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Classification of particle trajectories in living cells: Machine learning versus statistical testing
hypothesis for fractional anomalous diffusion
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Single-particle tracking (SPT) has become a popular tool to study the intracellular transport of molecules in
living cells. Inferring the character of their dynamics is important, because it determines the organization and
functions of the cells. For this reason, one of the first steps in the analysis of SPT data is the identification of the
diffusion type of the observed particles. The most popular method to identify the class of a trajectory is based
on the mean-square displacement (MSD). However, due to its known limitations, several other approaches have
been already proposed. With the recent advances in algorithms and the developments of modern hardware, the
classification attempts rooted in machine learning (ML) are of particular interest. In this work, we adopt two
ML ensemble algorithms, i.e., random forest and gradient boosting, to the problem of trajectory classification.
We present a new set of features used to transform the raw trajectories data into input vectors required by the
classifiers. The resulting models are then applied to real data for G protein-coupled receptors and G proteins.
The classification results are compared to recent statistical methods going beyond MSD.
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I. INTRODUCTION

Single-particle tracking (SPT) has become an important
tool in the biophysical community in recent years. It was first
carried out on proteins diffusing in the cell membrane [1,2].
Since then it was successfully used to study different transport
processes in intracellular environment, providing valuable
information about mechano-structural characteristics of living
cells. For instance, it helped already to unveil the details of the
movement of molecular motors inside cells [3,4] or of target
search mechanisms of nuclear proteins [5].

Living cells belong to the class of active systems [6], in
which the particles undergo simultaneous active and thermally
driven transport. It has been shown already that the dynamics
of proteins in cells determines their organization and func-
tions [7]. This is the reason why it is crucial to identify the
type of motion of the observed particles to deduct their driving
forces [8–11].

Over the past decades, a number of stochastic models has
been already proposed to describe the intracellular transport
of molecules [11,12]. Within those models, the dynamics
of molecules usually alternates between distinct types of
diffusion, each of which may be associated with a differ-
ent physical scenario. The Brownian motion [13] models a
particle that diffuses freely, i.e., it does not meet any ob-
stacles in its path nor it interacts with other molecules in
its surrounding. The subdiffusion is appropriate to represent
trapped particles [11,14], particles which encounter fixed or
moving obstacles [8,15] or particles slowed down due to
the viscoelastic properties of the cytoplasm [16]. Finally, the
superdiffusion models the motion driven by molecular motors:
the particles move faster than in a free diffusion case and in
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a specific direction [17]. The sub- and superdiffusion together
are often referred to as the anomalous diffusion.

The standard method of classification of individual tra-
jectories into those three types of diffusion is based on the
mean-square displacement (MSD) [12]. Within this approach
one fits the theoretical MSD curves for various models to the
data and then selects the best fit with statistical analysis [18].
A linear MSD curve indicates the free diffusion, a sublin-
ear (superlinear) one - the subdiffusion (the superdiffusion).
However, there are some issues related with this method.
In many cases, the experimental trajectories are too short to
extract a meaningful information from MSD. Moreover, the
finite precision adds a term to the MSD, which is known to
limit the interpretation of the data [9,12,19,20]. As a result,
several methods improving or going beyond the MSD have
been introduced to overcome these problems. For instance,
Michalet [12] used an iterative method called the optimal
least-squares fit to determine the optimal number of points
to obtain the best fit to MSD in the presence of localization
errors. Weiss [21] used a resampling approach that eliminates
localization errors in the time-averaged MSD of subdiffusive
fractional Brownian motion processes. The trajectory spread
in space calculated through the radius of gyration [22], the
Van Hove displacements distributions and deviations from
Gaussian statistics [23], self-similarity of trajectory using
different powers of the displacement [24], velocity autocor-
relation function [25,26] or the time-dependent directional
persistence of trajectories [27] methods can be combined with
the output of MSD to improve the classification results. The
distribution of directional changes [28], the mean maximum
excursion method [29] and the fractionally integrated moving
average (FIMA) framework [30] may efficiently replace the
MSD estimator for classification purposes. Hidden Markov
Models (HMM) has been proposed to check the heterogeneity
within single trajectories [31,32]. They have proven to be
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quite useful in the detection of confinement [33]. Last but not
least, classification based on hypothesis testing, both relying
on MSD and going beyond this statistics, has been shown to
be quite successful as well [20,34].

An alternative, very promising approach to SPT data
analysis is rooted in computer science. Namely, classifica-
tion of trajectories may be seen as a subject of machine
learning (ML) [35]. In the ML context, classification relies
on available data, because its goal is to identify to which
category a new observation belongs on the basis of a train-
ing data set containing observations with a known category
membership.

There is already a number of attempts to analyze particle
trajectories with machine learning methods. Among them,
Bayesian approach [18,36,37], random forests [38–40], neural
networks [41], and deep neural networks [39,42–44] have
gained a lot of attention and popularity. While some of the
works have focused just on the identification of the diffusion
modes [38,39,41], the others went beyond just the classifica-
tion of diffusion and tried to extract quantitative information
about the trajectories (e.g., the anomalous exponent [40,42]).

Recently, we presented a comparison of performance of
two different classes of methods: traditional feature-based
algorithms (random forest and gradient boosting) and a mod-
ern deep learning approach based on convolutional neural
networks [39]. The latter constitutes nowadays the state-of-
the-art technology for automatic data classification and is
much simpler to use from the perspective of the end-user,
because it operates on raw data and does not require any
preprocessing effort from human experts [45]. In contrast, the
traditional methods require a representation of trajectories by
a set of human-engineered features or attributes [46]. In most
of the applications the deep learning approach outperforms
the traditional methods. However, in some situations it is still
worth to use them, because they usually work better on small
data sets, are computationally cheaper and easier to interpret.
From our results it follows that both approaches achieve
excellent (and very similar) accuracies on synthetic data. But
they turned out to be really bad in terms of transfer learning.
This concept refers to a situation, in which a classifier is
trained in one setting and then applied to a different one. The
classifiers from Ref. [39] were not able to successfully classify
trajectories generated with methods different from the ones
used for the training set.

