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Large-scale influence of defect bonds in geometrically constrained self-assembly
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Recently, the importance of higher-order interactions in the physics of quantum systems and nanoparticle
assemblies has prompted the exploration of new classes of networks that grow through geometrically constrained
simplex aggregation. Based on the model of chemically tunable self-assembly of simplexes [Šuvakov et al., Sci.
Rep. 8, 1987 (2018)], here we extend the model to allow the presence of a defect edge per simplex. Using a wide
distribution of simplex sizes (from edges, triangles, tetrahedrons, etc., up to 10-cliques) and various chemical
affinity parameters, we investigate the magnitude of the impact of defects on the self-assembly process and the
emerging higher-order networks. Their essential characteristics are treelike patterns of defect bonds, hyperbolic
geometry, and simplicial complexes, which are described using the algebraic topology method. Furthermore, we
demonstrate how the presence of patterned defects can be used to alter the structure of the assembly after the
growth process is complete. In the assemblies grown under different chemical affinities, we consider the removal
of defect bonds and analyze the progressive changes in the hierarchical architecture of simplicial complexes
and the hyperbolicity parameters of the underlying graphs. Within the framework of cooperative self-assembly
of nanonetworks, these results shed light on the use of defects in the design of complex materials. They also
provide a different perspective on the understanding of extended connectivity beyond pairwise interactions in
many complex systems.
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I. INTRODUCTION

In recent years, the application of graph theory to ana-
lyze complex patterns in empirical data has revolutionized
research in various interdisciplinary sciences. Some well-
known examples include emotion-driven online dynamics
with co-evolving networks of users and posts [1] and mapping
brain imaging data (see recent related Ref. [2] and references
therein). However, the use of graphs for mapping certain
problems in physics and materials science is still in its infancy
[3–8]. In this case, more profound knowledge of the physics
and chemistry of the problem helps to appropriately identify
the nodes and edges of the structure, which often refers to the
phase space of the system rather than a real-space structure.

In materials science, complex structures made of nanoscale
objects often correlate with an increased functionality [9,10].
Processes of self-assembly are widely used to grow such
systems, where the addition of each object to the grow-
ing structure obeys certain rules and locally minimizes the
energy [11–13]. In this context, defect morphologies may
occur where defects of various types are often used to di-
rect self-assembly and, by analogy with disorder and domain
walls in crystalline solids, to alter the physical properties
of the system [14–16]. Therefore, the use of mathematical

concepts [17] and graph representations—nanonetworks
[3]—are highly desirable for both the design and characteriza-
tion of the nanostructured assemblies. For example, real-space
networks are visualized with the nanoparticles as nodes and
edges representing a kind of chemical binding [18] or another
association between them that is relevant for the problem in
question. For example, the network representations of the con-
ducting nanoparticle films have been studied in Refs. [19–21].
The use of graph theory has enabled the description and differ-
entiation of the structures that promote enhanced conduction
via single-electron tunnelings between nanoparticles spaced
within the quantum tunneling radius in the direction of the
current.

Cooperative self-assembly [22–24], where the pre-
formatted group of particles attaches to a growing structure,
represents a higher level of the self-assembly processes and
opens an avenue towards new types of materials inspired by
mathematics [17,25]. Colloids with “valence” and directional
bonding are a physical reality [26], particles with n ∈ [1, 7]
active patches were created by two-stage swelling of the min-
imal moment clusters and subsequent DNA functionalization,
resulting in different forms as spheres, dumbbells, triangles,
tetrahedra, and higher-order structures. In these processes,
the geometrical-compatibility constraints of the binding forms
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with the growing structure play an important role, apart from
the chemical affinity between the structure and the bind-
ing nanoparticles. Recently, we developed a model with the
appropriate self-assembly rules [25,27], where the building
blocks are suitably described by simplexes, i.e., edges, trian-
gles, tetrahedrons, and cliques of higher orders. A prominent
feature of these structures is a hierarchical architecture of
simplicial complexes, which is accessible to the methods of
the algebraic topology of graphs [28,29], as well as emergent
hyperbolicity in the graph’s metric space [30–34].

