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We propose a tractable epidemic model that includes containment measures. In the absence of containment
measures, the epidemics spread exponentially fast whenever the infectivity rate is positive λ > 0. The contain-
ment measures are modeled by considering a time-dependent modulation of the bare infectivity λ leading to
effective infectivity that decays in time for each infected individual, mimicking, for instance, the combined
effect of the asymptomatic onset of the disease, testing policies, and quarantine. We consider a wide range of
temporal kernels for effective infectivity, and we investigate the effect of the considered containment measures.
We find that not all kernels are able to push the epidemic dynamics below the epidemic threshold with some
containment measures only able to reduce the rate of the exponential growth of newly infected individuals. We
also propose a pandemic model caused by a growing number of separated foci.
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I. INTRODUCTION

The world is much more connected than ever. This greatly
simplifies the spread of pandemics. On the other hand, the
quick introduction of various containment measures [1–3], the
wide testing and immunization policies [4–7], and modern
ways of analyzing data [8,9] help to fight the pandemics as
never before. Here, we introduce and analyze a simple model
of epidemic spreading mimicking containment measures that
can help to shed light on the dynamics at the onset of a
pandemic.

The study of epidemics has a long and fascinating his-
tory [10,11]. Epidemic modeling goes back to Bernoulli who
modeled the spread of smallpox [12]. The modeling litera-
ture grows rapidly as the new challenges ranging from HIV
[13,14] and COVID-19 [1–9,15–19] to computer viruses [20]
and rumor spreading [21–24] continue to emerge. Epidemic
spreading processes are described not only in mathemati-
cal biology books [25–29], but also in statistical physics
[30], network theory textbooks [31–34], and topical reviews
[35]. The susceptible-infected (SI), susceptible-infected-
susceptible, and susceptible-infected-recovered (SIR) are
especially popular epidemic models. These models have been
mostly studied in well-mixed populations where every in-
dividual can be in contact with any other [25–29,36], but
also on networks [35] or in a metapopulation framework [37]
formed by several well-mixed populations interacting through
a network [38]. In all these models, when the infectivity λ

exceeds the threshold value λc, the spread is exponentially
fast in time at the onset of the epidemic outbreak [31]. When
λ < λc, the epidemics quickly die out. The range λ ≈ λc is
particularly interesting; the behaviors in this regime are not
fully understood even in the realm of the classical models,
such as SIR [39–46], but, at least, it is well established

that such epidemics cannot affect a finite fraction of the
population.

The containment measures successfully stop the spread
of the epidemic if they can raise the value of the epidemic
threshold to λc > λ. For epidemic spreading models defined
on networks, the epidemic threshold depends on the network
topology [31–35]. Here, we take a well-mixed population
approach to model the evolution of a single focus (hot spot)
of the epidemics. This is reasonable for airborne diseases
spreading through contact networks that are highly random
and dense, particularly, in urban centers. The topology of
these contact networks is likely to be quite different from
the topology of social networks in which links indicate a
social tie, and the data about these networks is not very rich
with the only exception of studies investigating face-to-face
interactions in settings, such as schools or hospitals [47,48].

