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Crucial role of the intrinsic twist rate for the size of an intrinsically curved semiflexible biopolymer
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We study the effects of the intrinsic curvature (IC), intrinsic twist rate (ITR), anisotropic bending rigidities,
sequence disorder, and temperature (T ) on the persistence length (lp) of a two- or three-dimensional semiflexible
biopolymer. We develop some general expressions to evaluate exactly these effects. We find that a moderate
IC alone reduces lp considerably. Our results indicate that the centerline of the filament keeps as a helix in
a rather large range of T when ITR is small. However, a large ITR can counterbalance the effect of IC and
the result is insensitive to the twist rigidity. Moreover, a weak randomness in IC and ITR can result in an
“overexpanded” state. Meanwhile, when ITR is small, lp is not a monotonic function of T but can have either
minimum or maximum at some T , and in the two-dimensional case the maximum is more obvious than that in the
three-dimensional case. These results reveal that to obtain a proper size at a finite T for an intrinsically curved
semiflexible biopolymer, proper values of bending rigidities and ITR are necessary but a large twist rigidity
may be only a by-product. Our findings are instructive in controlling the size of a semiflexible biopolymer in
organic synthesis since the mean end-to-end distance and radius of gyration of a long semiflexible biopolymer
are proportional to lp.
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I. INTRODUCTION

Different semiflexible biopolymers exhibit different ther-
mal and mechanical properties. One of the most significant
properties for a semiflexible biopolymer is its statistical
measure of size, characterized by mean end-to-end dis-
tance or mean radius of gyration or persistence length (lp).
lp represents an effective statistical segment length of a
coarse-grained model, in which one replaces the semiflex-
ible biopolymer by a random walk with the same contour
length and mean end-to-end distance. In other words, lp is
approximately the nondeformable length of a semiflexible
biopolymer, and the mean end-to-end distance and radius of
gyration of a long semiflexible biopolymer are proportional to
lp. A proper magnitude of lp is therefore crucial to the function
of semiflexible biopolymers. For instance, in a highly com-
pacted semiflexible biopolymer it may be difficult to identify
the start site in transcription, replication, recombination, and
repair processes. In contrast, a loose semiflexible biopolymer
with a large lp may have a too-large volume and may en-
counter too many attacks from environment so is fragile.

Intuitionally, the bending rigidity should dominate lp, since
the larger the bending rigidity, the larger the force or energy
required to bend the semiflexible biopolymer. The result ob-
tained from the simplest model for a semiflexible biopolymer,
the wormlike chain (WLC) model, supports this conjecture
[1–4]. However, many other parameters can also affect the
value of lp, such as temperature (T ), a finite intrinsic curvature
(IC) or twist rate (ITR), anisotropic bending rigidities, and
randomness in sequences. Having a finite IC means that free
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of external force or torque, the natural shape of the semiflexi-
ble biopolymer is a curve so the semiflexible biopolymer has a
well-defined curvature in its ground-state configuration (GSC,
or the configuration with the lowest energy). Meanwhile, hav-
ing a finite ITR means that free of external force or torque, the
semiflexible biopolymer is naturally twisted so has a unique
twist rate in its GSC. Many semiflexible biopolymers, such
as some double-stranded DNA (dsDNA), have a finite IC or
ITR. Consequently, what parameter can be as important as the
bending rigidity is a significant topic.

T is certainly the first factor we should consider and it is
indeed very important in many systems. For instance, it has
been found that a flexible polymer has three phases below,
at or above the θ temperature [5], which is the temperature
at which the phase transition takes place. At θ temperature,
the conformation of a polymer can be modeled as a random
walk of monomer subunits, and such a polymer is referred
as an ideal chain or a free-jointed chain. Correspondingly,
a solvents at the θ temperature is called θ solvents [5]. On
the other hand, in good solvent or above the θ temperature,
the chain is in a swollen state and can be described by a
self-avoiding random walk [5–10]. Moreover, in poor solvent
or below θ temperature, a polymer chain collapses into a
compact globule state. In these three phases, the end-to-end
distance of polymers obey different power law [5–10]. T also
affects greatly the mechanical property of a polymer. For
swollen or ideal polymer chains, the polymer extends progres-
sive with increasing stretching force so that no sharp transition
in extension occurs [11–14]. However, in poor solvent, the
extension of a polymer can subject to a first-order transition
under a stretching force [15].

There is no way to define a finite IC for a flexible polymer
since it can be arbitrarily bent. In contrast, a semiflexible
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biopolymer, such as dsDNA, actin, and microfilament, always
has a unique GSC or IC. Due to its slender shape, a semi-
flexible biopolymer is usually modeled as a filament. The
simplest model for a semiflexible biopolymer is the WLC
model which views a filament as an inextensible chain with a
finite bending rigidity but a zero cross section, and it has been
used to account for the entropic elasticity of some semiflex-
ible biopolymers [1–4]. Another useful model is the WLRC
model [1–3,16–18] which regards a filament as a chain with
a finite ITR and a circular cross section. The importance of
semiflexible biopolymers stimulates lots of researches in these
two models and some relevant models [1–4,16–46].

Both WLC and WLRC models are intrinsically straight
or have a zero IC, i.e., the natural shape of their centerlines
are straight lines. However, intrinsically curved or twisted
semiflexible biopolymers are also ubiquitous. For instance,
special sequence orders favor a finite IC for some short ds-
DNA chains so they look like circles [47–51]. It has also been
reported that a long-range correlated dsDNA has a macro-
scopic (intrinsic) curvature so that the WLC model fails to
account for its property [19]. Moreover, it has been found
that an intrinsically curved filament has complete different
conformational and mechanical properties from that of WLC
and WLRC [20–27]. In the three-dimensional (3D) case, both
exact theoretical analysis and experimental observation re-
veal that an intrinsically curved semiflexible biopolymer can
form a stable helix and under an applied force the exten-
sion of the helix can subject to a discontinuous transition
[20–26]. Meanwhile, in the 2D case it has been shown that
a finite IC alone can induce a discontinuous transition in
extension [27].