In this work, based on the model in Ref. [25], we extend
the study of the cooperative self-assembly by considering
the presence of defect simplexes and describe the impact of
defect bonds on the assembled nanonetworks. Specifically,
we show how the presence of simplexes with a defect edge
can alter the course of the process leading to a structure with
nonrandom patterns of defect bonds and changed topological
features of the assembly, depending on the size of the binding
simplexes and the chemical affinity parameters. We further
demonstrate how the patterned defect bonds can be utilized
to alter the structure in the already grown assembly. Changes
in the topological properties of the assemblies are quantified
using the algebraic topology analysis of simplicial complexes,
as well as by determining several graph measures and the
hyperbolicity parameter of the underlying graph.

In Sec. II, we present the details of the model and grow sev-
eral assemblies with defects for further analysis. Section III
is devoted to topological analysis of these assemblies as well
as assemblies obtained by removal of defect bonds, while in
Sec. IV, we determine the Gromov hyperbolicity and other
graph parameters of these assemblies. Finally, Sec. V contains
a brief summary and discussion of the results.

II. THE MODEL OF COOPERATIVE SELF-ASSEMBLY
WITH DEFECTS

Following the original model [25], we consider the assem-
bly of simplexes that are full graphs (cliques) of n vertices.
Moreover, with a finite probability, each clique can have a
bond that differs from the other bonds, i.e., a defect. Starting
from an initial simplex (node), the new simplex of the size
driven from the probability pn ∼ n−α (α = 2 if not specified)
is attached to the growing structure by sharing one of its
faces with an existing simplex. Notice that a simplex of n
vertices possesses faces as subsimplexes of all orders q =
0, 1, 2, 3, . . . , qmax − 1 from the vertex to the largest subsim-
plex, where qmax = n − 1 indicates the order of the simplex.
Determining the face to be shared depends first on the number
of geometrically compatible sites in the current structure (ge-
ometrical compatibility constraint). The clique is added to the
selected docking site by sharing its q-face, as described below;
then the remaining na = qmax − q vertices are added. All the
implicated vertices are linked together to form the clique. The
affinity of the system towards the addition of a group na is
described by the chemical affinity parameter ν [25,35], which
modifies the probability defined based on the geometry factor
alone [see Eq. (1)]. Specifically, for a large negative ν, the
system likes the addition of particles, which results in sharing
a minimal face, that is a single node. In this limit, the cliques
are effectively repelling each other, whereas in the opposite

FIG. 1. Illustration of the self-assembly of triangles and tetrahe-
dra with defect bonds until the network size reaches N (t ) = 12 nodes
for (a) large negative ν = −5 and (b) large positive affinity ν = +5.
The sequence of events is described in the text. (c) For the distribu-
tion of the attaching simplexes in the range n ∈ [2, 10], the evolution
of the number of simplexes and faces �(t ) with time steps t until the
number of nodes reaches Nmax = 1000. Three values of the affinity
parameter ν are considered, shown in the legend, combined with the
probability p = 0.7 of a defect bond in simplexes and simplexes with
all pure bonds p = 0.0. The corresponding fluctuations in the number
of simplexes over time are shown in (d).

limit, with a large ν > 0, a single node is preferably added;
thus, the added clique shares its largest face with a previous
compatible structure [25] [see Figs. 1(a) and 1(b) and text
below].

Furthermore, the presence of defect bonds affects the at-
tachment, as described in the following. At each evolution step
t , the normalized probability that a clique σ of order qmax will
attach along its face of order q is determined by the expression

pσ (qmax, q; p, t ) = cq(p, t )e−ν(qmax−q)

∑qmax−1
q=0 cq(p, t )e−ν(qmax−q)

. (1)

Here, the factor cq(p, t ) is defined as the number of geomet-
rically compatible sites, i.e., faces of order q on the growing
network at time t . It is a subject of the presence of a defect
edge, symbolically indicated by p dependence in cq(p, t ), as
explained below, and modified by the chemical affinity of the
structure to add na = qmax − q new nodes controlled by the
parameter ν. To compute the number of geometrically similar
docking sites cq(p, t ) of the searched order q, in the present
model we distinguish between the binding faces with defect
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FIG. 2. Close-up of the structure of assembly of triangles (left) and the assembly of the distributed clique sizes n ∈ [2, 10] according to
∼n−2 (right) for strictly geometric aggregation (ν = 0) and 70% defect simplexes, Nmax = 1000. Defect edges are shown as thick (green) lines.

bonds from those without defects. For this work, we adopt the
rule that a face without defect bond of the new clique is shared
with the appropriate pure face on the growing structure. Then
the defect edge extends from a (preferably defect) node in the
docking site towards one of the newly added nodes, which
favors the sharing of a defect node. Thus, with each added
clique, a new defect bond appears with the fixed probability p.
As described below, this process leads to a nonrandom pattern
of defect bonds. We consider how this model might be further
adapted by changing the attachment rules and parameters in
the Discussion below.