Here, we study the role of containment measures in mit-
igating and ultimately halting the epidemics. At the level of
a single foci, the containment measures are of two types:
Measures that aim to reduce the average number of contacts
between individuals of the population, and measures that aim
to detect and isolate or cure rapidly the new cases. Although
the first class of containment measure strongly depends on the
network of contacts, the second class of containment measures
only depend on how fast new cases are detected and isolated.
In this article, we exclusively consider the latter containment
measures. In order to have a simple and analytically tractable
model, we neglect the network effects. To model epidemics
in the presence of these containment measures, we consider a
well-mixed epidemic model in infinite population. We do not
intend to model real data; rather, we want to mathematically
clarify, in a completely solvable model, how timely detection
and isolation of the cases can mitigate or even stop the spread
by pushing the dynamics in the subcritical regime.
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As in the SIR, we have subpopulations of susceptible in-
dividuals, infected individuals who spread the infection, and
removed individuals who had the infection, and perhaps still
have, but cannot spread it any longer. The epidemic dynamics
is very simple as the only relevant transition is from the
susceptible to the infected state if it is in contact with an
infected individual. At each time step, infected individuals
have a nonzero probability to become removed when they are
detected and isolated by the tracking of the spread. Thus, on
average, the infectivity of infected individuals decreases in
time. This suggests to model the effect of different contain-
ment measures by introducing a temporal kernel F (τ ) that
modulates the infectivity of each infected individual. This
kernel results from containment policies aiming to isolate
and track cases. In particular, we assume that the effective
infectivity λF (τ ) of an infected individual decays with the
time τ that has elapsed after the individual got infected. De-
pending on the functional form of the temporal kernel F (τ ),
we investigate the critical properties of the epidemic spreading
process, characterize the epidemic threshold of the model
with containment measures, and the asymptotic scaling of the
number n(t ) of infected individuals with time t . We determine
when the containment measures are effective in pushing the
dynamics in the subcritical regime with λ < λc. Additionally,
we show that, in the subcritical regime, the total number N (t )
of infected individuals is constant asymptotically in time indi-
cating that the spread of the epidemics has been halted. In the
critical regime, it is possible to observe a polynomial growth
of N (t ) of a given epidemic focus. When the containment
measures are too mild to achieve the halting of the epidemics,
i.e., λ > λc, we quantify the impact of the adopted measures
in reducing the rate of the exponential growth.

We also briefly examine a multifoci version. We model
the geographic spread of the epidemic by assuming that it
is caused by the combined effects of different epidemic foci.
In real scenarios, one might consider to take into account
commuting patterns between the epidemic foci as this is the
ultimate cause for the establishment of new foci. Our stylized
model neglects the network effects depending on details of
the particular situation which are also easily perturbed dur-
ing the lockdown. We assume, instead, that these commuting
patterns have the global effect of increasing the number of
epidemic foci in time. Our results show that the total number
of cases across different foci of the epidemics can grow either
exponentially when the system is in the supercritical regime
or as a power law of time if the system is in the critical
regime.

The paper is structured as follows. In Sec. II, we show that
our single focus epidemic model with containment dynamics
captures the average behavior of an underlying stochastic
model. We also list the temporal kernels F (τ ) that we use to
mimic the containment measures. In Sec. III, we provide the
exact solution of the model for an arbitrary kernel F (τ ) using
the generating function formalism. In Secs. IV–VII, we dis-
cuss in detail the solution of the model for the four considered
temporal kernels: the constant kernel, the power-law kernel,
the exponential kernel, and the generalized exponential ker-
nel; in Sec. VIII, we discuss the multifoci generalization of
the SI dynamics. In Sec. IX, we characterize the total number
of infected individuals in the multifoci model. Conclusions are

presented in Sec. X. Some details of calculations are relegated
to the Appendices.

II. SINGLE FOCUS EPIDEMIC MODEL WITH
CONTAINMENT DYNAMICS

A. Underlying stochastic model

In a typical SIR epidemic model, the infectivity λ of an
infected individual does not change with time as long as
the infected individual is contagious. It is also assumed that
each infected individual is removed from the population with
a probability that does not depend on time. Therefore, in
the SIR model in the well-mixed infinite population limit,
the density of infected individuals increases exponentially
in the supercritical regime.

Here, we consider an alternative approach and study a
model in which an infected individual has a reproductive num-
ber that changes with time starting from the time τ counted
from the moment when an individual has become infectious.
The constant infectivity λ is, thus, replaced by time-dependent
infectivity,

λ → λF (τ ), (1)

where F (τ ) is a decreasing function of τ . This decay of the
effective infectivity can be due to different causes including
asymptomatic onset, early testing policies, and containment
measures enforced once the infection becomes symptomatic.

To motivate this model, we mention a specific stochastic
model whose average behavior is captured by the dynam-
ics of our model. Consider an individual infected at time
τ = 0. At time step τ > 0, this individual can be removed
from the population (meaning isolation, recovery, or death)
with probability p(τ ). Therefore, the probability that, at time
τ , the individual is still infecting other individuals in the
population is

P(τ ) =
τ∏

τ ′=1

p(τ ′). (2)

Additionally, we assume that, at time τ , an infected and not
yet removed individual infects in average λm(τ ) other individ-
uals. In this stochastic model in the infinite population limit,
an individual infected at time τ = 0 infects, on average,

λF (τ ) = λP(τ )m(τ ), (3)

other individuals at time τ > 0. It follows that F (τ ) acts
as an overall dressing of the infectivity that captures timely
detection, tracking, and isolation.

