moving structure [4,5]. The idea
is that the cargoes are able to detach from molecular motors
available on the axon microtubules and attach directly to a
neighboring motor according to stochastic processes defined
by certain probability rates. These hopping mechanisms are
favored under the situation of a heavy traffic jam that leads
motors to assemble into large clusters. We propose that such
clusters may supply the need for the alleged intermediate
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FIG. 5. Variation of the average (a) cargo and (b) motor velocities as the excess motor density h varies, for c(z, 0) = 0.20; p = 0.90;
q = 0.85; and f = g = 0.2 (crosses), f = 0.2 and g = 0.4 (pluses), and f = 0.4 and g = 0.2 (circles).

carriers. The model accounts also for processes leading to
direct movement of cargoes attached to motors if allowed
by local jamming conditions imposing a steric hindrance.
These features are able to predict quantitatively the observed
differences between the velocities of the particles conveyed in
axons at slow and fast modes, essentially as a consequence
of changing the density of motors available because it is the
density of motors that regulates the traffic jam. Moreover,
the model suggests that the stochastic mechanism of cargo
hopping from motor to motor can also explain the differ-
ences between the two components displaying slow rates (SCa
and SCb) by tuning the corresponding hopping parameters
f and g.

In order to be able to extract properties from the model and
describe phenomenological aspects of these systems concern-
ing cargo velocities, we have based our analysis on particular
solutions to the pair of coupled equations of the Burgers
type describing the dynamics of defined densities of motors
and cargoes (9). These equations resulted from a mean-field
approach of the original stochastic description. We used a
perturbative scheme for certain initial and boundary values
considering the particular choice for which f = g. The analyt-
ical solutions to this system of quasilinear partial differential
equations achieved in this way indicate the regions of pa-
rameters, extending far beyond the perturbative limits, to be
investigated numerically in order to obtain information about
the system that may relate to the existing data on axonal
transport. Such interplay between numerical and analytical
approaches has been crucial in exploring the properties of
interest.

The description of the interacting particle system consid-
ered here allows studying the effects produced by just one
kind of carrier motor and one kind of cargo at a time. Also,
the model does not take into account explicitly any exist-
ing process of motor autoinhibition [33,34] or those due to
motor-binding proteins known to participate in the processes
to control individual motor mobility on the tracks [13]. Nev-
ertheless, because it is not restricted to any particular set
of particles, different motors and cargoes may be taken into
account by a separate dynamics characterized by some spe-
cific set of parameters. We have presented results for motors
that have been chosen possessing anterograde (plus-ended)

bias. These results suggest that cargoes usually recognized as
slow components (either SCa or SCb) may also be conveyed
in fast-moving modes as already observed, for example, in
studies exploring the dynamics of synapsin proteins [35].
According to these predictions, what would determine if a set
of cargoes move in a fast or slow mode is a combination of
factors comprising their ability to interact with motors and the
quantity of motor available on the axon. We leave for future
consideration this same kind of description attempting to un-
ravel the corresponding pulselike wave profiles observed in
axon transport since these present distinct and typical features
for slow and fast components. In addition, future studies may
examine the possibility of introducing in this context some
effects of controlling motor mobility by autoinhibition and/or
the action of external binding proteins.

Finally, we would like to point out that the model encom-
passes cargo hopping as a one-by-one process through which,
at each defined time interval, a single motor may deliver a
cargo to a neighboring motor. Experimental data, however,
indicate that several motors continuously attaching and de-
taching from a single cargo are needed to act cooperatively
in order to complete each step of the transport process [17]. In
view of this, the cargo-hopping model explored here should be
seen as an effective model in which the complexity associated
with simultaneous interactions of several motors with a sin-
gle cargo is integrated and replaced by an effective jumping
regulated by the rates f and g. In addition to that, we also
notice that the mean-field approach overcomes this restriction
imposed by the microscopic one-by-one process since the
continuum limit eliminates any detail concerning cargo size
or the number of motors attached to it at each instant of time,
for it introduces the workable concepts of motor and cargo
densities. In view of this, we believe that if we had taken into
account in the model such details regarding multiple motor
interactions with a single cargo, that would not have altered
the essence of the results reached here.
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APPENDIX: ANALYTICAL SOLUTIONS: COMBINING
A PERTURBATIVE APPROACH WITH THE

METHOD OF CHARACTERISTICS

The system (9) can be expressed in a vectorial form

∂U (z, t )

∂t
+ A(U (z, t ))

∂U (z, t )