To illustrate the assembly process, we show the first few
growth steps [starting from a single node until the network
size reaches N (t ) = 12] of the assemblies composed of a
mixture of triangles and tetrahedra for ν = −5 and ν = +5,
and p = 1 [see Figs. 1(a) and 1(b)]. The corresponding simu-
lation output files are displayed below. Specifically, from left
to right, are the time step t ; number of nodes, N (t ); number
of simplexes and faces, �(t ); size of the added clique, n;
number of the added nodes, na; and identity i1, i2, . . . , in of
nodes belonging to that clique. The bracket (i, j) indicates the
defect edge of that clique. In particular, in the assembly with
ν = +5, we have the following sequence of events, resulting
in the graph in Fig. 1(b):

1 3 7 3 2 1 2 3 (1, 3)
2 4 11 3 1 2 3 4 (3, 4)
3 6 23 4 2 2 4 5 6 (4, 6)
4 7 27 3 1 4 5 7 (4, 7)
5 8 31 3 1 1 2 8 (2, 8)
6 9 39 4 1 2 5 6 9 (6, 9)
7 10 43 3 1 2 4 10 (4, 10)
8 12 55 4 2 4 5 11 12 (4, 12)
Meanwhile, growth is faster for ν = −5 [see the graph in

Fig. 1(a)] because the number of added nodes, na, per clique
is higher, in particular:

1 3 7 3 2 1 2 3 (1, 3)
2 6 21 4 3 1 4 5 6 (4, 6)
3 9 35 4 3 6 7 8 9 (6, 7)
4 12 49 4 3 3 10 11 12 (3, 10)
The presence of defects that are already built in the struc-

ture affects future binding events. Figure 1 illustrates the

impact of the presence of defect edges on the course of the
process for varied parameters. For the purpose of this work,
we grow a large number of assemblies by varying the size
of the building simplexes n and the control parameters ν and
p. To control the size of the assembly, growth is stopped when
the number of nodes exceeds a given number Nmax for the first
time. For illustration, some examples of grown assemblies are
shown in Fig. 2 and in Fig. 3. The impact of defect edges
for a given p also depends on the size and the dispersion of
the attaching cliques, and the binding affinity ν. When the
affinity among cliques is significant, such that they intend to
share their maximal faces, the aggregation of defect edges is
more effective, leading to an extended defect structure that
further constrains the process. Notably, defect bonds make

FIG. 3. An example of the nanonetwork transformed by removal
of defect bonds; it is grown by aggregation of cliques in the range
n ∈ [2, 10] by chemical affinity ν = −5 (clique repulsion conditions)
and the probability of defect bond p = 0.7 and Nmax = 5000 nodes.
Different colors of nodes indicate formation of communities.
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TABLE I. Graph measures of the assemblies of simplexes of size n ∈ [2, 10] distributed as ≈n−2 and the probability of a defect bond p,
for three representative values of the affinity parameter ν = ±5 and 0. The properties of graphs with removed pattern of defect edges (0.7-rm)
and the graph when the same number of edges c is removed at random (rand-c) are also shown. The effective concentration of defect edges c,
the average degree 〈k〉, the path length 〈�〉, the clustering coefficient 〈Cc〉, the graph’s modularity mod, and the diameter D are computed for
the graph size with Nmax = 5000 nodes. Additional properties computed for the graphs of the same parameters but with Nmax = 1000 are the
hyperbolicity δ(G) [the largest δmax(dmin )], the topology level q∗ at which the connectivity (third structure vector, TSV) between the simplexes
drops to zero, and the connectivity at the level q∗ − 1.

