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Mixing protocols in the public goods game
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If interaction partners in social dilemma games are not selected randomly from the population but are instead
determined by a network of contacts, it has far reaching consequences for the evolutionary dynamics. Selecting
partners randomly leads to a well-mixed population, where pattern formation is essentially impossible. This
rules out important mechanisms that can facilitate cooperation, most notably network reciprocity. In contrast,
if interactions are determined by a lattice or a network, then the population is said to be structured, where
cooperators can form compact clusters that protect them from invading defectors. Between these two extremes,
however, there is ample middle ground that can be brought about by the consideration of temporal networks,
mobility, or other coevolutionary processes. The question that we here seek to answer is, when does mixing
on a lattice actually lead to well-mixed conditions? To that effect, we use the public goods game on a square
lattice, and we consider nearest-neighbor and random mixing with different frequencies, as well as a mix of
both mixing protocols. Not surprisingly, we find that nearest-neighbor mixing requires a higher frequency than
random mixing to arrive at the well-mixed limit. The differences between the two mixing protocols are most
expressed at intermediate mixing frequencies, whilst at very low and very high mixing frequencies the two
almost converge. We also find a near universal exponential growth of the average size of cooperator clusters as
their fraction increases from zero to one, regardless of whether this increase is due to increasing the multiplication
factor of the public goods, decreasing the frequency of mixing, or gradually shifting the mixing from random to
nearest neighbors.
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I. INTRODUCTION

The discovery of network reciprocity in an evolutionary
prisoner’s dilemma game almost three decades ago set in
motion a remarkable research trajectory [1], which eventu-
ally saw a mutually rewarding fusion of evolutionary game
theory and methods of statistical physics [2–7]. It is now
thoroughly established that the structure of the network of
contacts plays a decisive role in the outcome of evolution-
ary games. For example, networks with a scale-free degree
distribution are strong facilitators of cooperation [8–21], as
they can be coevolutionary networks if appropriate rules are
applied [22–32]. Much research dedicated to evolutionary
games has also been done on small-world networks [33–39],
multilayer and interdependent networks [40–53], hierarchical
[54,55] and community networks [56], and most recently
higher-order networks [57,58]. It is indeed nearly impossible
to give a comprehensive account of all research efforts along
these lines being made in the past couple of years, but we hope
the above references are a good sample.

Only with a slight delay in comparison to the research
dedicated to the importance of network structure in evolu-
tionary games, mobility has also featured prominently in its
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role as a possible catalyst or impediment to cooperation.
Already in 2007, Vainstein et al. [59] studied the impact
of mobility in a spatial prisoner’s dilemma game, show-
ing that cooperation is not only possible (which it would
not be in a well-mixed population) but may even be en-
hanced by an “always-move” rule. Their research also found
that mobility may increase the capability of cooperators
to invade defectors, which could play a fundamental role
in the very onset of cooperation. Later on it was shown
that random dilution and mobility may suppress the inhibit-
ing factors of the spatial structure in the snowdrift game,
while further enhancing the already promoted cooperation
(due to network reciprocity) in the prisoner’s dilemma and
the stag-hunt game [60]. The impact of mobility was also
studied in spatial social dilemmas with imitation dynamics
[61], as well as in off-lattice models [62–64], in conjunc-
tion with punishment [65] and optional participation [66],
as well as in the prisoner’s dilemma game with influen-
tial players [67]. Furthermore, how shortcut links affect the
evolution of cooperation in a snowdrift game within the
Watts-Strogatz small-world model has been studied in [68],
while adaptive dynamical networks, where competing agents
can rewire their connections in order to achieve a better
competition environment, have been considered as possible
facilitators of cooperation in [30,69–71] (see also [32] for a
review).
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In general, while mobility in socially inspired models has
numerous implications, ranging from affecting pathogen com-
petition [72] and their persistence [73] to driving vector-borne
epidemics [74], it is not clear when, if at all, mobility actually
leads to well-mixed behavior. In the context of evolution-
ary games, for example, the question is how much mixing,
whereby mixing is akin to mobility (see [67]), makes the game
mixed well. To be more specific, in the public goods game,
where each individual in a group containing G individuals
can either cooperate and contribute c = 1 to the common or
defect and contribute nothing, and where the sum of all con-
tributions is then multiplied by a multiplication factor R > 1
and equally divided amongst all group members irrespective
of their contribution, in a well-mixed population cooperators
cannot survive if R < G [75]. On a square lattice, however,
even if R/G < 1 some fraction of cooperators can prevail
through the effect of network reciprocity [76]. When then,
because of mixing, does R = G become the critical threshold
for cooperation survival?