In this paper, we are going to present an improved version
of the traditional classifiers presented in Ref. [39]. We will
propose a new set of training data as well as a new collection
of features describing a trajectory. Both are inspired by a
recent statistical analysis of anomalous diffusion [34]. To
illustrate the transfer learning abilities of the new classi-
fiers, we will apply them to the data from a single-particle
tracking experiment on G protein-coupled receptors and G
proteins [47]. Results of classification from Ref. [34] will be
used as a benchmark.

The paper is organized as follows. In Sec. II, we briefly
introduce the different modes of diffusion and methods of
their analysis. Section III contains a short description of the
machine learning methods used in this work. Stochastic mod-
els of diffusion for generation of synthetic data are presented
in Sec. IV. The data itself is characterized in Sec. V. The set

of features used as input to the classifiers is introduced in
Sec. VI. Our results are presented in Sec. VII, followed by
some concluding remarks.

II. DIFFUSION MODES AND THEIR ANALYSIS

As already mentioned in the Introduction, identification of
the diffusion modes of particles within living cells is impor-
tant, because they reflect the interactions of those particles
with their surrounding. For instance, if a particle is driven by
a free diffusion (Brownian motion) [13], then we expect that
it does not meet any obstacles in its path and does not undergo
any relevant interactions with other particles. Deviations from
Brownian motion are called anomalous diffusion and can be
divided into two distinct classes. Subdiffusion is slower than
the normal one. It usually occurs in crowded or constrained
domains and can be brought together with different phys-
ical mechanisms including immobile obstacles, cytoplasm
viscosity, crowding, trapping, and heterogeneities [48–50].
Superdiffusion represents active transport along the cytoskele-
ton, assisted by molecular motors [17]. Particles undergoing
that type of motion move faster than those freely diffusing
and usually do not come back to previous positions.

Although different scenarios for both classes of anomalous
diffusion are possible [11,49,51–54], for the purpose of this
work we will limit ourselves to those three basic types men-
tioned above: free, sub-, and superdiffusion.

The most popular method of deducing a particles’ type of
motion from their trajectories is based on the analysis of the
MSD [55],

ρ(t ) = E (‖Xt+t0 − Xt0‖2), (1)

where (Xt )t>0 is a particle trajectory, ‖ · ‖ is the Euclidean
norm, and E is the expectation of the probability space. Since
in many experiments only a limited number of trajectories is
observed, the time-averaged MSD (TAMSD) calculated from
a single trajectory is usually used as the estimator of MSD,

ρ̂(n�t ) = 1

N − n + 1

N−n∑
i=0

∥∥Xti+n − Xti

∥∥2
. (2)

The trajectory is assumed to be given in the form of N consec-
utive two-dimensional positions Xi = (xi, yi ) (i = 0, . . . , N)
recorded with a constant time interval �t and n is the time lag
between the initial and the final positions of the particle. If the
underlying process is ergodic and has stationary increments,
then TAMSD converges to the theoretical MSD [51].

TAMSD as a function of the time lag for the normal
diffusion converges asymptotically to a linear function [9],
i.e., for large N :

ρ̂(n�t ) ∼ 4D(n�t ), (3)

with D being the diffusion coefficient. For subdiffusion, being
slower than diffusion, the behavior of TAMSD is sublin-
ear, while for superdiffusion, being faster than diffusion, the
behavior is superlinear. Thus, for pure trajectories with no
localization errors, one could easily determine their diffusion
type by fitting a function α ln(n�t ) + β to the estimated
ln[̂ρ(n�t )] curve. If α < 1, then the trajectory can be iden-
tified as subdiffusive, while if α > 1, then the trajectory can
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be identified as superdiffusive. Although theoretically this
approach allows for the uncomplicated distinction of the diffu-
sion types, there are several issues related with it as a method
for classification. First, real trajectories are usually noisy,
which makes the fitting of a mathematical model a challenging
task, even in the simplest case of the normal diffusion [12,21].
Second, according to Eq. (2), only the values of ρ̂ correspond-
ing to small time lags are well averaged. The larger the lag,
the smaller is the number of displacements contributing to
the averages, resulting in fluctuations increasing with the lag.
Selecting a suitable lag is by the way a well known problem in
biophysics [20,56,57]. Since many real trajectories are short,
we are forced to concentrated on short times (small lags). This
induces another problem in a classification method based only
on MSD curves, as in this case the different power laws look
alike even in the absence of noise.

III. MACHINE LEARNING APPROACH

Several different procedures have been already proposed
to circumvent the limitations of the MSD [12,20,22–24,27–
29,31–34], including the use of machine learning meth-
ods [18,36–40,42,43]. Recently, we discussed the applicabil-
ity of three different machine learning algorithms to clas-
sification, including two feature-based methods and a deep
learning one [39]. The results of that study were ambiguous.
On the one hand, all of the methods performed excellent on
the test data; on the other hand, they failed to transfer their
knowledge to data coming from unseen physical models. The
latter finding practically disqualified them as candidates for a
reliable classification tool.

In this paper, we are going to continue the analysis started
in Ref. [39] and present improved versions of the classifiers,
which performs much better in terms of transfer learning.
We will focus on the traditional machine learning methods:
the random forest (RF) [58,59] and the gradient boosting
(GB) [60,61]. Both methods are feature-based, meaning that
each instance in the data set is described by a set of human-
engineered attributes [46]. And both belong to the class of
ensemble methods, which combine multiple base classifiers
to form a better one. In each case, decision trees [62] are used
as the base classifiers.