On the other hand, at a first approximation a filament is
assumed to be homogeneous. However, the structure of a
semiflexible biopolymer is usually sequence dependent. Se-
quence disorder results in disordered IC and ITR and affects
considerably properties of semiflexible biopolymers [19,31–
36]. Without correlation or with short-range correlation (SRC)
in sequences and free of external force, it has been shown
rigorously that the effects of sequence disorder on IC and
ITR can be incorporated into a model with well-defined mean
IC and ITR as well as renormalized bending and twist rigidi-
ties [19,28,29,31–33]. In contrast, with long-range correlation
(LRC) in sequences, a simple correction to bending and twist
rigidities is invalid [19] but the model with a finite IC can
remedy the problem [46].

Relationships among lp, IC, and ITR have been studied
[28–30,44,45]. These works present some general expresses
and offer some intrigue results, but the knowledge on the
dominative parameters for lp is yet incomplete. In particular,
the role of sequence disorder to lp is not transparent. In this
work we clarify this problem. We find that a moderate IC
alone reduces lp considerably. In contrast, a large ITR can
depress the effect of IC so yield a lp that is comparable to
the lp of the WLC model, and the result is insensitive to the
twist rigidity. Moreover, the couple between IC or ITR and
randomness can result in an “overexpanded” state. Our results
also suggest that the elasticity of a filament with a large ITR
should be the same as that of a WLC. Therefore, a finite
ITR plays a crucial role for the size of an intrinsically curved
semiflexible biopolymer.

FIG. 1. Schematic diagram of a 3D filament (left) and a cross
section (right) of it showing the notation used. The dashed line in
the left figure is the centerline of the filament, and the origin of the
coordinate system for the cross section is at the centerline of the
filament, t3 is the tangent of the centerline and is perpendicular to
the cross section. ωi = ωiti (i = 1, 2, 3) rotates around ti.

The paper is organized as follows. In the next section we
set up models and present some basic expressions. The Sec. III
presents the results for a 3D filament. The Sec. IV discusses
the 2D system. Finally, the conclusions and discussions con-
clude the paper.

II. MODELS AND BASIC EXPRESSIONS

A. Three-dimensional model

The configuration of a 3D filament can be described by a
triad of unit vectors {ti(s)}i=1,2,3 [21,30,38], where t3 = ṙ is
the tangent to the locus of centerline r(s) of the filament, t1

and t2 orient along the principal axes of the cross section, s is
the arclength of the centerline, and the symbol “˙” represents
the derivative with respect to s. The triad obeys the gener-
alized Frenet equations ṫi = ω × ti [21,25,26,30,38], where
ω = ω1t1 + ω2t2 + ω3t3 is a vector in which ω1 and ω2 are

components of curvature c =
√

ω2
1 + ω2

2, and ω3 is the twist

rate. The direction of the curvature is given by ṫ3 [25]. Figure 1
shows the relations in these quantities.

The elastic energy of a filament with a finite IC and ITR
can be written as [21,30,38]

E3D = 1

2

∫ L

0

3∑
i=1

ki(ωi − ζi )
2ds, (1)

where k1 and k2 are bending rigidities along two principle axes
on the cross section and k3 is the twist rigidity. ζ1 and ζ2 are

components of IC (= ζ0 =
√

ζ 2
1 + ζ 2

2 ) and ζ3 is ITR. ζ0 is the
natural curvature of the centerline, i.e., the curvature of the
centerline when the filament is free of external force and at
its GSC. Similarly, ζ3 characters the natural twist rate of the
cross section. The intrinsic radius is R0 = 1/ζ0. In the model
L is the contour length of the centerline and is a constant so
that the filament is inextensible. This is a reasonable approxi-
mation since the contour length of a semiflexible biopolymer
is decided by the covalent bonds between monomers and it
is uneasy to change the bond-length. When k1 = k2 = k, the
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filament is isotropic or has a circular cross section if it is uni-
form, i.e., has a constant density. In contrast, k1 �= k2 results
from an elliptical cross section for a uniform filament. When
ζ1 = 0 and k1 = k2, the model becomes the helical wormlike
chain model [44,45]. Moreover, when ζ0 = 0 and k1 = k2,
the model is reduced into the WLRC model. Meanwhile,
when ζ3 = 0, the WLRC model becomes the WLC model. In
both WLC and WLRC models, lp = l0

p ≡ k/kBT . We also let
ζ1 = ζ0 cos α0 and ζ2 = ζ0 sin α0 since lp is independent of α0

when k1 = k2 = k. α0 is the angle between IC and t1, as shown
in Fig. 1.

Experimentally, bending rigidity of a semiflexible biopoly-
mer can be measured by embedding one end of a short
segment of the semiflexible biopolymer into a hard substrate
so to fix the initial angle, applying a force to another end to
bend it, and then measuring the changes of the bending angle.
Meanwhile, twist rigidity can be measured by sticking the
cross section of one end tightly on a nondeformable surface,
applying a torque to another end, and then measuring the
changes of the twisting angle. These measurements can be
realized by some single molecule techniques, such as laser
or magnetic tweezers, atomic force microscopy, and so on.
Larger bending rigidity are usually resulted from stronger
covalent bonds between neighbor monomers. Similarly, larger
twist rigidity can come from more hydrogen bonds inside
a semiflexible biopolymer or larger energy barrier between
gauche and trans conformations in molecules.