To address this, we study the public goods game on a
square lattice with nearest-neighbor and random mixing with
different frequencies. We also consider a mixture of both
mixing protocols, such that with probability p we exchange
two random players, and with probability 1 − p two nearest
neighbors. As we will show, nearest-neighbor mixing re-
quires a higher frequency than random mixing to arrive at
the well-mixed R = G limit. We will also show that the two
mixing protocols, exchanging nearest-neighbor and randomly
selected pairs, have almost the same effect at very low and
very high mixing frequencies, but markedly different effects
at intermediate mixing frequencies. Finally, we will also show
a near universal exponential growth of the average size of
cooperator clusters as their fraction increases from zero to one
that is independent of the reason for doing so. This suggests
that, at least in the public goods game, mixing has the same
effect on the spatiotemporal evolutionary dynamics as simply
increasing the social dilemma strength.

In what follows, we first present the public goods game
and the mixing protocols. We then continue with presenting
the main results, and finally with discussing their implications
and possible impact.

II. PUBLIC GOODS GAME WITH MIXING

The public goods game is staged on a L × L square lat-
tice with von Neumann neighborhood, where each node is
occupied by one player. Initially, each player on site x is desig-
nated as a cooperator or defector with equal probability. Each
player x participates in G = 5 overlapping groups, where each
group is composed of a focal player and its G − 1 nearest
neighbors. In the standard public goods game cooperators
(C) will contribute a fixed cost (sx = 1) to every group in
which they participate, while defectors (D) contribute nothing
(sx = 0). Afterwards, the overall contributions are multiplied
by the synergy factor R > 1. The resulting amount is then
redistributed equally among all group members. Accordingly,
the accumulated payoff of a player x in every group g is given
by

Pg
x = RNg

C

G
− sx, (1)

where Ng
C is the number of cooperators within the group g.

Since each player participates in G groups, therefore, the total
payoff Px of player x is the sum of payoffs from all the
G groups where he is a member: Px = ∑

g Pg
x . We simulate

the evolutionary process in accordance with the established
Monte Carlo simulation procedure by the following elemen-
tary steps. First, player x is randomly selected among the
population, and its payoff Px as per Eq. (1) can be calculated.
Next, one its nearest neighbors y is chosen randomly and ac-
quires its payoff Py in the same way. Then, player y will adopt
the strategy of player x according to the Fermi probability:

W (sx → sy) = 1

1 + exp[(Py − Px )/K]
, (2)

where K quantifies the uncertainty during the strategy imi-
tation. In this paper, conveniently, we set K = 0.5 without
loss of generality [7]. We repeat the described elementary
steps N times, where N is the number of all lattice nodes.
Consequently, every player has a chance to adopt one of his
neighbors’ strategies once on average during one full Monte
Carlo step.

To incorporate mixing of players, a mixing process is per-
formed after each mth Monte Carlo step. We consider two
mixing protocols: nearest-neighbor and random mixing. In
the former, the randomly selected player u exchanges his site
with one of its four nearest neighbors z, while in the latter
the player u exchanges his site with one of the randomly
selected players z on the square lattice. Within one mixing
step each player u has a chance to exchange his site with the
selected player z once on average. For example, if the mixing
frequency m is 4, N randomly selected pairs are switched after
every fourth full Monte Carlo step. For the purpose of com-
bining the two mixing protocols, we introduce a probability
p that determines the likelihood that the random mixing is se-
lected. Accordingly, if p = 0, only nearest-neighbors pairs are
exchanged during the game, whereas for p = 1 only random
mixing will be selected at each mixing step. In case p = 0.5,
both mixing types are selected with equal probability. Further-
more, for the evaluation of the microdynamics we compute the
sizes of spatial clusters formed by cooperators. In particular, if
two cooperators are adjacent as specified by the von Neumann
architecture, they are considered to belong to the same cluster.
The average cluster size 〈C〉 is then determined by simply
averaging over all identified clusters in the lattice.