A decision tree is built by splitting the original dataset
(trajectories with known classes), constituting the root node of
the tree, into subsets, which represent the successor children.
The splitting is based on a set of rules utilizing the values of
features. This process is repeated on each derived subset in a
recursive manner. The recursion is completed when the subset
at a node has all samples belonging to the same class (i.e., the
node is pure) or when splitting no longer adds value to the
classification. At each step, a feature that best splits the data is
chosen. Two metrics are typically used to measure the quality
of the split: Gini impurity and information gain [35].

Gini impurity tells us how often a randomly chosen el-
ement from the set would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in that
set. It is given by

IG =
J∑

i=1

pi(1 − pi ), (4)

where J is the number of classes (J = 3 in our case) and pi is
the fraction of items labeled with class i in the set.

Information gain related to a split is simply the reduction of
information entropy [63], calculated as the difference between
the entropy of a parent node in the tree and a weighted sum of
entropies of its children nodes. The entropy itself is given as

H = −
J∑

i=1

pi log2 pi, (5)

where p1, p2, . . . are fractions of each class present in the
node.

Decision trees are often used for classification purposes,
because they are easy to understand and interpret. However,
single trees are unstable in the sense that a small variation
in the data may lead to a completely different tree [64].
They also have a tendency to overfit, i.e., they model the
training data too well and learn noise or random fluctuations
as meaningful concepts, which limits their accuracy in case of
unseen data [65]. That is why they are rather used as building
blocks of the ensembles and not as stand alone classifiers.

In a random forest, multiple decision trees are constructed
independently from the same training data. The predictions of
individual trees are aggregated and then their mode is taken as
the final output. In gradient boosting, the trees are not inde-
pendent. Instead, they are built sequentially by learning from
mistakes commited by the ensemble. In many applications,
gradient boosting is expected to have a better performance
than random forest. However, it is usually not the better choice
in case of very noisy data.

A workflow of our classification method is shown in Fig. 1.
The training set consists of a large number of synthetic
trajectories and their labels (diffusion modes). The trajectories
were generated with various kinds of theoretical models of
diffusion (see Secs. IV and V B for further details). In the
preprocessing phase, the raw data is cleaned and transformed
into a form required as input by the classifier. Many traditional
classifiers including random forest and gradient boosting work
much better with vectors of features characterizing each tra-
jectory instead of raw data. The features used in this work are
introduced in Sec. VI. Some authors normalize the trajectories
before further processing [40]. However, we omitted this step
as our preliminary analysis indicated a significant decrease in
the performance of the classifiers induced by normalization.
The ensembles of trees were inferred from the feature vectors
and their labels. Once trained, they may be used to classify
new trajectories, including the experimental ones.

IV. STOCHASTIC MODELS OF DIFFUSION

The most popular theoretical models of diffusion
commonly employed are: continuous-time random walk
(CTRW) [11], obstructed diffusion (OD) [8,66], random
walk on random walks (RWRW) [67], random walks on
percolating clusters (RWPC) [68,69], fractional Brownian
motion (FBM) [70–72], fractional Levy α-stable motion
(FLSM) [73], fractional Langevin equation (FLE) [74],
and autoregressive fractionally integrated moving average
(ARFIMA) [75]. They are applicable to different physical
environments: trapping and crowded environments (CTRW,
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FIG. 1. Workflow of our classification method. The training set is composed of a large number of synthetic trajectories (Sec. V B). The
preprocessing phase consists in extraction of features introduced in Sec. VI.

FFPE); labyrinthine environments (OD, RWPC, RWRW);
viscoelastic systems (FBM, FLSM, FLE, ARFIMA); systems
with time-dependent diffusion (scaled FBM, ARFIMA). Fol-
lowing Refs. [20,34], we will focus on three stochastic pro-
cesses known to generate different kinds of fractional diffu-
sion: fractional Brownian motion, directed Brownian motion
(DBM) [76], and Ornstein-Uhlenbeck process (OU) [77].

FBM is the solution of the stochastic differential equation

dX i
t = σdBH,i

t , i = 1, 2, (6)

where the parameter σ > 0 relates to the diffusion coefficient
via σ = √

2D, H is the Hurst parameter (H = α/2), and BH
t —

a continuous-time Gaussian process that starts at zero, has
expectation zero and has the following covariance function:

E
(
BH

t BH
s

) = 1
2 (|t |2H + |s|2H − |t − s|2H ). (7)

For H < 1
2 (i.e., α < 1), FBM produces subdiffusive

trajectories. It corresponds to a scenario, in which a particle is
hindered by mobile or immobile obstacles [78]. It reduces to
the free diffusion at H = 1

2 . And for H > 1
2 , FBM generates

superdiffusive motion [Fig. 2(a)].
The directed Brownian motion, also known as the diffusion

with drift, is the solution to

dX i
t = vidt + σdB1/2,i

t , i = 1, 2, (8)

where v = (v1, v2) ∈ R2 is the drift parameter. This process
generates superdiffusion related to an active transport of parti-
cles driven by molecular motors. The velocity of the motors is
modeled by the parameter v [Fig. 2(b)]. For v = 0, the process
reduces to normal diffusion.

The Ornstein-Uhlenbeck process is known to model con-
fined diffusion, which is a subclass of subdiffusion [Fig. 2(b)].
It corresponds to a particle inside a potential well and is a

solution to the following stochastic differential equation:

dX i
t = −λi

(
X i

t − θi
)
dt + σdB1/2,i

t , i = 1, 2, θi ∈ R. (9)

Here, θ = (θ1, θ2) is the equilibrium position of the particle
and λi measures the strength of interaction. For λi = 0, OU
reduces to normal diffusion as well.