If ζi and ki are well-defined functions of s (i.e., free of
randomness in sequences or monomers), then a macroscopic
quantity is defined as the average over all possible conforma-
tions or a path integral for the continuous system in the form
[21,29,30,38,52]

B = 〈B[{ωi(s)}]〉 = 1

Z3D

∫
D[ωi]B[{ωi(s)}]e−βE3D , (2)

Z3D =
∫

D[ωi]e
−βE3D , (3)

where β = 1/kBT and kB is the Boltzmann constant. ωi(0) and
ωi(L) are free in Eq. (2) [52]. The detailed form of B[{ωi(s)}]
dependents on what quantity we want to study and may be
a very complex function of ωi. For instance, if B[{ωi}] =
t j (s1) · tk (s2), then we find the orientational correlation func-
tion between t j and tk; if B[{ωi}] = |rL − r0|2, then we obtain
the mean square end-to-end distance, where rL = r(L) and
r0 = 0. The partition function Z3D is essentially a Gaussian
integral so is independent of ζi but dependent on ki. B is in
general a function of ki, ζi, T , and L.

For a dsDNA chain at room temperature T = Tr = 298 K,
l0
p ≈ 50 nm, k3/kBTr ≈ 75 nm, and ζ3 ≈ 1.76 nm−1 [1,18].

When ζ0 = 0, the GSC of a dsDNA is a twisted straight
cylinder, i.e., its centerline is straight but its cross section is
twisted. In this work, our numerical calculations are based on
these parameters since we focus on a semiflexible biopolymer
and dsDNA is a typical one.

B. Two-dimensional model

In 2D case, the configuration of a filament is determined by
its tangent vector, t = ṙ = {cos φ, sin φ}, to its contour line,
where r = (x, y) is the locus of the filament and φ(s) is the

angle between the x axis and t. One end of the chain (at s =
0) is fixed at r = 0, so the elastic energy of the filament is
[19,28,37,53]

E2D = 1

2

∫ L

0
dsk(φ̇ − ζ0)2, (4)

where φ̇ ≡ ẋÿ − ẏẍ is the signed curvature and ζ0 is the intrin-
sic signed curvature.

If k and ζ0 are well-defined functions of s, a macroscopic
quantity is given by [28,37,52]

B(k, ζ0, T, L) = 1

Z2D

∫
D[φ]B[{φ(s)}]e−βE2D, (5)

Z2D =
∫

D[φ]e−βE2D . (6)

φ(0) and φ(L) are free in Eq. (5) [52]. The partition function
Z2D is also a Gaussian integral so is independent of ζ0 but
dependent on k.

C. Randomness average

Equations (2) and (5) are defined for a random-free fila-
ment. However, semiflexible biopolymers are often sequence
dependent or heterogeneous. The disorder in sequences can be
characterized by s-dependent IC or ITR. Suppose that the fil-
ament has a well-defined mean IC or ITR; in a coarse-grained
model the distribution of IC and ITR can be approximated as
a Gaussian distribution [29,46]

W ({ζi}) = exp

{
−

3∑
i=1

1

2

∫
k′

i[ζi(s) − ωi0]2ds

}
, (7)

where ωi0 is the mean of ζi. In this case, we need to average
over ζi again so an observable is calculated by

B(ki, k′
i, ωi0) =

∫
D[ζi]W ({ζi})〈B[{ωi(s)}]〉∫

D[ζi]W ({ζi})
. (8)

The larger the k′
i , the smaller the standard deviations of the

ζis so the less the randomness. When k′
i → ∞, it recovers a

randomness-free system as given by Eq. (2). Note that ki and
k′

i have different units. To study the effect of T we assume
that ki and k′

i are independent of T since they character the

intrinsic property of a filament. c0 =
√

ω2
10 + ω2

20 is the mean
IC and the mean intrinsic radius is R0 = 1/c0. We also let
ω10 = c0 cos α0 and ω20 = c0 sin α0.

The physical quantity B[{ωi(s)}] is independent of ζis so
that the integration over ζis in Eq. (8) is in fact Gaussian.
Therefore, applying a standard path integral technique [54,55]
to integrate ζis in Eq. (8), we can find exactly [29]

B(ki, k′
i, ωi0) =

∫
D[ωi]B[{ωi(s)}]e−H3D∫

D[ωi]e−H3D
, (9)

H3D = 1

2

∫ L

0

3∑
i=1

κi[ωi(s) − ωi0]2ds, (10)

κi = βkik
′
i/(βki + k′

i ) = kik
′
i/(ki + k′

ikBT ). (11)

Equations (9)–(11) are valid even if ki, k′
i , and ωi0 are s

dependent.
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For a 2D system, the distribution of ζ0 is [28]

W ({ζ }) = 1

2

∫ L

0
dsk′

1(ζ0 − c0)2. (12)

Similarly to the 3D system, replacing k by κ1 and ζ0 by c0 in
Eqs. (4) and (5), we obtain the results for the 2D sequence-
dependent system [28].

D. Mean-square end-to-end distance and persistence length

The end-to-end vector of the filament is given by r(L) =∫ L
0 t3ds so that the mean-square end-to-end distance can be

found by

〈r2(L)〉 = 2
∫ L

0

∫ s1

0
ds2ds1〈t3(s1) · t3(s2)〉. (13)

The persistence length lp can be interpreted as an effective
segment length of a coarse-grained model, in which one re-
places the filament by a random walk with the same L and
mean end-to-end distance, i.e., [30]

lp = lim
L→∞

1

2L
〈r2(L)〉

= lim
L→∞

1

L

∫ L

0

∫ s1

0
ds2ds1〈t3(s1) · t3(s2)〉. (14)

Therefore, 〈r2(L)〉 ≈ 2lpL for a long filament. Moreover,
since the radius of gyration has the same scaling behavior as
〈r2(L)〉, it should be proportional to lpL.