∂z
= 0, (A1)

where the vector U is defined by

U =
(

u(z, t )
c(z, t )

)
(A2)

and the matrix A by

A = A(U ) =
(

α(1 − 2u − θc) −αθu
−βηc β(1 − 2c − ηu)

)
. (A3)

In order to proceed with a quantitative analysis of Eq. (A1),
we examine the case f = g, for which θ = η = 1. In addition,
we parametrize the constants α and β related to the hopping
probabilities p and q as

α = γ + ε, β = γ − ε. (A4)

We may then express the eigenvalues λ1 and λ2 of A in terms
of constants γ and ε, which become, for ε

γ
� 1,

λ1 � (1 − 2u − 2c)γ

[
1 + ε

γ

(
u − c

u + c

)]
,

λ2 � (1 − u − c)γ

[
1 − ε

γ

(
u − c

u + c

)]
. (A5)

Since λ1 and λ2 are distinct from each other and are both
real, the system (9) is strictly hyperbolic. Further, λ1 and λ2

are related to the velocities of the traveling-wave solutions
to Eq. (A1). The corresponding left eigenvectors �q1 and �q2

are calculated perturbatively up to first order in the small
parameter ε

γ
, resulting in

�q1 �
(
− 1,

[
−1 − 2ε

γ

(
1 − u − c

u + c

)])
,

�q2 �
(

1,

[
−u

c
+ 2ε

γ

u

c

(
1 − 2u − 2c

u + c

)])
. (A6)

The Riemann invariants R1(U ) and R2(U ) are scalar quan-
tities satisfying �∇Ri(U ) = �qi(U ), i = {1, 2} [19,20]. These
quantities are conserved by the dynamics along the set of
corresponding characteristic curves z1(t ) and z2(t ) defined by
∂t z1 = λ1 and ∂t z2 = λ2, that is, λ1 and λ2 are the instanta-
neous velocities at each point of the characteristics on the
(z, t ) plane. In fact,

qi

(
∂U

∂t
+ λi

∂U

∂z

)
= [ �∇Ri(U )]

(
∂U

∂t
+ λi

∂U

∂z

)

=
(

∂Ri

∂t
+ λi

∂Ri

∂z

)
≡ dRi

dφi
= 0, (A7)

where we have used (A1). With regard to the expressions
(A5), we observe that if both u and c are constants along the
characteristic curves, then both λ1 and λ2 are also constants,
so the characteristics are straight lines. As indicated in the
definition above, the derivative d

dφi
is taken along each of

the corresponding characteristic curves. Therefore, in order to
find Ri, i = {1, 2}, the expressions (A6) are inserted into the
left-hand side of the first equality in the expression (A7) in
order to find a general solution Ri by integrating dRi

dφi
= 0. For

q1 we obtain the result

−
(

∂u

∂t
+ λ1

∂u

∂z

)
−

(
∂c

∂t
+ λ1

∂c

∂z

)
− 2ε

γ

1 − u − c

u + c

×
(

∂c

∂t
+ λ1

∂c

∂z

)
= 0, (A8)

which can be rewritten as

d

dφ1

(
(1 − u − c) − ln(1 − u − c) + 2ε

γ
c

)
= 0, (A9)

where the derivative is taken along the characteristics d
dφ1

=
∂
∂t + λ1

∂
∂z . This means that

R1 = (1 − u − c) − ln(1 − u − c) + 2ε

γ
c (A10)

is the conserved quantity along the set of characteristic curves
associated with q1(u, c). For q2 we obtain the result

c

(
∂ (u/c)

∂t
− λ2

∂ (u/c)

∂z

)
+ 2ε

γ

u

c

1 − 2(u + c)

u + c

×
(

∂c

∂t
+ λ2

∂c

∂z

)
= 0. (A11)

In order to write this in a form analogous to (A9) we examine
the region of densities for which

u(z, t ) = 1
4 + x(z, t ),

c(z, t ) = 1
4 + y(z, t ), (A12)

with |x(z, t )|, |y(z, t )| � 1
4 representing, respectively, the ex-

cess (or depletion) of motors and cargoes at each point of the
axon with respect to a considered density “background” set at
1
4 for both cargoes and motors. With these, Eq. (A11) can be
approximated by

d

dφ2

(
x + 1

4

y + 1
4

)
� 0, (A13)

where d
dφ2

≡ ∂
∂t + λ2

∂
∂z . This yields

R2 �
(

x + 1
4

y + 1
4

)
. (A14)

For consistency, the expressions for the remaining quan-
tities which are relevant to the analysis that follows must be
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reviewed in this region of densities,

R1 � K + x +
(

1 + 2ε

γ

)
y, (A15)

where K ≡ ln 2 + 1
2 + 1

4 ( 2ε
γ

) is a constant. For the eigenval-
ues,

λ1 = λ1(x, y) � −2(x + y)γ

(
1 + 2ε

γ
(x − y)

)
,

λ2 = λ2(x, y) �
(

1

2
− (x + y)

)
γ

(
1 − 2ε

γ
(x − y)

)
.