V. OUR DATASET

A. Real SPT data

The classifiers built in this study will be applied to
the data from single-particle tracking experiment on G
protein-coupled receptors and G proteins, already analyzed
in Refs. [34,47]. The receptors are of great interest, because
they mediate the biological effects of many hormones and
neourotransmitters and are also important as pharmacological
targets [79]. Their signals are transmitted to the cell interior
via interactions with G proteins. The analysis of the dynamics
of these two types of molecules will shed more light on how
the receptors and G proteins meet, interact and couple.

A subset of that data has been already studied by means
of statistical methods in Ref. [34]. Since we are interested in
using those results as a benchmark for our classifiers, we will
focus on the very same subset of data in our analysis. Hence,
only trajectories with at least 50 steps will be taken into
account, resulting in 1037 G proteins and 1218 receptors. The
trajectories under consideration for both types of molecules
are visualized in Fig. 3.

B. Synthetic data

Building a classifier requires training data, which consists
of a set of training examples [35]. Each of these examples is
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FIG. 2. Time-averaged mean-square displacement calculated for: (a) FBM with different values of α, (b) DBM and OU processes. The
trajectories used to calculate the MSD curves are shown in the corresponding insets and are consistent with real data time and distance scales:
ms and μm accordingly. The solid line in both plots indicates TAMSD of normal diffusion.

a pair of an input (trajectory) and its output label (diffusion
type). In an optimal scenario the training set would contain
real trajectories with their true labels from, e.g., previous
experiments on the same type of cells. However, collecting
a training set consisting of real trajectories is practically
impossible. First of all, independently of the method used
for analysis, the labels of such trajectories are affected by
some uncertainties [34]. Moreover, typical machine learning
algorithms require thousands of training examples to provide
a reasonable function that maps an input to an output and can
be used for classification of new input data. That is why one
usually resorts to synthetic, computer generated trajectories
to prepare the training set. In this case the true label of
each trajectory is known in advance and it is rather cheap to
generate many of them.

The stochastic processes described in Sec. IV will be used
to generate the training set. Just to recall, a discrete trajectory
of a particle is given by

Xn = (
Xt0 , Xt1 , . . . , XtN

)
, (10)

where Xti = (X 1
ti , X 2

ti ) ∈ R2 is the position of the particle at
time ti = t0 + i�t , i = 0, 1, . . . , N . The lag �t between two
consecutive observations is assumed to be constant. In track-
ing experiments, it is determined by the temporal resolution of
the imaging method. However, we will assume the lag being
equal to 1 s in the simulations. Similarly, we will use σ =
1 μm s−1/2 most of the time (see Sec. V D for an exception to
this choice). In total, 120 000 trajectories have been generated
for the main training set. Their length was randomly chosen
from the range between 50 and 500 steps. No additional noise
was added to the raw data in this set (see Sec. V C for a set
with noise).

A summary of the training set is presented in Table I. The
case of the free diffusion requires probably a short explana-
tion. From the description in Sec. IV we know that all of
the models reduce to the normal Brownian motion for some
specific values of the parameters (H = 0.5 for FBM, v = 0
for DBM, and λ = 0 for OU). However, it is very difficult
to distinguish anomalous diffusion processes from the normal
one already if their parameters are in the vicinity of those val-
ues. That is why we extended the ranges of parameter values

FIG. 3. Trajectories of the receptors (left) and G proteins (right) used as input for the classifiers. Different colors are introduced to indicate
different trajectories. The set of the receptors contains 1218 trajectories and the one of G proteins—1037 trajectories. The lengths of the
trajectories are from range [50, 401], the time step is equal to 28.4 ms, and recorded positions are given in μm.
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TABLE I. Summary of the synthetic trajectories used as the training set. The parameter c was set to 0.1 in all simulations. If not specified
otherwise, then σ = 1 μm s−1/2 and �t = 1 s were used.

Type of diffusion Model Parameter ranges Number of trajectories

Normal diffusion FBM H ∈ [0.5 − c, 0.5 + c] 20 000
DBM v ∈ [0, c] 10 000
OU θ = 0, λ = [0, c] 10 000

Subdiffusion FBM H ∈ [0.1, 0.5 − c) 20 000
OU θ = 0, λ = (c, 1] 20 000

Superdiffusion FBM H ∈ (0.5 + c, 0.9] 20 000
DBM v ∈ (c, 1] 20 000

corresponding to the free diffusion. Although introduced here
at a different level, this approach resembles the cutoff c used
in Ref. [34] to classify the results. As for the value, we take
the smallest one considered therein.

The Python package fbm [80] was used to simulate the
FBM trajectories as well as the Brownian motion part of
the diffusion with drift. By default, the fbm() function from
that package utilizes the Davies-Harte method [81] for fastest
performance. However, the method is known to fail for the
Hurst parameter close to 1. If this occurs, then the function
fallbacks to the Hosking’s algorithm [82]. The OU process
was generated with the OrnsteinUhlenbeckProcess object
from the stochastic package [83]. This object uses the
Euler-Maruyama method [84] to produce realizations of the
process.

C. Adding noise

The synthetic dataset introduced in the previous section
constitutes our main training set for building the classifiers.
For the sake of comparison with statistical methods presented
in Ref. [34], it consists of pure trajectories, that do not suffer
from any localization errors.

However, real data is usually affected by different kinds
of noise. For instance, slow drift currents in the cytoplasm
may induce low frequency noise. Typically, it may be reduced
by various detrending methods [12,85]. In contrast, high-
frequency noise can be due to a variety of reasons: mechanical
vibrations of the instrumental setup; particle displacement
while the camera shutter is open; noisy estimation of true
position from the pixelated microscopy image; error-prone
tracking of particle positions when they are out of the camera
focal plane [21,30,86–88].