E. Some general expressions

When ki and ζi are s independent, in 3D case it has been
shown rigorously that the orientational correlation functions
can be calculated by (s1 > s2) [30]

〈ti(s1) · t j (s2)〉 = [
e−	(s1−s2 )

]
i j, (15)

	i j = γiδi j +
3∑

l=1

εi jlζl , (16)

γi = kBT

(
3∑

j=1

1

2k j
− 1

2ki

)
, (17)

where εi jk is the antisymmetric tensor.
We can diagonalize 	 to obtain

	 = P	P−1, 	i j = λiδi j, (18)

where P−1 is the inverse matrix of P and λis are eigenvalues
of 	.

ki and ζi can be s dependent but this work does not con-
sider this case because it requires to replace Eq. (15) by
a s-dependent expression so to perform exact calculations
becomes difficult for a long filament [30]. Meanwhile, s-
dependent ki and ζi may come from the sequence-disorder so
at a first approximation they may be absorbed to the random-
ness average. Consequently, P and λi are also s independent

so we have 	n = (P	P−1)n = P	nP−1 and

e−	(s1−s2 ) =
∞∑

n=0

1

n!
(−	)n(s1 − s2)n

= P

[ ∞∑
n=0

1

n!
(−	)n(s1 − s2)n

]
P−1 = P�P−1,

(19)

with �i j = e−λi (s1−s2 )δi j . Equation (15) is then simplified to be

〈ti(s1) · t j (s2)〉 = [P�P−1]i j . (20)

Consequently, when L → ∞,

1

L

∫ L

0

∫ s1

0
ds2ds1�ii → 1

λi
, (21)

lp = [P	−1P−1]33. (22)

If ζis are random, then we only need to replace ki by κi

and ζi by ωi0 in Eqs. (15)–(22) [29]. It is easy to evaluate
Eqs. (15)–(22) exactly and in some cases, we can even find
a simple closed-form expression, such as Eq. (26).

For a 2D filament, we can find some short closed-form
expressions, presented in Eqs. (32) and (33), for lp [37].

F. Elasticity

Applying a uniaxial force (along the x axis) F to another
end at s = L, we need to add another term, −Fx(L) ≡ −FxL,
to either E3D or E2D [19,25,26,37,53]. From Eqs. (2) and (5),
it is straightforward to find

〈xL〉 = ∂ lnZ
∂ f

and
∂〈xL〉
∂ f

= 〈
x2

L

〉 − 〈xL〉2, (23)

where f ≡ βF and 〈xL〉 is the extension. Adopting hinged-
hinged boundary conditions (BCs) so the orientations of the
filament at both s = 0 and s = L are free, we have 〈xL〉 = 0 so
〈x2

L〉 = 〈r2(L)〉/D when F = 0, where D = 2 for a 2D system
or D = 3 for a 3D system. Consequently, at a low force,
the relationship between applied force and extension can be
obtained from

〈xL〉 = f
〈
x2

L

〉
f =0 = f 〈r2(L)〉 f =0/D. (24)

The stretching strength (μ) is thus given by

μ = 1

L

∂〈xL〉
∂ f

=
〈
x2

L

〉 − 〈xL〉2

L
. (25)

Therefore, at a low force and for a long filament, μ = 2lp/D
so that it has the same behavior as lp.

Note that Eqs. (15)–(18) do not include applied force so
that they only can be applied to evaluate the elasticity of a
filament under a low force.

III. EFFECTS OF IC AND ITR ON A 3D FILAMENT

A. Mean energy and specific heat

From equipartition theorem, it is straightforward to show
that in both 2D and 3D systems, the mean energy is 〈E〉 ∝
kBT L, independent of ki, k′

i , and ωi0. It follows that the specific
heat (= ∂〈E〉/∂T/L) is independent of ki, k′

i , ωi0, and T .
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In numerical calculations we also find that lp is always a
smooth function. Therefore, there is no phase transition for
the system. However, we can find that magnitudes of IC and
ITR have significant impact on the value of lp.

B. lp for the disorder-free system

When k1 = k2 = k or for an isotropic filament and ζ3 = 0,
from Eqs. (15)–(22) we can obtain a short closed-form expres-
sion (see Appendix),

lp = k(k + k3)kBT

(k + k3)k2
BT 2 + 2k2k3ζ

2
0

. (26)

When ζ0 = 0, Eq. (26) recovers lp = l0
p = k/kBT .

Equation (26) indicates that lp is dependent on ζ0 but in-
dependent of ζ1/ζ2 or α0. Numerically the same conclusion
applies to the case with k1 = k2 but ζ3 �= 0 though it still
lacks an exact proof. Moreover, lp is a smooth function of all
parameters so that no phase transition occurs for the system.

From Eq. (26) it is straightforward to show that lp decreases
monotonically with increasing ζ0 or k3 so that the larger the k3

or ζ0, the smaller the lp. Meanwhile, lp is not a monotonic
function of T but has a maximum at

T = T max = kζ0
√

2k3

kB
√

k + k3
, lp = lmax

p =
√

k + k3

2
√

2k3ζ0
. (27)

Equation (26) also reveals that lp = 0 at T = 0 when ζ0 �= 0
so is different from that in the WLC model. This is due to the
GSC of the filament is a circle of radius R0 so lp ∝ R0/L → 0
when L → ∞. The circle expands with increasing T so lp

also increases to T max. But at high T , the thermal fluctuation
dominates the behavior so that the filament contracts and lp

decreases with increasing T , similarly to the behavior of l0
p .

T max gives a boundary between these two tendencies. These
are also common characters even if k1 �= k2 and with random-
ness when ζ3 = 0, as we can see in Figs. 2–7.