(A16)

Note that the results (A15) for R1 and (A14) for R2 are valid
as long as ε

γ
� 1 and are restricted to the regions for which

|x(z, t )|, |y(z, t )| � 1
4 . On the other hand, the results (A16)

for λ1 and λ2 also need ε
γ

� 1 but are not restricted to the
ranges of x and y. We will now use (A14)–(A16) to examine
the spatial and temporal behavior of u(z, t ) and c(z, t ) through
the analysis of the characteristic curves for certain initial and
boundary conditions.

1. Characteristic lines

We intend to examine the behavior of solutions c(z, t ) and
u(z, t ) for all z � 0 and t � 0 satisfying the pair of equations
(9) for initial conditions (z > 0 and t = 0)

c(z, 0) = 1
4 ,

u(z, 0) = 1
4 + h, (A17)

meaning that x(z, 0) = h and y(z, 0) = 0 and boundary con-
ditions (at z � 0 and t � 0)

c(z � 0, t ) = 1
4 + yr, i.e., y(z � 0, t ) = yr,

u(z � 0, t ) = 1
4 + xr, i.e., x(z � 0, t ) = xr . (A18)

The constants xr , yr , and h are such that |xr |, |yr |, |h| � 1
4 .

Here h represents the excess (h > 0) or depletion (h < 0)
of motor density with respect to the value 1

4 along the axon
at the initial time t = 0. The quantities xr and yr represent,
respectively, the excess or depletion of motors and cargoes in
the reservoir at z � 0 and t � 0.

In the following we present a quantitative analysis of the
behavior of the two functions u(z, t ) and c(z, t ) with re-
spect to time at each point of the domain (z � 0) using the
method of characteristics. We will restrict this analysis, how-
ever, to certain initial and boundary values such that shocks
and rarefaction of characteristic lines related to each of the
eigenvalues λ1 or λ2 would not be relevant up to a first ap-
proximation in the small parameter ε

γ
to figure out solutions

within the time and space domains considered.
As we will see, this approximation is supported by nu-

merical data. Cases for which it does not hold but may be
interesting concerning the transport phenomena of interest
here are treated numerically and considered afterward for
qualitative analysis as an extension of the perturbative results.
A quantitative analysis of Eqs. (9) for more general initial and
boundary values is not within the scope of the present work.

a. Case h > 0

At t = 0 and z � 0,

λ1(x(z, 0), y(z, 0)) = λ1(h, 0) � −2hγ

(
1 + 2ε

γ
h

)
< 0,

λ2(x(z, 0), y(z, 0)) = λ2(h, 0) �
(

1

2
− h

)
γ

(
1 − 2ε

γ
h

)
> 0. (A19)

We will consider 2ε
γ

h � 1. This means that the set of char-
acteristic lines defined as C(I) along which R1 in (A15) is
conserved have negative slope, while the characteristics from
the set C(II) along which R2 in (A14) is conserved have
positive slope. Figure 6 suggests that these features may be
extended consistently to the solutions x(z, t ) and y(z, t ) for
all t � 0. In fact, notice first that the characteristic z(t ) =
λ2(h, 0)t from the set C(II) emerging from z = 0 divides the
plane into two regions. Any point within the region z(t ) >

λ2(h, 0)t , referred to as the quiet region, is reached by char-
acteristics that belong to both sets C(I) and C(II) emerging
at t = 0 from all points z � 0. The points within the region
z(t ) < λ2t , referred to as region 1 (Z1), are also reached from
the set of characteristics C(I) emerging at t = 0 from the
points z � 0. However, the curves from the set C(II) that reach
the points within Z1 are those emerging from the boundary
z = 0 at t > 0. Thus, while the quantities x(z, t ) and y(z, t )
are resolved within the QR by extending back along both sets
of characteristics C(I) and C(II) from any point (z, t ) up to the

initial conditions, it happens that within Z1 the correspond-
ing quantities x(z, t ) and y(z, t ) are resolved extending back
from both the initial configuration through C(I) and from the
boundary through C(II).