ν p c 〈k〉 〈�〉 〈Cc〉 mod D δ(G) q∗ TSV(q∗ − 1)

+5 0.0 0 5.005 4.475 0.601 0.524 18 1 9 0.057
0.7 0.271 5.115 4.197 0.602 0.556 19 1 9 0.435

0.7-rm 0 5.0671 3.025 0.774 0.414 11 2.0 9 0.160
rand-c 0 4.162 3.971 0.492 0.517 14 3.0 6 0.079

0 0.0 0 5.988 6.209 0.714 0.882 17 1 8 0.0285
0.7 0.149 5.933 6.256 0.721 0.872 17 1 7 0.0298

0.7-rm 0 6.124 5.719 0.742 0.867 17 3.0 8 0.141
rand-c 0 5.231 7.027 0.610 0.883 23 3.0 7 0.024

−5 0.0 0 5.075 13.213 0.813 0.972 32 1 2 0.005
0.7 0.109 5.270 11.788 0.825 0.966 27 1 2 0.0129

0.7-rm 0 5.223 10.417 0.783 0.975 31 5.5 8 0.185
rand-c 0 4.625 14.751 0.730 0.973 31 4.5 7 0.218

a particular pattern. These effects are especially pronounced
in the case of small cliques, where a defect edge provides a
more severe restriction on the binding of the remaining faces.
In the case of purely geometrical aggregation, ν = 0, the
defect edges at sufficiently large concentration form treelike
structures and “highways” through the graph. Consequently,
the grown network with defect simplexes is different from
the case when the simplexes with equal edges were used (i.e.,
p = 0) (see Table I).

In the following, we employ Q analysis [29,36,37] to quan-
titatively describe the organization of simplicial complexes in
various aggregates grown in the presence of defect bonds,
according to Eq. (1) and the above-described defect-bond
rules. The results are compared with the case without defects,
p = 0. With the same approaches, we analyze changes in the
structures induced by the removal of the defect bonds.

III. Q ANALYSIS AND IMPACT OF DEFECT BONDS ON
THE ARCHITECTURE OF NANONETWORKS

In this context, a simplex of order qmax = n − 1 is a full
graph of n vertices. In a simplicial complex, two simplexes
are q connected if they share a face of order q; i.e., they have
at least q + 1 shared nodes. The dimension of the consid-
ered simplicial complex equals the dimension of the largest
clique qmax + 1 belonging to that complex. To describe the
structure of simplicial complexes at different topology levels
q = 0, 1, 2, . . . , qmax, Q analysis uses notation from the alge-
braic topology of graphs [29,38,39]. Specifically:

(i) The first structure vector (FSV) components {Qq} de-
note the number of q-connected components.

(ii) The second structure vector (SSV) components {nq}
correspond to the number of simplexes of order greater than
or equal to q.

(iii) The third structure vector (TSV) component q is
determined as Q̂q ≡ 1 − Qq/nq measuring the degree of con-

nectivity at the topology level q among the simplexes of order
higher than q.

Using the Bron-Kerbosch algorithm [40] we construct the
incidence matrix �(G) of the graph G, starting from its
adjacency matrix. The incidence matrix contains complete
information about all present simplexes as well as the vertices
that belong to each simplex. Thus the components of these
structure vectors can be determined from the corresponding
incidence matrix �(G). Further characterization of the archi-
tecture of simplicial complexes is provided by the quantity fq,
which is defined [41] as the number of simplexes and faces at
the topology level q.

Furthermore, we compute these topology features for the
assembly that remains after the removal of defect bonds. No-
tice that the removal of the defect bonds changes the structure
of the assembly by breaking the simplexes in which such
bonds were built in. For example, a defect tetrahedron breaks
into two triangles that are attached along the common edge
when the defect bond is removed. The effects of the defect
bond removal correlate with the size of the original cliques.
More precisely, the following rules apply:

(a) A clique of order qmax with a defect bond breaks into
two cliques of order qmax − 1.

(b) These new cliques are attached along their largest face;
that is, they share a face of order qmax − 2.

Figures 4 and 5 show these structural properties of a
few representative aggregates of simplexes obtained with
and without defect bonds. Notably, the aggregation of defect
bonds causes faces made of pure bonds to spread, which re-
sults in higher values of fq for a finite concentration of defect
bonds p, as compared with p = 0. This principle applies,
although the values are different, for all aggregates at different
values of parameter ν. One should also notice that the highest
point of fq correlates with the number of simplexes that need
to be added to complete a given number of vertices, here
Nmax = 1000, which is considerably different for different ν

(cf. Fig. 1). With the removal of the defect bonds, generally,
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FIG. 4. fq vs q for the pure (p = 0) and defect network (p = 0.7, 0.5) and the network obtained by removal of defect bonds (p07-rm,
p05-rm) for three values of ν = 5, 0, −5, left to right.

we have a smaller number of simplexes and faces, resulting in
the proportional decrease of fq at all q levels, in comparison
with the original structure with defects. The effects are more
pronounced in the dense structure of cliques, corresponding
to ν > 0 (cf. Fig. 4), than in the structures with sparsely
connected cliques (for ν < 0 and partly for ν = 0).