Figure 2 displays some typical results obtained from
Eq. (26) and it reveals that a moderate IC results in a quite
different behavior between lp and l0

p . For instance, when k =
k0 ≡ 50 nm × kBTr = 50kBTr nm, k3 = k0

3 ≡ 75kBTr nm, and
R0 = 50 nm, we obtain lp = 22.7 nm << l0

p at Tr and lmax
p =

22.8 nm at T = 326 K, as we can see from the solid black
line in Fig. 2. To recover lp = l0

p = 50 nm at Tr , it requires
k = 180kBTr nm and k3 = 20kBTr nm, as we can see from the
purple dotted line in Fig. 2. Meanwhile, when k = k0, k3 = k0

3 ,
and R0 = 100 nm, we obtain lp = 38.5 nm < l0

p at T = Tr ,
as we can find from the blue dash-dotted line in Fig. 2, and
lmax
p = 45.6 nm at T = 163 K. In other words, to obtain a

proper lp, it requires a much larger k but a much smaller k3.
Note that R0 = 50 nm gives a circumference of 314 nm or 900
base pairs for a DNA chain, or the filament is only moderately
curved in this case.

However, a finite ζ3 leads to very different results, as
shown in Fig. 3 for some typical results. In this case, there
is not a short closed-form expression like to Eq. (26) but
we still can calculate lp exactly from Eqs. (15)–(22). When
ζ0 = 0, lp = l0

p is independent of ζ3, but a finite ζ0 results
in a couple between ζ0 and ζ3 so a much more complicate
behavior. At first, lp ∝ 1/T at low T and lp → ∞ when
T → 0, similarly to l0

p since the shape of the centerline of the

FIG. 2. l0
p (red dashed and k = k0 = 50) and lp vs. T for a 3D

filament. For lp, k1 = k2 = k and ζ3 = 0 and (1) R0 = 1/ζ0 = 50,
k = k0, and k3 = k0

3 = 75 (solid black); (2) R0 = 100, k = k0, and
k3 = k0

3 (blue dash-dotted); and (3) R0 = 50, k = 180, and k3 = 20
(purple dotted). Black and purple lines display maxima in lp. The
unit of length is nm, the unit of T is K, and the unit of ki is kBTr nm
with Tr = 298 K.

filament in its GSC is a helix of pitch = 2π/(ζ 2
0 + ζ 2

3 ) and

height = hhelix = ζ3/

√
ζ 2

0 + ζ 2
3 L [22,23], instead of a circle at

ζ3 = 0. Furthermore, from Fig. 3, we can see that lp has both
a minimum and a maximum when ζ3 is small, shown as the
purple dotted line in the figure, so has quite different tendency
and magnitude from l0

p . The purple dotted line in Fig. 3 also

FIG. 3. l0
p (red dashed and k = k0 = 50) and lp vs. T for a 3D

filament. For lp, k1 = k2 = k0, k3 = k0
3 , R0 = 50 and (1) ζ3 = 1.76

(solid black and is overlapped with l0
p); (2) ζ3 = 0.1 (cyan short-

dashed); (3) ζ3 = 0.02 (magenta dash-dot-dotted); (4) ζ3 = 0.01
(blue dash-dotted); and (5) ζ3 = 0.004 (purple dotted). The purple
dotted line has both a minimum and a maximum. The unit of length
is nm, the unit of T is K, and the unit of ki is kBTr nm.
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FIG. 4. l0
p (red dashed and k = k0 = 50) and lp vs. T for a 3D

filament. For lp, k1 = k0, k3 = k0
3 , R0 = 50, ζ3 = 0 and (1) k2 = 35

and α0 = 0 (blue dash-dotted); (2) k2 = k1 (purple dotted); (3) k2 =
35 and α0 = 0.8 (magenta dash-dot-dotted); and (4) k2 = 35 and
α0 = π/2 (solid black). The unit of length is nm, the unit of T is
K, and the unit of ki is kBTr nm.

indicates that lp varies little in a rather large range of T so
the filament should keep as a helix in this range, especially
note that hhelix/L = 0.1961 ≈ lp in this case. It also suggests
that increasing T enlarges the radius of the helix but changes
little on its pitch, since for a long helix the pitch dominates the
end-to-end distance. However, increasing ζ3 makes lp close
to l0

p but it has always lp < l0
p . When ζ3 = 0.1 nm−1, lp is

already very close to l0
p even at T = 5 K, shown as the cyan

short-dashed line in Fig. 3; when ζ3 = 1.76 nm−1, lp becomes
indistinguishable from l0

p in a rather large range of T , shown
as the solid black line in Fig. 3. This is also not a surprise since
the GSC of the filament is a twisted straight cylinder. In fact,
when ζ3 = 0.2 nm−1, lp is already indistinguishable from l0

p .
We find further that the value of k3 has little effect at a large
ζ3. In other words, ζ3 favors a large lp and plays an opposite
role to ζ0, and a large ζ3 can offset the effect of ζ0 completely
so makes lp ≈ l0

p in a rather large range of T .
When k1 �= k2 but ζ3 = 0, we find that the effect of a

finite c0 is still serious so lp < l0
p but the anisotropic effect

is complicate and α0 dependent. Figure 4 displays some typ-
ical results. When k1 > k2, lp reaches minimum at α0 = 0
or π (ζ2 = 0), but becomes maximum at α0 = π/2 or 3π/2
(ζ1 = 0). Clearly, when k1 < k2, the α0s for maximum and
minimum lp exchange the roles. In other words, a larger ζ2

or nearly coaxial between IC and the hardest principal axis
favors a larger lp since the thermal fluctuation is more serious
in the softer direction. At the minimum case, lp is always
smaller than that of the isotropic case, i.e., the case with
k = km = maximum(k1, k2), as we can see by a comparison
between purple dotted (k = km) and blue dash-dotted (α0 = 0)
lines in Fig. 4; but beginning from a moderate α0, lp can be
larger than that of the isotropic case with k = km in a range
of T , shown as the magenta dash-dot-dotted and solid black
lines in Fig. 4.