All results of Monte Carlo simulations in the next section
have been obtained on a square lattice with N = 160 000
nodes and periodic boundary conditions. The equilibrium
fraction of cooperators (ρC) has been determined by averaging
the last 10 000 generations after a transient period of 10 000
Monte Carlo time steps. In addition, the final results are aver-
aged over 10 to 100 runs with different initial conditions for
each set of parameter values.

III. RESULTS

We begin by showing results obtained with nearest-
neighbor and random mixing in Figs. 1(a) and 1(b), respec-
tively. The fraction of cooperators is presented for different
mixing frequencies, expressed as the number m of full Monte
Carlo steps at which the players are mixed as described in
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FIG. 1. In the public goods game on a square lattice, a certain
mixing frequency m can lead to well-mixed conditions, in which
R = G becomes the critical threshold for cooperation survival. To
arrive at the well-mixed limit, the nearest-neighbor mixing (p = 0)
depicted in panel (a) requires a higher frequency than random mixing
(p = 1) depicted in panel (b). But in both cases the well-mixed limit
can also be exceeded, in that R/G > 1 is not necessarily enough for
cooperator dominance as under well-mixed conditions. Both panels
show the fraction of cooperators ρC in dependence on the normalized
multiplication factor R/G, as obtained on a square lattice for eight
different m values (solid lines), where m increases from right to left
(see also the legend). The dashed black line shows the result for the
public goods game on a square lattice without mixing.

Sec. II above. For example, m = 2 and nearest-neighbor mix-
ing means that every two full Monte Carlo steps one player
from the population is chosen uniformly at random, one of its
nearest neighbors is chosen uniformly at random, and the two
players exchange their location—and this is repeated L × L
times. Results shown in Fig. 1 confer that both types of mixing
impair the evolutionary success of cooperators, and the more
so the smaller the value of m. The fact that mixing does
impair cooperation, i.e., that larger values of R are required for
cooperators to survive, agrees with the destruction of network
reciprocity that comes with approaching, and indeed exceed-
ing, well-mixed conditions.

The fact that mixing random pairs of players, not necessar-
ily nearest neighbors, is more detrimental for cooperation, as
can be seen by comparing results in Figs. 1(a) and 1(b), is also
understandable, since mixing is in that case more aggressive.
Nevertheless, in the m → 1 and ∞ limit the two mixing types
almost converge. This is because for m → 1 the mixing is
already so fast that the population is thoroughly mixed regard-
less of whether nearest neighbors and random pairs are mixed.
Indeed, we note that well-mixed conditions are exceeded in
the sense that the R/G > 1 condition for cooperator domi-
nance that is valid for well-mixed conditions is not sustained.
In other words, if m is small, having R/G > 1 does not ensure
ρC = 1. It can be observed that for nearest-neighbor mixing
and m = 1 we need R/G > 1.55 to have ρC = 1, while for
random mixing and m = 1 we even need R/G > 1.63.

To quantify the differences between the effects of nearest-
neighbor and random mixing more accurately, we introduce a
probability p, such that for p = 0 only nearest-neighbor pairs
are exchanged, whereas for p = 1 randomly chosen payers,
i.e., not necessarily nearest neighbors, except by chance, are
exchanged. In Fig. 2, it can be observed that if the mixing

is applied very frequently [m = 1, Fig. 2(a)] or infrequently
[m = 64, Fig. 2(d)] the differences for different values of p re-
main confined to a rather narrow R/G interval (the no mixing
case is shown only for reference and is not meant to be a part
of this comparison). Conversely, for intermediate values of m,
as shown in Fig. 2(b) for m = 2, and even more so in Fig. 2(c)
for m = 8, the differences become notable as p increases from
zero to one. These results thus confirm our reasoning from
above in terms of the impact of different mixing protocols
and the m → 1 and ∞ limits. At this point we also note that
the latter limit is technically fully reached at m = 128 for
nearest-neighbor mixing, while for random mixing we would
still need approximately twice as rare mixing, i.e., m = 256,
but the computational resources needed in that case to obtain
accurate results exceed our options (and are also not merited
due to the expected outcome).