In the structure vectors, shown in Fig. 5, notice that the
aggregates grown with or without defect represent one con-
nected component; then the FSV component Q0 = 1. The
peak in the FSV at q = 1 and the decay at larger q < 10
reflects the actual distribution of the size n ∈ [2, 10] of the
attaching cliques; the distribution fn ∼ n−2 favors dumbbells
as compared with higher-order cliques up to the 10-cliques.
The total number of cliques, which is given by the zeroth
components of the SSV, given in the middle row in Fig. 5,
is significantly more prominent in compact structures (ν =
+5) than in the sparse assembly of cliques grown at ν = 0
and ν = −5. This observation is compatible with the growth
process depicted in Fig. 1. In the presence of defect cliques,
the number of q-connected components, as well as the total
number of cliques from the level q upwards, differ from the
case of a structure with pure simplexes, in particular in the
range of large and intermediate q values. The components of
TSV indicate that in the compact regions of the graph (i.e.,
in the case ν = +5 and partly in ν = 0), the large cliques
with defect bonds are more weakly connected than in the
pure-simplexes structure. However, in the range q ∈ [2, 6] for
ν = +5 and q ∈ [1, 4] for the case ν = 0, the connectivity
exceeds the curve of TSV for the structure without defects.
Meanwhile, in the case ν = −5, the cliques of all sizes share a
single node; therefore, they appear to be disconnected already
at the level q = 1 (cf. TSV in the lower right panel in Fig. 5).

With the removal of defect bonds, the number of large
cliques gradually decreases, while the number of intermedi-
ate and small cliques results as a balance between breaking
the initially present defect cliques of that order and the appear-
ance of new ones from the broken defect cliques of one order
higher. Consequently, the FSV changes such that Q0 increases
because of broken bonds; some separate graph parts can occur.
The changes are most dramatic in the case of ν < 0. For
example, in the structure shown in Fig. 3, some transformed
areas of the graph can be recognized as separate communities,

while the original modularity is consistent with the individual
simplexes. Following a broken bond in a clique of order 9, we
have two cliques of order 8 that are sharing a clique of order
7, and so on, as explained above. Consequently, nontrivial
connectivity appears among these newly generated cliques at
all levels q ∈ [1, 8], as shown in the lower right panel of Fig. 5,
even though the originally built-in cliques repelled each other
such to share a single vertex. A similar effect occurs in the
sparse areas of the structure grown in the absence of chemical
factors (ν = 0). The effects are proportional to the probability
of a defect bond p, which decides the actual number of defect
bonds in the grown structure, depending on ν (see Table I).
In the following, we analyze how the changed architecture of
simplicial complexes due to breaking defect bonds affects the
hyperbolicity and other features of the topological graph.

IV. CHANGES OF HYPERBOLICITY INDUCED BY
THE REMOVAL OF DEFECT BONDS

The hyperbolicity or negative curvature in many complex
systems is a measure of closeness of the system’s elements
that emerges through the evolutionary optimization of their
functional properties [2,5,30]. As mentioned in the Introduc-
tion, the assembly of cliques possesses a negative curvature
in the graph’s metric space, which is endowed with the
shortest-path distance. Hence, the generalized Gromov 4-
point hyperbolicity criterion can be applied to characterize
it. Specifically, the graph G is hyperbolic if and only if
there is an small constant upper bound δ such that, for any
four vertices {A, B,C, D} of the graph, the relationships be-
tween the sums of distances between distinct pairs of these
nodes d (A, B) + d (C, D) � d (A,C) + d (B, D) � d (A, D) +
d (B,C) implies that

δ(A, B,C, D) = L − M
2

� δ. (2)