To account for different localization errors and to check
their impact on the performance of the classifiers, we prepared
a second training set by simply adding a normal Gaussian
noise with zero mean and standard deviation σgn to each
simulated trajectory. We followed the procedure already used
in Refs. [38,39]. That means, instead of setting σgn directly,
we first introduced the signal to noise ratio,

Q =
⎧⎨
⎩

√
D�t+v2�t2

σgn
for DBM,

√
D�t
σgn

otherwise,
(11)

where v =
√

v2
1 + v2

2 . For each trajectory, Q was randomly set
in the range from 1 (high noise) to 9 (low one). Then, Eq. (11)
was used to determine σgn for given D and �t .

D. Auxiliary training set

During our first attempt to apply the classifiers to experi-
mental data it turned out that the parameter σ = 1, taken from
Ref. [34], may not be the best choice for real trajectories under
investigation. Thus, we also prepared an auxiliary training
set of synthetic trajectories, which were simulated with no
noise and σ = 0.38. This particular value of σ corresponds
to the diffusion coefficient D = 0.0715 μm2 s−1 and will be
explained in Sec. VII E 3. All other parameters of the set
are exactly the same as in the main training set introduced
in Sec. V B.

VI. CLASSIFICATION FEATURES

The random forest and gradient boosting algorithms re-
quire human-engineered features representing the trajectories
for both the model training and the classification of new data.
Choosing the right features constitutes a challenge and is
crucial for the classification results. For instance, in Ref. [39]
we considered a set of features proposed for the first time by
Wagner et al. [38]. Although we did not apply them to real
data, we showed that classifiers using those features do not
generalize well to data generated with models different from
the ones used for training.

A more detailed discussion on the role of the features will
be addressed in a forthcoming paper. In this work we use
a new set of features motivated by the statistical analysis
carried out in Ref. [34]. The main conclusion of that paper
was that, even though statistical methods going beyond the
standard MSD classification may provide good results even
for short trajectories, no method was found to be superior
in all examples and one should actually combine different
approaches to get reliable results.

Following this recommendation, we decided to extract
features from all methods considered in Ref. [34] and to use
them simultaneously as the input for our classifiers. Thus, our
feature set will consist of:

(1) anomalous α exponent (fitted to TAMSD),
(2) the diffusion coefficient D (fitted to TAMSD),

032402-6



CLASSIFICATION OF PARTICLE TRAJECTORIES IN … PHYSICAL REVIEW E 102, 032402 (2020)

(3) the standarized value

TN = DN√
σ̂ 2

N (tN − t0)
(12)

of the maximum distance DN traveled by a particle,

DN = max
i=1,2,...,N

∥∥Xti − Xt0

∥∥, (13)

where σ̂N is a consistent estimator of the standard deviation of
DN ,

σ̂ 2
N = 1

2N�t

N∑
j=1

∥∥Xtj − Xtj−1

∥∥2
2, (14)

(4) the power γ p (in the function knγ p
) fitted to p varia-

tion [73,89]

V̂ (p)
n =

N/n−1∑
k=0

‖X(k+1)n − Xkn‖p, (15)

for values of p from 1 to 5.
Note that the first two of the above features were included

in the feature set used in Refs. [39]. To determine their values,
the maximum lag equal to 10% of each trajectory’s length was
used to calculate the corresponding TAMSD curve.

VII. RESULTS

We used the scikit-learn [90] implementations of the
random forest and gradient boosting algorithms. As already
stated in Ref. [39], a cluster of 24 CPUs with 25 GB total
memory was used to perform the computation. The processing
time (feature extraction, hyperparameter tuning, training and
validation of a model) was of the order of 2 h in each case.
If not stated otherwise, then the dataset without noise (see
Sec. V B) was used to train the classifiers.

A. Details of the classifiers

To find optimal models, we used the
RandomisedSearchCV method from scikit-learn library.
It allows us to perform a search over a grid of hyperparameter
ranges. Here, a hyperparameter of the model is understood as
a parameter, whose value is set before the learning process
begins (it cannot be derived simply by training of the model).

In Table II, the optimal values of the hyperparameters
for our training set are listed. The “with D” column in the
table refers to the full set of features defined in Sec. VI.
The “no D” columns corresponds to a reduced feature set
with the diffusion coefficient D removed from consideration.
The reason for introducing the latter set will be explained in
Sec. VII E. The bootstrap hyperparameter is a boolean
value. It decides whether bootstrap samples (True) or the
whole data set (False) are used to build each single tree.
Criterion specifies, which function should be used to mea-
sure the quality of a split of data into subsamples at a new
node of the tree. Gini impurity and information entropy are
available for that purpose [35]. The max_depth is the maxi-
mum depth (the number of levels) of each decision tree. The
number of features to consider when looking for the best split
is given by max_features. If equal to log2 (sqrt), then

TABLE II. Hyperparameters of the optimal classifiers found with
both methods. Their meaning is explained in Sec. VII A. The “With
D” column refers to the full feature set, “No D” one—to the feature
set after removal of the diffusion coefficient D. NA stands for “Not
applicable” (the first two parameters are random forest specific).

Random forest Gradient boosting

With D No D With D No D

bootstrap True True NA NA
criterion Entropy Entropy NA NA
max_depth 60 10 10 10
max_features log2 sqrt log2 log2

min_samples_leaf 4 2 2 2
min_samples_split 2 10 2 2
n_estimators 900 600 100 100

the number is calculated as the logarithm (square root) of
the number of features. Min_samples_split specifies the
minimum number of samples required to split a subset of
data at an internal node of the tree. Min_samples_leaf is
the minimum number of samples required to be at a leaf node
(a node representing a class label). Finally, n_estimators
gives the number of trees in the ensemble.

As it follows from Table II, the ensemble found with gra-
dient boosting is significantly smaller than the one generated
with the random forest method.