Consider then any point Q = (zQ, tQ) at the crossing of two
characteristics within the QR, one from the set C(I) and the
other from the set C(II). Since the initial conditions are such
that both densities are constants for z > 0, we may write

R1(z, 0) = K + h = K + xQ +
(

1 + 2ε

γ

)
yQ,

R2(z, 0) = 1 + 4h = 1 + 4xQ

1 + 4yQ
, (A20)

where we have defined xQ ≡ x(zQ, tQ) and yQ ≡ y(zQ, tQ).
From these two equations, we conclude that at any point
Q within the QR, xQ = h and yQ = 0. This means that the
characteristics are straight lines within this region with slopes
given in (A19).
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FIG. 6. Characteristic lines for the system (9) with initial and
boundary conditions as specified in (A17) and (A18), with h > 0.

Consider now the region Z1 defined by the points (z, t )
such that z � λ2(h, 0)t , t > 0. Figure 6 shows two lines that
belong to the set C(I) crossing a line from the set C(II) at
points R and S within Z1 and at points P and Q within the
QR. It follows that

R2(zR, tR) = R2(zS, tS ),

R1(zP, tP ) = R1(zR, tR),

R1(zQ, tQ) = R1(zS, tS ).

(A21)

Because yQ = yP and xQ = xP (QR), we conclude that

(yR − yS )

(
1 + ε

γ

)
= 2(xS yR − xR yS ), (A22)

which has the trivial solutions yR = yS if xR = xS , implying
that the characteristics from C(II) are straight lines within
the region Z1. Now, in order to resolve for the quantities
x∗
+ ≡ x(z∗, t∗) and y∗

+ ≡ y(z∗, t∗) at any point (z∗, t∗) of Z1,
consider that

R1(0, t ) = R1(z, 0), (A23a)

R2(z∗, t∗) = R2(0, t ), (A23b)

R1(z∗, t∗) = R1(z, 0). (A23c)

Using the expressions (A14) and (A15), we find that, for
the chosen initial and boundary conditions and for h > 0, the
excesses or depletions of cargoes y∗

+ ≡ y(z∗, t∗) and motors
x∗
+ ≡ x(z∗, t∗) at any point (z∗, t∗) within the Z1 are given

by

y∗
+ = yr,

x∗
+ = h −

(
1 + 2ε

γ

)
yr . (A24)

With regard to the characteristics C(I) within Z1, we must
examine the set of equations relating both quantities R1(z, t )

and R2(z, t ) evaluated at any two points R and T :

R1(zR, tR) = R1(zT , tT ) = R1(z, 0),

R2(zR, tR) = R2(zT , tT ) = R2(0, t ). (A25)

The last equality follows from the particular choice of con-
stant boundary conditions as in Eq. (A18). From these we
may conclude that xR = xT and yR = yT , meaning that both
x and y are individually conserved along the characteristics
C(I). In turn, this implies that λ1 is constant and thus the
characteristics of C(I) are also straight lines within Z1. From
Eq. (A24) we conclude that for

yr <
h(
2ε
γ

) (A26)

the condition x∗
+ + y∗

+ > 0 holds, ensuring that λ1(x∗
+, y∗

+) <

0 within Z1, and also that for

yr >
h(
2ε
γ

)(
1 − 1

2h

)
(A27)

the condition 1
2 − (x∗

+ + y∗
+) > 0 holds, ensuring that

λ2(x∗
+, y∗

+) > 0 within Z1 so that the characteristics from
C(II) have positive slope in this region. These conditions give
support to the picture outlined in Fig. 6.

In the forthcoming examples we show that for the initial
conditions (A17) with h > 0 we can choose values for xr and
yr for which both λ1(x, y) and λ2(x, y) are approximately con-
served within the domain up to the order 2ε

γ
. This means that

the characteristic lines from each set C(I) and C(II) are nearly
parallel to each other. Therefore, in looking for solutions
to u(z, t ) and c(z, t ) shock formation as well as rarefaction
regions can be neglected up to this order of approximation.
On the basis of the results discussed above, we conclude that
the system evolves in time exhibiting two regions on the (z, t )
plane presenting distinct values for the excess of cargoes and
motors densities. Within the QR, these quantities preserve
their initial values, whereas within Z1, these quantities show
also a dependence on the excess of cargoes yr at the boundary
z = 0. The speed with which Z1 invades the QR is λ2(x∗

+, y∗
+)