FIG. 5. l0
p (red dashed and k = k0 = 50) and lp vs. T for a 3D fil-

ament. For lp, k1 = k0, k3 = k0
3 , R0 = 50 and (1) k2 = k0 and ζ3 = 0

(cyan short-dashed and the same as the solid black line in Fig. 2);
(2) k2 = 35, ζ3 = 0.01, and α = 0 (magenta dash-dot-dotted); (3)
k2 = 35, ζ3 = 0.01, and α = π/2 (blue dash-dotted); (4) k2 = 35,
ζ3 = 1.76, and α = π/2 (purple dotted); and (5) k2 = 45, ζ3 = 1.76,
and α = π/2 (solid black). The unit of length is nm, the unit of T is
K, and the unit of ki is kBTr nm.

Now we consider the case with k1 �= k2 and ζ3 �= 0 and
Fig. 5 displays some typical results. Similarly to the isotropic
case, a finite ζ3 favors a larger lp and a large ζ3 can re-
move the effect of ζ0 completely but k3 still plays little
role. Five different lines in Fig. 5 demonstrate clearly that
the smaller the ζ3, the smaller the lp. Moreover, at a large
ζ3 the value of lp is dominated by km. But the smaller the
k′

m = minimum(k1, k2), the smaller the lp, as we can see from
the solid black and purple dotted lines in Fig. 5. Mean-
while, lp is dependent on α0 in the same way as that in the
isotropic case, as we can see from the blue dash-dotted and
magenta dash-dot-dotted lines in Fig. 5. When k2 = 35kBTr

nm, k3 = k0
3 , ζ3 = 1.76 nm−1 and R0 = 50 nm, to recover

lp = l0
p requires k1 = 85kBTr nm; when k2 = 45kBTr nm,

k3 = k0
3 , ζ3 = 1.76 nm−1 and R0 = 50 nm, to recover lp = l0

p
requires k1 = 56kBTr nm.

In all cases, the sign of ζ3 does not affect the result.

C. lp for the disordered system

Equation (11) indicates that κi decreases monotonically
with increasing T , κi � βki and κi reaches maximum when
k′

i = ∞. In other words, sequence disorder weakens rigidity.
When ω30 = 0, k1 = k2, and k′

1 = k′
2, we can find exact ex-

press for lp, i.e.,

lp = k1k′
1[k1k3(k′

1 + k′
3) + k′

1(k1 + k3)k′
3kBT ]/B, (28)

B = k2
1k3

(
k′

1 + k′
3 + 2c2

0k′2
1 k′

3

) + k′2
1 (k1 + k3)k′

3k2
BT 2

+ k1k′
1[k′

1k3 + (k1 + 2k3)k′
3]kBT . (29)
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FIG. 6. l0
p (red dashed and k = k0 = 50) and lp vs. T for a

3D filament. For lp, k3 = k0
3 , R0 = 50, ω30 = 1.76 and (1) k1 =

k2 = k0, k′
1 = k′

2 = 800, and k′
3 = 800 (black short-dash-dotted); (2)

k1 = k2 = k0, k′
1 = k′

2 = 400, and k′
3 = 300 (solid black); (3) k1 =

k2 = 60, k′
1 = k′

2 = 200, and k′
3 = 200 (olive dotted); (4) k1 = k2 =

60, k′
1 = k′

2 = 400, and k′
3 = 75 (blue dash-dotted); (5) k1 = k2 =

k0, k′
1 = k′

2 = 400, and k′
3 = 75 (magenta dash-dot-dotted); and (6)

k1 = k2 = k0, k′
1 = k′

2 = 200, and k′
3 = 75 (purple short-dashed). For

comparison, we also show a sample (7) with k1 = k2 = k0, k3 = k0
3 ,

R0 = 50, k′
1 = k′

2 = k′
3 = ∞, and ω30 = 0 (cyan short-dotted and the

same as the solid black line in Fig. 2). The unit of length and k′
i are

nm, the unit of T is K, and the unit of ki is kBTr nm.

lp has a maximum at

T max = k1[
√

2(k1 + k3)k3k′
1k′

3c0 − k3(k′
1 + k′

3)]

(k1 + k3)k′
1k′

3kB
, (30)

lmax
p = (k1 + k3)k′

1k′
3

2
√

2(k1 + k3)k3k′
1k′

3c0 + k1k′
3 − k′

1k3
. (31)

When k′
i = ∞, Eqs. (30) and (31) are the same as Eq. (27).

Again, there is not a short closed-form expression for lp when
ω30 �= 0.

Figure 6 displays some typical results. Our results support
the conclusion that a finite IC and anisotropic rigidities re-
duce lp, but a finite ITR enhances lp. Moreover, the effect
of randomness is complicate. We find that a strong random-
ness or small k′

is reduce lp even with a large ω30, shown as
blue dash-dotted, magenta dash-dot-dotted, and purple short-
dashed lines in Fig. 6. This is a natural result since the
smaller the k′

is, the smaller the κis and the more flexible
the filament. Meanwhile, though κi increases monotonically
with increasing k′

i , lp does not follow such a behavior, as we
can evaluate exactly from Eqs. (28) and (29) when ω30 = 0,
k1 = k2, and k′

1 = k′
2. lp also can become larger (smaller) than

its randomness-free counterpart at low (high) T . 2D case has
the similar results, displayed as cyan short-dashed, purple
short-dash-dotted, and solid black lines in Fig. 7.