B. Performance of the classifiers

Since our synthetic data set is perfectly balanced (same
number of trajectories in each class), we may start the analysis
of the classifiers simply by looking at their accuracy. It is one
of the basic measures to assess the classification performance,
defined as the number of correct predictions divided by the
total number of preditions.

From the results listed in Table III it follows that in the
case of the training set, the gradient boosting method is the
more accurate one, even though the differences are small.
Moreover, its decline in accuracy after the removal of D from
the feature set is smaller than for random forest. However, the
latter one performs a little bit better on the test set, indicating
a small tendency of GB to overfit. Despite these differences,
both classifiers perform very well.

The normalized confusion matrices of the classifiers are
presented in Fig. 4. By definition, an element Ci j of the con-
fusion matrix is equal to the number of observations known
to be in class i (true labels) and predicted to be in class j
(predicted labels) [35]. In all cases, the worst performance
(93% of correctly predicted labels) is observed for the normal

TABLE III. Accuracies of the optimal classifiers for both the
training and the test data.

Random forest Gradient boosting

Data set With D No D With D No D

Training 0.977 0.953 0.992 0.989
Test 0.948 0.946 0.947 0.944
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FIG. 4. Normalized confusion matrices for random forest and gradient boosting classifiers. The “With D” label refers to the full feature
set, “No D” one—to the feature set after removal of the diffusion coefficient D. All results are rounded to two decimal digits.

diffusion. This relates probably to the fact that in our synthetic
training set we also tagged anomalous trajectories with param-
eters slightly deviating from the normal ones as free diffusion.

The data collected in Fig. 4 may be used to calculate some
other popular measures giving more insight into the perfor-
mance of the classifiers: precision, recall, and F1 score [91].
Precision is the fraction of correct predictions of a class
among all predictions of that class. It tells us how often a
classifier is correct if it predicts a given class. Recall is the
fraction of correct predictions of a given class over the total
number of members of that class. It measures the number of
relevant results within a predicted class. A harmonic mean
of precision and recall gives the F1 score—another measure
of classifier’s accuracy.

As we see from Table IV, both models return much more
relevant results than the irrelevant ones (high precision).
Moreover, they yield most of the relevant results (high recall).
The F1 scores resemble the accuracies given in Table III.

C. Feature importances

While working with the human-engineered features, it may
happen that some of them are more informative than the
others. Therefore, knowing the relative importances of the fea-
tures is useful, because it can provide further insight into the
data and the classification model. The features with high im-
portances are the drivers of the outcome. The least important

ones might often be omitted from the model, making it faster
to fit and predict. The latter is of particular significance in case
of models with very large feature sets, as it may additionally
help to reduce the dimensionality of the problem.

There are several ways to determine the feature impor-
tances. The one implemented in the scikit-learn library
is defined as the total decrease in node impurity caused by a
given feature, averaged over all trees in the ensemble [92]. In
other words, the Gini impurities Eq. (4) are calculated before
and after each split on a given feature to determine the total
decrease in the impurity related to that feature. The outcome
is then averaged over all trees in the ensemble.

Relative feature importances for both classifiers are shown
in Table V. The features are ordered according to the descend-
ing scores in case of the random forest with D.

We see that the p-variation for p = 2 (2-var) is the most
informative feature, followed by the anomalous exponent
α. The diffusion coefficient is the least important feature.
After its removal the relative importances of the remaining
features changed. The differences between them are smaller
now. Moreover, the 1-var became the second most important
attribute and TN —the least important one.

Gradient boosting differs slightly from the random forest.
In case with D, the order of the top two features is reversed.
After removal of D, 3-var, and 1-var became the most infor-
mative ones. The exponent α lost much of its importance. And
again, TN is the least informative attribute.
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TABLE IV. Detailed performance analysis of both classification methods on the test data. Support is the number of trajectories known to
belong to a given class. All results are rounded to two decimal digits.

Method Features Measure Normal diffusion Subdiffusion Superdiffusion Total/Average

Support 12 000 12 000 12 000 36 000
Precision 0.912 0.969 0.966 0.949

With D Recall 0.935 0.958 0.951 0.948
RF F1 0.923 0.963 0.959 0.948

Support 12 000 12 000 12 000 36 000
No D Precision 0.908 0.967 0.967 0.947

Recall 0.935 0.955 0.950 0.947
F1 0.921 0.961 0.958 0.947

Support 12 000 12 000 12 000 36 000
Precision 0.911 0.967 0.965 0.948

With D Recall 0.933 0.958 0.951 0.947
GB F1 0.922 0.962 0.958 0.947

Support 12 000 12 000 12 000 36 000
No D Precision 0.907 0.963 0.964 0.945

Recall 0.928 0.954 0.951 0.944
F1 0.917 0.958 0.957 0.944

D. Note on auxiliary classifiers

Apart from the main collection of synthetic trajectories
described in Sec. V B, we generated two additional training
sets. The first one was built from the main set by simply
adding noise (Sec. V C) and the second one—with a smaller
value (0.38 versus 1) of the parameter σ (Sec. V D).

Those sets were then used to train new classifiers. Their
accuracies are listed in Table VI. Note that those values are
very similar to the ones presented in Table III. Thus, all
classifiers perform very well on their corresponding synthetic
test sets. Interestingly, the machine learning algorithms seem
to deal excellent with noisy data, as there is no significant drop
in the accuracy of the classifiers trained on that data.

The basic characteristics of the additional classifiers turned
out to be practically indistinguishable from the ones presented
in the previous sections. Thus, we will skip their detailed
description for the sake of readability.

TABLE V. Feature importances for both methods, sorted in the
descending order of the scores in case of random forest with D.
The bold face indicates the most important features in each case.
The least important ones are underlined. The “With D” label refers
to the full feature set, “No D” one—to the feature set after removal
of the diffusion coefficient D.