B. Deterministic model

In this paper, we focus on the deterministic version of the
model discussed in the previous paragraph. Starting at time
t = 0 from a single infected individual n(0) = 1, the average
number n(t ) of individuals infected at time t � 1 is given by

n(t ) = λ

t−1∑
t ′=0

F (t − t ′) n(t ′), (4)
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where F (τ ) is the temporal kernel that describes how the
effective infectivity of an infected individual decays as a func-
tion of time τ elapsed since his infection. This equation is
called the renewal equation. In addition to n(t ), we analyze
the behavior of the total number N (t ) of individuals infected
up to time t ,

N (t ) =
t∑

t ′=0

n(t ′). (5)

We consider the following temporal kernels F (τ ):
(1) Constant kernel.
In this case, the effective infectivity of an infected individ-

ual remains constant in time,

F (τ ) = 1. (6)

In this case, there are no containment measures, and the epi-
demic model reduces to the standard SI model.

(2) Power-law kernel.
In this case, the effective infectivity of an infected individ-

ual decays as a power law of time,

F (τ ) = 1

τα
, (7)

with α � 0. For α = 0, we recover the constant kernel.
(3) Exponential kernel.
In this case, the effective infectivity of an an infected indi-

vidual decays exponentially in time,

F (τ ) = exp[−γ τ ], (8)

with γ � 0. For γ = 0, we recover the constant kernel.
(4) Generalized exponential kernel.
In this case, the effective infectivity of an an infected indi-

vidual decays in time as

F (τ ) = exp[−γ τ b], (9)

with γ > 0. For b = 1, we recover the exponential kernel.
For b > 1, the decay of this temporal kernel is faster than
exponential, and for b < 1, it is slower than exponential.

III. GENERAL SOLUTION OF THE SINGLE
FOCUS MODEL

A. Exact solution

The best way of analyzing recurrences, such as Eq. (4) is
via generating functions. Indeed, the generating function,

N (x) =
∑
t�0

n(t )xt (10)

converts the recurrence Eq. (4) into a linear equation for the
generating function,

N (x) = 1 + λF (x)N (x), (11)

with

F (x) =
∑
τ�1

F (τ )xτ (12)

being the generating function of the temporal kernel. Hence,
Eq. (10) admits the solution,

N (x) = 1

1 − λF (x)
. (13)

The generating function F (x) is well defined for x < R, where
R is the radius of convergence. The convergence radius has an
obvious lower bound, R � 1, in the relevant situations when
the temporal rate F (τ ) is a nonincreasing function of τ .

The generating function N (x) typically has a pole at a
certain x = e−μ < R. The location of the pole is found from

λF (e−μ) = 1. (14)

The pole must be simple since F (x) is a strictly increasing
function of x, in the nonpathological case when F (τ ) � 0.
Applying the theorem of residues to Eq. (13), we deduce the
exponential asymptotic,

n(t ) � Aμeμt (15)

for t � 1, with growth rate μ determined by Eq. (14) and,

Aμ = eμ F (e−μ)

F ′(e−μ)
, (16)

where F ′ = dF
dx . If the condition x = e−μ < R is valid, and

μ > 0, the number of newly infected individuals grows expo-
nentially with time t ; for μ = 0, it remains constant in time;
if μ < 0, it decays exponentially with time. In the interesting
regimes with μ � 0, the total number of infected individuals
N (t ) grows as

N (t ) �
{

Aμ(eμ − 1)−1eμt , μ > 0,

A0t, μ = 0.
(17)

When μ < 0, the total number of infections saturates.
Thus, if the growth rate of new infections is positive, μ >

0, the total number of infected individuals grows exponen-
tially in time at the same rate as the number of new infections.
In the critical case μ = 0, the total number of infected individ-
uals N (t ) increases linearly with time. The amplitude in this
situation has a neat form

A0 = F (1)

F ′(1)
=

∑
τ�1

F (τ )

∑
τ�1

τF (τ )
. (18)

If the condition x = e−μ < R is no longer valid, the scaling
of the number n(t ) of newly infected individuals and the
scaling of the total number N (t ) of infected individuals can
deviate significantly from the exponential behavior indicated
in Eqs. (15) and (17), respectively. Explicit cases where these
deviations are observed will be discussed in detail in the next
sections.