A special and maybe strange state is observed at a small
randomness or at large k′

is. In this case, a large ω30 can even
make lp > l0

p at a rather large range of T , shown as black

FIG. 7. l0
p (red dashed and k = k0 = 50) and lp vs. T for a

2D filament. For lp, (1) k = k0 and R0 = 200 (blue dash-dotted);
(2) k = k0 and R0 = 100 (olive dotted); (3) k = k0, R0 = 50, and
k′

1 = 25 (cyan short-dashed); (4) k = k0, R0 = 50, and k′
1 = 200

(purple short-dash-dotted); (5) k = k0 and R0 = 50 (solid black). For
comparison, we also show a 3D result (6) (orange dash-dot-dotted)
with k1 = k2 = k0, k3 = k0

3 , and R0 = 50. The unit of length and k′
1

are nm, the unit of T is K, and the unit of ki is kBTr nm.

short-dash-dotted, solid black, and olive dotted lines in Fig. 6.
In particular, the black short-dash-dotted line indicates that
around T = Tr , a proper randomness can increase lp consid-
erably. We also find that lp has a up bound at large k′

i . For
instance, doubling k′

i in black short-dash-dotted line in Fig. 6
makes almost no difference in lp. We refer to the state with
lp > l0

p as an “overexpanded” state since it has always lp < l0
p

in disorder-free system and k′
i → ∞ recovers a disorder-free

system, i.e., lp → l0
p at very large k′

is and this is also con-
formed in our numerical calculations. The formation of such
an overexpanded state should be due to a couple between IC
or ITR and randomness, as we can see from Eqs. (28) and
(29). Our calculations show further that k′

3 is rather important
for the “overexpanded” state though k3 still has less effect.
For instance, in the magenta dash-dot-dotted line, k′

3 is smaller
than that in the solid black line, so lp is also smaller. Finally,
α0 plays the same role as in the disorder-free system.

The lp of several short (from 79 to 789 base pairs) and
intrinsically straight DNA chains in different solutions are
evaluated by transient electric birefringence measurements at
temperatures between 4◦ and 43◦C and follows a fitting to
five different models [43]. The magnitude of lp is solution and
model dependent but the experimental data show an intrigue
common behavior that lp exhibits a shallow maximum at 20◦C
and decreases slowly on either increasing or decreasing T
[43]. The existence of such a maximum and its T -dependent
behavior are consistent with our results, as we can see from
solid-black line in Fig. 2 and purple dotted lines in Figs. 3
and 4. Our results occur at a finite IC but a vanishing or small
ITR so that such a consistent suggests that the solutions may
induce a finite IC but weaken the effect or magnitude of ITR
and it may deserve a further observation.
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D. Elasticity

From the Sec. II F, we know that μ ∝ lp at a low force.
Meanwhile, it has been reported that extension of an intrinsi-
cally curved filament can subject to a discontinuous transition
under a stretching force if it is very rigid or at low T [20–26].
Can such a transition occur at a finite T for a filament with a
nonvanishing ITR? Our results suggest that at a finite T such a
transition disappears for a filament with a large ω30 since such
a filament is similar to a WLC. The lack of such a transition in
the WLRC model is a convincing evidence for the conclusion.
It also reveals that the IC dominates the transition and agrees
well with the results obtained from 2D systems [22,23,25–27].

IV. IMPACT OF IC ON A 2D SYSTEM

A. Free of disorder

In the 2D case, from Eq. (46) in Ref. [37], we can find
exactly

lp = l0
1 + l2

0 ζ 2
0

= 2kkBT

k2
BT 2 + 4k2ζ 2

0

, (32)

where l0 ≡ 2kβ is clearly the persistence length at ζ0 = 0.
High T makes lp ≈ l0

p or the effect of ζ0 is negligible. At
T = Tr , l0

p = 50 nm so k = k0 ≡ 25kBTr nm. lp � l0
p and has

a maximum at T = T max = 2ζ0k/kb with a k-independent
lmax
p = 1/2ζ0. Meanwhile, lp has a maximum at k = kBT/2ζ0

with a T -independent lmax
p = 1/5ζ0.

From Eq. (32), we obtain similar conclusion as that for a
3D filament, i.e., beginning from a moderate IC the behavior
and magnitude of lp is different from that of l0

p , as shown in
Fig. 7. Due to a smaller fluctuation, lp is slightly larger than
that in a 3D filament with the same parameters, as we can see
from a comparison between solid black and orange dash-dot-
dotted lines in Fig. 7. Meanwhile, around lmax

p , the curve of
lp vs. T is sharper than that in 3D cases, as we can see from
Figs. 2–7.

B. With disorder

When IC is sequence dependent, we need only to replace
βk and ζ0 in Eq. (32) by κ1 and c0 [28], so

lp = 2kk′
1(k + k′

1kBT )

k2
(
1 + 4k′2

1 c2
0

) + 2kk′
1kBT + k′2

1 k2
BT 2

. (33)

lp has a maximum at T = T max = k1(2c0k′
1 − 1)/kBk′

1 with
lmax
p = 1/2c0. T max increases with increasing k1 or c0 or k′

1,
but lmax

p is independent of k and k′
1. Meanwhile, lp has a

maximum at k = k′
1kBT/(2c0k′

1 − 1) or k′
1 = k/(2c0k − kBT )

and lmax
p = 1/2c0. In other words, though κ1 < k and κ1 in-

creases monotonically with increasing k′
1, lp does not follow

such a behavior, and can become larger or smaller than its
randomness-free counterpart at low or high T , shown as cyan
short-dashed, purple short-dash-dotted, and solid black lines
in Fig. 7. From Eq. (33) we know that this is because c0

is coupled with randomness so that the phenomenon does
not occur when c0 = 0, similar to that we have reported in
Sec. III C for a 3D filament. Moreover, at a small c0 and at
some special T , randomness can result in lmax

p > l0
p or give an

overexpanded state, similar to that occurs in the 3D system.