Random forest Gradient boosting

Feature With D No D With D No D

2-var 0.296 0.239 0.238 0.160
α 0.201 0.197 0.274 0.125
3-var 0.178 0.183 0.108 0.245
1-var 0.171 0.200 0.204 0.210
4-var 0.078 0.110 0.095 0.145
TN 0.038 0.032 0.030 0.037
5-var 0.022 0.038 0.034 0.077
D 0.017 – 0.016 –

E. Application to real data

1. Summary of statistical methods

In Table VII, classification results from Ref. [34] for the
G protein-coupled receptors and G proteins (see Sec. V A for
details) are summarized. Except the standard MSD method,
the authors used statistical testing procedures based on: (a)
MSD (referred as “MSD test” in Table VII), (b) maximum
distance traveled by a particle (“MAX”) and (c) p-variations at
different values of p (“1-var” and “2-var”). As we can see, the
methods do not yield coherent results. MSD classifies most
of the trajectories as subdiffusion. The MAX and MSD test
procedures indicate a prevalence of freely diffusing particles
in the same data set. The p-var tests give similar proportions of
normal and subdiffusive trajectories. Moreover, only the stan-
dard MSD method is able to recognize a noticeable subset of
trajectories as superdiffusion. Further analysis with synthetic
data revealed that the p-var method is the most accurate one
for FBM, while the MSD/MAX tests are the best choice (in
terms of errors) for OU and DBM processes.

2. Classification with full feature set

Our first attempt to classify the data with the whole feature
set defined in Sec. VI is presented in Table VIII. As we
see, both methods work similarly, with gradient boosting
recognizing more G protein trajectories as a superdiffusive
motion. Most of the trajectories are classified as normal or
subdiffusion, with the prevalence of the latter. Note that the

TABLE VI. Accuracies of the classifiers trained on auxiliary data
sets: the first with noise [see Sec. V C and the second with σ = 0.38
(Sec. V D)].

Random forest Gradient boosting

Data set With D No D With D No D

With noise 0.946 0.932 0.946 0.930
With σ = 0.38 0.953 0.950 0.952 0.950
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TABLE VII. Summary of the classification results from Ref. [34]. Columns labeled with R and G correspond to the G protein-coupled
receptors and G proteins, respectively. The MSD data was calculated for c = 0.1 (see Sec. V B for explanation) and the maximum lag equal to
10% of the trajectories’ lengths. Due to rounding, the numbers may not add up precisely to 100%.

MSD MSD test MAX 1-var 2-var

R G R G R G R G R G

Normal diffusion 19% 22% 79% 76% 79% 76% 53% 52% 47% 51%
Subdiffusion 80% 72% 21% 24% 21% 24% 47% 46% 53% 48%
Superdiffusion 1% 6% 0% 1% 0% 1% 0% 1% 0% 2%

numbers given in Table VIII do not match any of the results
generated with the statistical methods. Thus, it is really hard
to judge which method should be chosen to work with real
data.

3. Role of D and classification with reduced feature set

To pin down a possible cause for the deviation from the
statistical methods, let us have a look at the distribution of
values of the generalized diffusion coefficient D among the
trajectories in the real data set. The corresponding histograms
for the G protein-coupled receptors and G proteins are shown
in Fig. 5. To calculate the histograms, D was simply extracted
from the MSD curves under the assumption of the anomalous
diffusion model [34]. Its values in the data set turned out to be
much smaller than in the synthetic data set, with D = 0.0715
being the most frequent one. However, the synthetic training
set was generated with σ = 1 (i.e., D = 0.5) for all types of
diffusion. Thus, the discrepancy in the classification results
from any of the methods presented in [34] may simple be
caused by the fact, that the classifiers were trained for a
different regime of diffusion.

To check this hypothesis let us classify the trajectories with
the models trained on the data set generated with σ = 0.38,
which corresponds to D = 0.0715. Classification results with
the full set of features are presented in Table IX. The results
differ from the previous classification. Now, the shares of the
trajectories are very similar to the ones obtained with 1-var
and 2-var methods from Ref. [34]. Most of the trajectories
belong either to the normal diffusion or the subdiffusion class,
with the first having a slightly larger count. There is only a
bunch of data samples recognized as superdiffusion in case of
G proteins.

TABLE VIII. Diffusion modes of real trajectories found with
classifiers trained on the main synthetic dataset (σ = 1, no noise;
see Sec. V B) with the full set of features (referred to as “With D” in
the previous sections). Due to rounding, the numbers may not add up
precisely to 100%.

Random forest Gradient boosting

Receptor G protein Receptor G protein

Normal diffusion 38% 44% 38% 38%
Subdiffusion 61% 54% 60% 55%
Superdiffusion 0% 1% 0% 5%

Treating the statistical results as a reference point, we can
indeed say that adjusting σ to the real data set improved the
results. However, this procedure is not really convenient, as it
requires generation of a new synthetic data set, extracting of
features and training of a new classifier practically every time
new experimental samples are arriving.

In search of a more universal procedure we decided to train
new classifiers on the reduced set of features not containing
the diffusion coefficient D, but we used the main synthetic set
with σ = 1 as in Ref. [34]. Since D turned out to be the least
informative feature (Table V), it was the natural candidate
for the removal anyway. We know already, that the accuracy
of the classifiers without D is a little bit smaller (Table III).
Nevertheless, we expect them to work better on unseen data.
Indeed, even though the choice of σ was not optimal, the
classification results shown in Table X resemble the ones
obtained above (Table IX) and the 1-var and 2-var methods
from Ref. [34]. Again, most of the trajectories belong either
to the normal diffusion or the subdiffusion class, with the first
having a larger count. Just few data samples are recognized as
superdiffusion in case of G proteins.