Here d (U,V ) indicates the shortest-path distance between U
and V and we denoted the largest L = d (A, D) + d (B,C) and
the middle value M = d (A,C) + d (B, D). We observe that
the upper bound of the expression in Eq. (2) is (L − M)/2 �
dmin, where dmin = min{d (A, B), d (C, D)} enables us to deter-
mine the graph’s hyperbolicity δ(G) by plotting (L − M)/2
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FIG. 5. Components of the first (FSV), second (SSV), and third (TSV) structure vector (top to bottom) against the topology level q for the
pure (p = 0.0) and defect network (p = 0.5 and 0.7) and the network obtained by removal of defect bonds (p05-rm, p07-rm) for three values
of ν = 5, 0, −5, indicated on each panel.

against dmin and investigating the worst case, i.e., δmax(dmin)
growth of the dependence. Specifically, for each graph, using
its adjacency matrix, we first compute the matrix of distances
between all pairs of nodes. Then, by sampling a large number
of sets of nodes for the 4-point condition (2) we determine and
plot only the largest δ against the corresponding distance dmin;
then the largest observed value of δmax for all dmin in the graph
determines the graph’s hyperbolicity parameter δ(G).

For the graphs with a small hyperbolicity parameter, it is
known [32,34,42] that the upper bound of the hyperbolicity

parameter is related to a specific subjacent structure; for ex-
ample [43], the presence of an isometric cycle Cn of length
n � 3 would lead to δ(Cn) = 	n/4
 − 1

2 , if n ≡ 1(mod4), else
δ(Cn) = 	n/4
. Similarly, since the cliques are ideally hyper-
bolic (δclique = 0), a combination of cliques that are apart at
a small distance i causes the increase of the hyperbolicity
parameter by an integer [34], i.e., δclique + i.

The network growth in our algorithm by attaching a new
clique such that it shares a face with another previously
present clique in the system immediately implies that their
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FIG. 6. The distance distribution P(d ) vs d , and δmax vs dmin for the pure (p = 0) and defect network (p = 0.7, 0.5) and the network
obtained by removal of defect bonds (p05-rm, p07-rm) for three values of ν = 5, 0, −5, left to right.

hyperbolicity parameter cannot exceed unity. That is, these
are 1-hyperbolic graphs [25], as also confirmed by a direct
computation (see Fig. 6). The same conclusion also applies
to the structure grown with the defect cliques, as long as the
cliques are complete. However, by removing the defect bonds,
the cliques that contained them break into smaller cliques that
appear to be differently attached to the rest of the graph. The
process often leads to greater distances between the newly
apparent cliques. Consequently, an increase of the hyperbol-
icity parameter δmax of the entire graph is observed, as shown
for different assemblies in Fig. 6. The lower panels show the
hyperbolicity parameter δmax for the corresponding graphs. As
expected, δmax = 1 for all graphs grown by the attachment of
cliques rule with and without defect bonds, for all ν values.
However, when the defect bonds are removed, the changed
organization of simplexes, as described above, leads to the
increased values of δmax. The increase strongly depends on the
chemical affinity ν at which the graph with defect simplexes
is grown. More precisely, in compact structures grown with
ν > 0, the hyperbolicity parameter reaches the values 3/2
or 2, compatible with the subjacent structures with increased
distances between the cliques. On the other hand, a substantial
increase of δmax in the sparse structures reaches the values 3
for ν = 0 and 5.5 for ν = −5 for the considered distribution
of clique sizes and concentration of the removed bonds. The
increase of the graph’s hyperbolicity indicates that, after re-
moval of defect bonds, specific local structures appear that

are compatible with the increased distances between vertices.
Consequently, they can affect the functional features of the
reorganized graphs, as discussed below.

The corresponding top panels of Fig. 6 show the distri-
bution of distances in the case of pure simplexes and in the
presence of defect cliques, and how it changes by the removal
of defect bonds for varied parameters p and ν. Notice that the
distribution of distances between pairs of nodes changes due
to the presence of defect bonds. In contrast to the dense graphs
(for ν = +5), where the most probable distance remains 3,
in the sparse graphs (at ν = 0 and especially at ν = −5) the
most probable distances are larger than in the case without
defects. Similarly, these graphs experience the most dramatic
changes in the distance distributions when the defect bonds
are removed. The diameter of the graph (referring to the
largest connected component) also changes (cf. Table I).