Results presented thus far indicate that mixing alone can be
used to evoke a phase transition from an absorbing D phase to
a mixed C + D phase, and further a phase transition to an ab-
sorbing C phase. Naturally, as shown explicitly in Figs. 1 and
2, this can also be achieved by increasing R/G, which enables
us to compare the spatiotemporal evolutionary dynamics by
means of rescaled parameters. To that effect, we determine
the average size of cooperator clusters 〈C〉 in dependence on
the rescaled parameter n′ ∈ [0, 1]. Specifically, there are four

FIG. 2. The effect of the mixture of both mixing protocols on
the evolutionary dynamics of the public goods game depends on the
mixing frequencies m. Depicted is the fraction of cooperators ρC in
dependence on the normalized multiplication factor R/G for four
different mixing frequencies: m = 1 (a), m = 2 (b), m = 8 (c), and
m = 64 (d). In all panels results for different combinations of both
mixing protocols are presented, as specified by the probability p (as
shown in the legend): for p = 0 only nearest-neighbor pairs are ex-
changed, whereas for p = 1 randomly chosen payers are exchanged.
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FIG. 3. In the public goods game, mixing of players has the same
effect on the evolutionary dynamics as simply increasing the social
dilemma strength. The growth of the average size of cooperator
clusters 〈C〉 can be described by a universal exponential growth,
regardless of the nature of this increase. In panel (a) the latter is due to
increasing the normalized multiplication factor R/G without mixing
(no mixing), and due to decreasing the probability p considering
a mixture of both mixing protocols obtained for R/G = 1.56 and
m = 1 (combined mixing). In panel (b) the increase is due to decreas-
ing the mixing frequency m for the case of nearest-neighbor mixing
obtained for R/G = 1.1 (nearest-neighbor mixing), and due to ran-
dom mixing obtained for R/G = 1.3 (random mixing). Both panels
show the average size of cooperator clusters 〈C〉 in dependence on
the parameter n′, which represents the normalized values either of
R/G (no mixing), of m (nearest-neighbor or random mixing), or
of p (combined mixing), all rescaled to the unit interval to enable
direct comparisons. The slope of the fitted exponential growth (black
dashed line) in panels (a) and (b) is 1.81(8) and 1.8(2), respec-
tively. Presented results have been averaged over 100 independent
realizations.

different options to go from ρC = 0 (absorbing D phase) to
ρC = 1 (absorbing C phase) via a mixed C + D phase. We
focus on the mixed C + D phase to observe scaling in 〈C〉,
thus considering no mixing and varying 0.86 � R/G � 1.02,
and combined mixing at R/G = 1.56 and m = 1 and varying
0.015 � p � 0.34, both shown in Fig. 3(a). We also consider
nearest-neighbor mixing at R/G = 1.1 and vary 30 � m � 7,
and random mixing at R/G = 1.3 and vary 11.5 � m � 5.2,
both shown in Fig. 3(b). It can be observed that in all four
cases the increase in 〈C〉 in dependence on n′ is described
quite well by an exponential fit with a slope ≈1.8. We also
note that in all cases all phase transitions are continuous, so
that thus there is indeed a universal evolutionary dynamics at
play that renders the details of just how these phase transi-
tions are evoked irrelevant. Remarkably, our results show that
whether this is due to more favorable game parametrization
or less mixing, achieved in whichever way, does not make a
difference. This in turn indicates that going from structured to
well-mixed populations has the same effect as does increasing
the strength of the social dilemma, and this not just in terms
of the outcome for cooperation, but also in terms of the spa-
tiotemporal evolutionary dynamics and the governing phase
transitions.

IV. DISCUSSION

The classical evolutionary game theory constitutes a
mean-field-like approach that considers an infinite, randomly