(A19). In the present context this characterizes a wave carry-
ing an excess (or depletion) of motors and cargoes that travels
toward the positive direction (anterograde transport) along the
axon at this speed. We will see next how this picture may
change for h < 0.

b. Case h < 0

In this case we notice that at t = 0 both λ1(h, 0) and
λ2(h, 0) are positive. We will show that these features are
consistent with the solutions x(z, t ) and y(z, t ) for all time
t > 0 and space z � 0 domains, as suggested by Fig. 7. In the
absence of rarefaction, the characteristics from both sets C(I)
and C(II) emerging from z = 0 at t = 0 divide the plane z � 0
and t > 0 into three regions, which will be referred to as the
quiet region [upper plane z(t ) > λ2t], the intermediate region
Z1 [λ1t < z(t ) < λ2t], and the lower region Z2 [λ1t > z(t )].

Like the case h > 0, the functions x(z, t ) and y(z, t ) can be
resolved at any point (z, t ) within the QR by extending back
from (z, t ) to the initial values at t = 0 along characteristics
from both C(I) and C(II) leading to the same equations as in
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FIG. 7. Characteristic lines for the system (9) with initial and
boundary conditions as specified in (A17) and (A18), with h < 0.

(A20). This allows us to conclude that both C(I) and C(II)
are straight lines and also that xQ ≡ x(zQ, tQ) = h and yQ ≡
y(zQ, tQ) = 0 at any point Q within this region.

The analysis of the solutions within the intermediate re-
gion (Z1) is performed by choosing any pair of points at the
crossing of any two characteristics chosen from the sets C(I)
and C(II), say, points R and S, both at the same characteristic
of C(II), as shown in Fig. 2. Analogous equations (A21) can
be set for these two points, from which we conclude that
the C(II) are straight lines within Z1. However, Eq. (A23a),
i.e., R1(0, t ) = R1(z, 0), does not hold in this case. In order
to find the solutions x∗

− and y∗
− to x and y for h < 0 at any

point (z∗, t∗) of Z1, we observe that the set (A25) holds also
for h < 0, yielding xR = xT and yR = yT at any two points R
and T of a C(I). This implies that λ1 is also conserved within
Z1 and thus the characteristics of C(I) are also straight lines
within this region. Equations (A23b) and (A23c) can then be
resolved, which yields, in the present case,

y∗
− = 1

4

(
(1 + 4h)(1 + 4yr ) − (1 + 4xr )

(1 + 2ε
γ

)(1 + 4yr ) + (1 + 4xr )

)
,

x∗
− = h −

(
1 + 2ε

γ

)
y∗
−. (A28)

The characteristics of C(I) have positive slope, i.e.,
λ1(x∗

−, y∗
−) > 0, at all points within Z1 if x∗

− + y∗
− = h −

2ε
γ

y∗
− < 0. Using the result (A28) for y∗

−, we show that this
condition is equivalent to

1 + 4yr >

2ε
γ

+ 4h
2ε
γ

− 4h
(1 + 4xr ). (A29)

Consider now any point A = (zA, tA) within Z2, at the
crossing of two characteristics, one from the set C(I) and
the other from C(II). The quantities x(zA, tA) and y(zA, tA) are
resolved within the Z2 by extending back from (zA, tA) along
both of these characteristics up to the boundary at (0, t ) for
any t � 0. Since the excess densities xr and yr at the bound-
ary z = 0 are kept at constant values as time passes these
lead to

R1(zA, tA) = R1(0, t ),

R2(zA, tA) = R2(0, t ). (A30)

It follows that

xA = xr, yA = yr (A31)

at any point A = (zA, tA) within Z2. Both C(I) and C(II) are
straight lines within Z2. Moreover, for

xr + yr < 0 (A32)

the signs of both slopes do not change with regard to the other
regions, the QR and Z1.

From this analysis we conclude that for h < 0 and in the
absence of shocks or rarefaction of characteristics, the system
evolves in time, exhibiting three regions on the (z, t ) plane,
each of which present, in the most general case, different
values for the excess of cargoes and motors. Within the QR,
these quantities preserve their initial values. Within Z1, these
quantities show a dependence on both the initial values and
the values of excess xr and yr at the boundary z = 0, as shown
in (A30). Within Z2, x and y coincide with their values at the
boundaries (A31). Under these conditions, we conclude that
the speed at which Z1 invades the QR is λ2(x∗

−, y∗
−). The speed

at which the region Z2 invades Z1 is λ1(xr, yr ).
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