V. SUMMARY AND DISCUSSION

We have introduced a model for self-assembly of simplexes
in the presence of a defect bond and demonstrated the use
of embedded defect bonds to reshape the grown structure
systematically. The model allows for the variation of the
probability of a defect bond in the attaching simplexes in con-
junction with their size n and the chemical affinity ν, leading
to a wide variety of resulting assemblies. In this study, we con-
sider a fixed probability p and the sizes distributed in the range
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n ∈ [2, 10] according to pn ∼ n−α with α = 2. The presence
of defect bonds conditions the clique-attachment rules. We
adopt the mechanism that favors attachment through straight
edges, leading to a treelike pattern of defects. Besides the
variation of the size of building cliques n and the parameters
α and ν that govern the process (see a demonstration at the
link in Ref. [27]), this model also allows other mechanisms
for the faces with defect bonds to participate in the process
of self-assembly. For example, the possibility of docking be-
tween faces with defect edges may lead to a structure where
the removal of defects leads to a reshaped assembly with
holes. Exploring such structures requires a different topologi-
cal analysis, which we leave for further work.

We have shown how the presence of defect bonds can tune
the structure of simplicial complexes as well as the underlying
topological graph. The results of the quantitative analysis in
Figs. 4–6 show that the model provides the framework to grow
a rich structure of simplicial complexes with the possibility
both to control the process of the growth of the assembly as
well as to change it by influencing the defect edges after the
growth is completed. In this study, we have demonstrated how
the removal of defect bonds leads to a hierarchically trans-
formed structure of simplicial complexes and the associated
increase of the graphs hyperbolicity parameter. Some standard
graph properties and their hyperbolicity as well as measures
indicating the connectivity between simplexes are listed in
Table I for the representative sets of parameters.

Remarkably, the defect bonds make nonrandom patterns—
treelike structures in the graphs—even though no long-range
forces are present. The apparent attraction among defects is
primarily related to the geometrical constraints for the dock-
ing of simplexes; thus, it depends on the size of simplexes
and the chemical affinity towards new vertices. Therefore,
the removal of patterns of defect bonds has a profound effect
on the structure of simplicial complexes, as discussed above.
These patterns also shape the graph’s properties differently,
as compared with the case when the same number of defect
bonds are randomly distributed (cf. Table I).

The diversity of the architecture of simplicial complexes,
which is enabled by varying the model parameters as well as
by the hierarchical reconstruction of the graph after removal
of defect bonds, can greatly affect the dynamical processes on
these networks [44]. In particular, for diffusion and synchro-
nization processes, the decisive property of the underlying
structure is captured by the spectral dimension ds of the graph.
For the assemblies grown with our model without defects, it
was shown in Ref. [45] that the spectral dimension ds(ν) sys-
tematically increases with the chemical affinity parameter ν,
and meets the conditions for full synchronization and transient
random walks when ν > 0 in association with the increased
clique’s size. In Ref. [46], a similar conclusion was found
for another class of self-assembled simplexes. Recently, in
Ref. [47] we have investigated the field-driven magnetization
reversal processes on a class of assemblies grown by the
present model with defects and ν = 0. The Ising spins are
attached to the nodes (nanoparticles) of the assembly hav-
ing antiferromagnetic interactions through the defect bond.

Meanwhile, the remaining interactions are ferromagnetic. In
this case, the underlying structure provides geometric frus-
tration effects. Hence, for these processes, the occurrence
of frustrated triangles as faces of different simplexes is of
primary importance. On the other hand, larger structures, sim-
plicial complexes, and mesoscopic communities play a key
role in the synchronization and diffusion processes. Notably,
a defect edge in an n-clique induces n − 2 frustrated triangles
that are built in a simplicial complex. It was shown [47] that
different sizes of cliques that comprise simplicial complexes
directly influence the shape of the hysteresis loop and the
occurrence of plateaus at fractional magnetization levels. Such
plateaus are similar to those observed in disordered antifer-
romagnetic materials of a complex morphology [48,49]. For
example, in the graphs in Figs. 1(a) and 1(b), the original
tetrahedra disappear after removal of defect bonds. The re-
maining graphs consist of triangles and edges. Hence, in the
case of antiferromagnetic interactions between spins on these
structures, the hysteresis loop will split into two parts. This
shape is in contrast to the loop on the original structures with
tetrahedra, which has a compact central part (cf. Fig. 3 in
Ref. [47]). Based on the results of the hysteresis loop [47] and
the theory of cooperative phenomena on complex networks
[44], we expect that the different architectures of simplicial
complexes grown by our model as well as their hierarchical
reconstruction by the removal of defect bonds readily affect
the spin response function in these assemblies. Investigations
of spin reversal processes are in progress in the assemblies
grown by the present model with defect bonds and various
other parameters.