The advantage of the classification with the reduced data
set over the one with the adjustment of σ lies in that the
classifier is trained only once and then may be simply applied
to any unseen samples. It does not require a recurring and
time consuming procedure of adjustment of σ , generation of
tailor-made training data, extraction of features and training of
the classifier every time a new set of experimental trajectories
is arriving for analysis.

The agreement with the p-variation procedure for small
values of p makes perfect sense, if we recall that 2-var and
1-var belong to be the most informative among the features
used by the classifiers to distinguish between the data samples.

TABLE IX. Diffusion types found in real data with the classifiers
trained on the auxiliary dataset (σ = 0.38, no noise; see Sec. V D)
with the full set of features (referred to as “With D” in the previous
sections). Due to rounding, the numbers may not add up precisely to
100%.

Random forest Gradient boosting

Receptor G protein Receptor G protein

Normal diffusion 54% 51% 54% 51%
Subdiffusion 45% 47% 45% 46%
Superdiffusion 0% 1% 0% 1%

032402-10



CLASSIFICATION OF PARTICLE TRAJECTORIES IN … PHYSICAL REVIEW E 102, 032402 (2020)

FIG. 5. Distribution of D among trajectories in the real data set.

4. Impact of noise

Although it goes beyond a comparison of machine learning
algorithms with the statistical methods from Ref. [34], as its
authors used only pure trajectories, we would like to conclude
this section by applying the classifier trained on noisy data
(Sec. V C) to the real trajectories. Results of classification
with the reduced feature set are shown in Table XI.

The introduction of noise has changed the results. Al-
though still most of the trajectories belong either to the normal
diffusion or to the subdiffusion class, the first has now larger
count compared with the case without noise in the synthetic
data. As we already pointed out in Sec. V B, the boundary
between the normal and anomalous modes in the vicinity of
α = 1 is not particularly well defined even in the absence
of noise. This boundary is further blurred in the presence
of noise, resulting in the observed rearrangement of class
memberships. However, if we still would like to relate the
“noisy” results with the ones from Ref. [34], then they are
close to an average of 1-var and MAX methods.

VIII. DISCUSSION

Machine learning methods used for classification of SPT
data are known to sometimes fail to generalize to unseen
data [39]. In this paper, we revisited our ML approach to
trajectory classification and presented a new set of features,
which are required by the classifiers to process the input
data. This new set allows the random forest and gradient

TABLE X. Results of classifiers trained on the main synthetic
dataset (σ = 1, no noise) with the reduced set of features, after
removal of D (referred to as “No D” in the previous sections). Due
to rounding, the numbers may not add up precisely to 100%.

Random forest Gradient boosting

Receptor G protein Receptor G protein

Normal diffusion 52% 53% 56% 54%
Subdiffusion 46% 45% 43% 43%
Superdiffusion 0% 1% 0% 1%

boosting classifiers to transfer the knowledge from a synthetic
training set to real data. The classifiers were tested on a subset
of experimental data describing G proteins and G protein-
coupled receptors [47]. The results were then compared to
four statistical testing procedures introduced in Ref. [34].

We have shown that the choice of the feature set is cru-
cial, as even a small change in its content may significantly
impact the behavior of the classifiers. We decided to use a
set consisting of the anomalous α exponent, the diffusion
coefficient D, the maximum distance traveled by a particle,
the power γ p fitted to p-variation for values of p from 1 to 5.
These features were extracted from several statistical methods
presented in Ref. [34]. Since none of the methods turned out
to be superior to the others, the authors of the work proposed
to take a mean of the results of all methods to minimize the
risk of large errors. Due to the fact that our classifiers use all
features simultaneously as input, in some sense we followed
their advice. From our findings it follows that with the full
feature set, the machine learning methods applied to the real
data yield results completely different from the ones produced
with the statistical methods. However, adjusting the diffusion
coefficient in the synthetic trajectories to the most frequent
value among the real samples or removing this coefficient
from the feature set and retraining the classifiers starts to
produce results very similar to the p-variation method from
Ref. [34].

From the above methods, the one with the reduced set of
features is more convenient, because the classifier is trained

TABLE XI. Results of classifiers trained on noisy data (σ = 1)
with the reduced set of features (referred to as “No D” in the previous
sections). Due to rounding, the numbers may not add up precisely to
100%.

Random forest Gradient boosting

Receptor G protein Receptor G protein

Normal diffusion 62% 58% 63% 58%
Subdiffusion 38% 40% 36% 40%
Superdiffusion 0% 2% 0% 3%
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only once and then may be simply applied to any unseen
data. It does not require a recurring and time consuming
procedure consisting of: (1) adjustment of σ , (2) generation
of tailor-made training data, (3) extraction of features, and (4)
training of the classifier every time a new set of experimental
trajectories is arriving for analysis.

The agreement between the ML approach and the statis-
tical testing based on p variations is, on the one hand, a
confirmation that our ML methods are able to classify unseen
data in a reasonable way. On the other hand, it may support
the choice of the p-variation testing procedure among the
statistical methods.

Introduction of noise mimicking different kinds of local-
ization errors changed the classification results—the count
of normal diffusion (subdiffusion) trajectories increased (de-
creased) by a couple of percentage points. A slight increase
of superdiffusion samples was also observed in case of G
proteins. If we would like to relate the “noisy” results with
the ones from Ref. [34], then they are close to an average of
1-var and MAX methods.

Although still a lot needs to be done in terms of selection
of robust features and the generation of appropriate synthetic
training data, we believe that our methodology may be suc-
cessfully applied to experimental data to provide a further
insight into the dynamics of complex biological processes.
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APPENDIX: CODES

Python codes for every stage of the classification procedure
shown in Fig. 1, together with a short documentation, are
publicly available at Zenodo (see Ref. [93]).
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