V. CONCLUSION AND DISCUSSION

In summary, we investigate the effects of IC, ITR,
anisotropic ki, randomness in sequences and T on the lp of
a semiflexible biopolymer. We develop some general expres-
sions to evaluate these effects exactly and easily. We show
rigorously that the specific heat of the semiflexible biopoly-
mer is independent of all of these parameters and our exact
numerical calculations indicate that lp is always a smooth
function of them, so that there is no phase transition. We
reveal that a moderate IC solely can reduce lp remarkably
and result in a very different relationship between lp and T ,
in comparison with the WLC model. It follows that for a
filament with a moderate or large IC but a small ITR, to
obtain a large lp it requires a rather large bending rigidity but
a relative small twist rigidity. When ITR is small, our results
suggest that the centerline of the filament keeps a helical
shape in a rather large range of T so it may play the role
of a Hookean spring. However, our calculations suggest that
a large ITR can cancel the effect of IC completely. Another
intrigue fact is that k3 has little role when ITR is sufficient
large. This is because the main effect of a large k3 is to depress
the fluctuation of the cross-section distortion so is decoupled
from the variation of the end-to-end distance, similar to that
occurs in the WLRC model. Meanwhile, we find that lp is
not a monotonic function of T , can have either minimum and
maximum at some special T , and in the 2D case the maximum
is more clear than that in the 3D case. This is also significant
since the environment of a semiflexible biopolymer is usu-
ally crowed so may subject to some geometrical constraints.
Our result also suggest that with a large ITR, an intrinsically
curved filament should have the same mechanical property as
that of a WLC.

Besides preserving all above results, anisotropy in bending
rigidities and randomness in sequences add something new
and intrigue. At a moderate T the anisotropy can result in a
larger lp than its isotropic counterpart even if one of bending
rigidities is smaller than its isotropic counterpart. On the other
hand, a strong randomness shrinks lp remarkably since it
reduces the effective bending rigidity considerably. However,
a weak randomness can enlarge lp considerably and lead to an
overexpanded state. The overexpanded state is unexpected or
“abnormal,” and reveals that there exists a complicate cooper-
ation between IC or ITR and randomness, and a large ITR can
stress the cooperation. The properties and applications, such
as its influences to elasticity, electric, and magnetic responses,
of such an “abnormal” state should be an intrigue topic and
deserve a further study.

We should point out that our conclusions are valid in the
temperature range 340 K > T > 240 K except for the min-
ima in lp usually occur at a lower T (∼100 K). This range of T
is of special meaningful since the dsDNA solution freezes be-
low 240 K, while its basepairs internally melt beyond 340 K.

Maybe the most significant finding in this work is that
to have a large lp at a finite T for an intrinsically curved
semiflexible biopolymer, a large ITR and a weak randomness
in IC and ITR are as important as a large bending rigidity, but
the value of the twist rigidity is unimportant.

In this work we ignore the excluded volume effect.
The excluded volume tends to increase the distant between
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monomers so plays a crucial role in thermal and mechan-
ical property of a long filament. Especially, the excluded
volume effect should be serious if the bending rigidity is
small or the temperature is high. Therefore, it deserves a
further study.

Our numerical calculations focus on dsDNA since it is a
typical natural twisted semiflexible biopolymer so that the
main conclusions are also instructive to other semiflexible
biopolymers. We should also stress that it is rather easy
to perform calculations for other semiflexible biopolymers
by using our basic expressions. Since the mean end-to-
end distance and radius of gyration of a long semiflexible
biopolymer are proportional to lp, our findings provide a
full picture to the influences of different parameters on the
size of a semiflexible biopolymers and are instructive in
controlling the size of some semiflexible biopolymers in or-
ganic synthesis. Experimentally, required bending and twist
rigidities can be realized by controlling the strength of co-
valent bonds or the numbers of hydrogen bonds or the
energy barrier between gauche and trans conformations so it
is feasible.
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APPENDIX: DERIVATION OF EQ. (26)

When k1 = k2 = k and ζ3 = 0, Eqs. (16) and (17) become

γ1 = γ2 = kBT (1/k + 1/k3)/2, γ3 = kBT/k, (A1)

	 =
⎛
⎝ γ1 0 −ζ0 sin α0

0 γ1 ζ0 cos α0

ζ0 sin α0 −ζ0 cos α0 γ3

⎞
⎠. (A2)

The eigenvalues of 	 are λ1 = γ1 and λ2,3 = (γ1 + γ3 ∓
γ0)/2 with γ0 ≡

√
(γ1 − γ3)2 − 4ζ 2

0 . Applying a similar-

ity transformations 	 = P	P−1 to diagonalize 	, we have
	i j = λiδi j and so 	−1

i j = λ−1
i δi j , as well as

P =

⎛
⎜⎝

cot α0
2ζ0 sin α0

γ1−γ3+γ0

2ζ0 sin α0

γ1−γ3−γ0

1 −2ζ0 cos α0

γ1−γ3+γ0

−2ζ0 cos α0

γ1−γ3−γ0

0 1 1

⎞
⎟⎠, (A3)

P−1 =
[

sin(2α0)/2 sin2 α0 0
−ζ0 sin α0/γ0 ζ0 cos α0/γ0 (γ1 − γ3 + γ0)/(2γ0)
ζ0 sin α0/γ0 −ζ0 cos α0/γ0 (γ3 − γ1 + γ0)/(2γ0)

]
.

(A4)

Finally, combining Eqs. (22) and (A1)–(A4), we obtain
Eq. (26)

lp = [P	−1P−1]33 = k(k + k3)kBT

(k + k3)k2
BT 2 + 2k2k3ζ

2
0

. (A5)
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