In summary, we have introduced classes of nanonetworks
that evolve by self-assembly of formatted groups of nodes as
simplexes with different shapes and types of bonds. The varia-
tions of the parameters governing the process of self-assembly
allow different types of structures to grow from sparsely sep-
arated simplexes to compact structures with large simplicial
complexes, and the possibility to modify their organization by
affecting a specific type of bond. These approaches are suit-
able for designing new classes of nanostructured assemblies
and for their quantitative characterization beyond the stan-
dard pairwise interactions. In this context, our model provides
a mathematical framework for compelling research on new
functional properties of such assemblies. The presented study
also offers a deeper understanding of the mechanisms beyond
the higher-order connectivity that lead to the occurrence of
simplicial complexes in many other complex systems, from
human connectomes [2] to patterns representing the brain-to-
brain coordination [50] and online social dynamics [51,52], as
well as a variety of problems in physics [5–7,41,47,53].
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evolutionary mechanisms of emotional bursts in online social
dynamics and networks, Entropy 15, 5084 (2013).
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[7] B. Tadić, M. Andjelković, and M. Šuvakov, The influence of
architecture of nanoparticle networks on collective charge trans-
port revealed by the fractal time series and topology of phase
space manifolds, J. Coupled Syst. Multiscale Dyn. 4, 30 (2016).

[8] S. V. Krivovichev, Combinatorial topology of salts of inorganic
oxoacids: Zero-, one- and two-dimensional units with corner-
sharing between coordination polyhedra, Crystallogr. Rev. 10,
185 (2004).

[9] B. Pelaz et al., The state of nanoparticle-based nanoscience and
biotechnology: Progress, promises, and challenges, ACS Nano
6, 8468 (2012).

[10] X. Fan, J. Y. Chung, Y. X. Lim, Z. Li, and X. J. Loh, Review
of adaptive programmable materials and their bioapplications,
ACS Appl. Mater. Interfaces 8, 33351 (2016).

[11] G. M. Whitesides and B. Grzybowski, Self-assembly at all
scales, Science 295, 2418 (2002).

[12] X. Xing, J. Wang, X. Kuang, X. Xia, C. Lu, and G. Maroulis,
Probing the low-energy structures of aluminum-magnesium al-
loy clusters: A detailed study, Phys. Chem. Chem. Phys. 18,
26177 (2016).

[13] M. A. Boles, M. Michael Engel, and D. V. Talapin, Self-
assembly of colloidal nanocrystals: From intricate structures to
functional materials, Chem. Rev. 116, 11220 (2016).

[14] W. Li and M. Müller, Defects in the self-assembly of block
copolymers and their relevance for directed self-assembly,
Annu. Rev. Chem. Biol. Eng. 6, 187 (2015).

[15] T. Harada and A. Hatton, Formation of highly ordered rectangu-
lar nanoparticle superlattices by the cooperative self-assembly
of nanoparticles and fatty molecules, Langmuir 25, 6407
(2009).

[16] D. R. Hickey, R. J. Wu, J. S. Lee, J. G. Azadani, R. Grassi,
D. C. Mahendra, J.-P. Wang, T. Low, N. Samarth, and K.
A. Mkhoyan, Large-scale interlayer rotations and Te grain
boundaries in (Bi, Sb)2Te3 thin films, Phys. Rev. Materials 4,
011201(R) (2020).

[17] S. Ikeda and M. Kotani, Materials inspired by mathematics,
Sci. Technol. Adv. Mater. 17, 253 (2016).
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BOSILJKA TADIĆ et al. PHYSICAL REVIEW E 102, 032307 (2020)

[39] J. Johnson, Some structures and notation of Q-analysis,
Environ. Plann. B: Plann. Des. 8, 73 (1981).

[40] C. Bron and J. Kerbosch, Finding all cliques of an undirected
graph, Commun. ACM 16, 575 (1973).

[41] M. Andjelković, N. Gupte, and B. Tadić, Hidden geometry of
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