well-mixed population, where defection is known to prevail
if R < G. Agents placed on a two-dimensional spatial array,
however, can interact only with their nearest neighbors. Such
a spatial structure can have a promoting effect on the evolu-
tion of public cooperation [4,7,76]. Several studies discovered
new mechanisms for stabilizing and sustaining cooperation.
Particularly mobility has received much attention in the last
decade. Sicardi et al. [60] extended the results of Vainstein
et al. [59] and studied the effect of dilution and mobility
in the spatial prisoner’s dilemma, snowdrift, and stag-hunt
evolutionary games. They introduced mobility in a diluted
system (a defined fraction of sites is free) where agents jump
to a nearest-neighbor site, that is accepted, provided the site
is empty, with a given probability. Depending on the popu-
lation density, mobility may suppress the inhibiting factors
of the spatial structure in the snowdrift game, while further
enhancing the already promoted cooperation in the prisoner’s
dilemma and the stag-hunt game. In contrast to this previous
research, where two-player games were studied, we studied
in the present paper the multiplayer public goods game on a
square lattice. Moreover, we introduced mobility in a different
manner. A mixing process, where N selected pairs (as de-
scribed in Sec. II) are switched, was performed after each mth
Monte Carlo step. In particular, nearest-neighbor and random
mixing were considered, both with varying frequencies sepa-
rately and combined in different proportions, with the aim of
systematically identifying the conditions under which the crit-
ical threshold R = G for cooperation survival in well-mixed
populations is recovered. We have shown that both types of
mixing impair the evolutionary success of cooperators, and
the more so the smaller the value of m. In addition, random
mixing recovers the well-mixed threshold if N randomly se-
lected pairs are switched after approximately every 16th full
Monte Carlo step.

The same effect with randomly selected nearest-neighbor
pairs occurs if mixing is applied after approximately every
sixth full Monte Carlo step. By considering a mixture of
both mixing protocols, such that with probability p we have
exchanged two random players, and with probability 1 − p we
have exchanged two nearest neighbors, we have shown that
the greatest difference in the effects of both mixing protocols
occurs at intermediate mixing frequencies, while at very low,
e.g., after every 64th full Monte Carlo step, and high, e.g.,
after every full Monte Carlo step, mixing frequencies both
effects almost converge, the rationale being that, if the fre-
quency is high, the population cannot be more than mixed,
and nearest-neighbor switching, if done frequently enough,
achieves this just as well as exchanging random pairs. Con-
versely, if the frequency is very low, exchanging either nearest
neighbors or random pairs simply cannot mix the population
at all.

Importantly, these limits are closely related to the typical
temporal scale of the evolutionary dynamics of the spatial
public goods game. The low-frequency limit implies that,
during the time between consecutive mixing, cooperative
clusters can already recover and cooperators regroup, such
that the next mixing episode is not as damaging. The high-
frequency limit, on the other hand, implies that during this
time nothing significant happens and that mixing essentially
just alters the initial conditions. In future works, it would

032310-4



MIXING PROTOCOLS IN THE PUBLIC GOODS GAME PHYSICAL REVIEW E 102, 032310 (2020)

therefore be interesting to look at other evolutionary games,
possibly with very different relaxation times, to study whether
and to what extent the inherent temporal scale of evolu-
tionary dynamics affects reaching the well-mixed limit with
mixing.

To gain a better understanding of the effect of different
frequencies and types of mixing, we have also studied the
average size of cooperator clusters, as obtained for different
fractions of cooperators on the square lattice. We have first
done a benchmark analysis without mixing, simply increasing
the multiplication factor R so that the fraction of cooperators
ρC grew from zero to one. In doing so, we have observed
a near-exponential growth of the average size of cooperator
clusters in a wide intermediate range of cooperator frequen-
cies, breaking down only close to ρC = 0 and 1. We have
then elicited the same growth in ρC by either decreasing the
frequency of mixing or increasing the fraction of nearest-
neighbor mixing at the expense of random mixing, and we
have always observed much the same near-exponential growth
of the average size of cooperator clusters. Accordingly, de-
spite intuitively very different effects that the mixing and the
strength of the social dilemma might have, they nevertheless
evoke the same effect on the spatiotemporal patterns of the

evolutionary dynamics, in particular on the emergence and
percolation of cooperator clusters.

Since well-mixed conditions underlie the replicator equa-
tion, and indeed many other assumptions in evolutionary
dynamics [77], it is of utmost importance to know when
exactly a population can be considered mixed well. Our re-
search reveals these conditions for the public goods game,
which arguably is a central theoretical paradigm for study-
ing cooperation in groups, especially in the realm of physics
research [7]. A population being well mixed also implies that
the structure of the interaction network ceases to matter. The
latter, however, in line with so many preceding findings, plays
a central role in determining evolutionary outcomes, and so it
is arguably important to know when such a strong and simpli-
fying assumption can be made. We hope that our research will
prove useful towards these goals, and inspire future research
along similar lines.
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