In this article, we employ the discrete-time formulation.
We remark that the renewal equation can be defined in the
continuous time framework, and it is amenable to an exact
analytic solution by making use of Lagrange transforms rather
than generating functions.
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B. Epidemic threshold and dynamical regimes

From the exact solution of N (x) given by Eq. (13), we
deduce that the SI epidemic model defined by Eq. (4) has the
epidemic threshold given by

λc = lim
x→1−

1

F (x)
. (19)

Equation (13) further implies that our epidemic model ex-
hibits different behaviors depending on whether λ is larger,
equal, or smaller than λc.

In the supercritical regime λ > λc, the generating function
N (x) given by Eq. (14) has a simple pole at x = e−μ with
μ > 0. Hence, the number of newly infected individuals ex-
hibits a purely exponential asymptotic growth. In some special
cases, it is possible to get exact results n(t ). For instance, for
the constant kernel and exponential kernels, the exponential
behavior is exact, i.e., valid for all t � 1.

The rate μ approaches to zero when λ → λ+
c . The behavior

is particularly simple when F (x) is differentiable at x = 1 so
that the zeroth and first moments of the temporal rate F (τ ) are
well defined, i.e., F (1) and F ′(1) are finite. In this situation,
we expand Eq. (14) and find

μ � D(λ − λc), (20)

with neat general expressions for the epidemic threshold λc

and amplitude D,

λc = 1

F (1)
, D = 1

λ2
cF ′(1)

. (21)

For temporal kernels with the radius of convergence R = 1
and F ′(1) = ∞, the behavior of μ in the λ → λ+

c limit can be
more surprising. In the majority of cases, we have observed
an algebraic behavior,

μ � D(λ − λc)β (22)

characterized by the dynamical exponent β � 1. Alternatively,
the linear scaling law (20) can acquire a logarithmic correc-
tion.

The critical regime λ = λc, separates the supercritical
regime from the subcritical regime. If R > 1, then n(t ) satu-
rates according to Eq. (15). If R = 1, the asymptotic behavior
of n(t ) can be extracted from an asymptotic expansion of
N (x) for 0 < 1 − x � 1; the emerging asymptotic behavior
of n(t ) could be rich and varied depending on the kernel F (τ )
as we will demonstrate in the following sections.

In the subcritical regime λ < λc, the number of new in-
fections decreases with time. Indeed, the generating function
N (x) remains finite at x = 1,

N (1) = 1

1 − λ/λc
< ∞. (23)

By definition,

N (1) =
∑
t�0

n(t ), (24)

so the number of new infections n(t ) converges to zero,

lim
t→∞ n(t ) = 0. (25)

If R = ∞, the number of new infections n(t ) exhibits an
asymptotic exponential decay according to Eq. (15). When
the convergence radius is finite and obeys R > 1, more com-
plicated behaviors can occur as we will demonstrate.

The definition of our epidemic spreading model implies
that the number of newly infected individuals n(t ) cannot
decay faster than F (t ). Indeed, Eq. (4) yields

n(t ) =
t−1∑
t ′=1

F (t − t ′)n(t ′)

= n(1)F (t − 1) + n(2)F (t − 2) + · · · , (26)

and truncating the sum at the first term, we have

n(t ) � F (t − 1) � F (t ) (27)

for t � 1.
In the following sections, we demonstrate how the general

exact approach described above applies to the four kernels we
analyze in detail. We will show that, if there are no contain-
ment measures, F (τ ) = 1, the exponential growth emerges for
any λ > 0. Thus, for the constant kernel, the model reduces
to the SI model, and it is always in the supercritical regime.
We will also show that containment measures modeled by
sufficiently quickly decaying kernels F (τ ) can be efficient in
containing the epidemic spread by pushing the dynamics in
the subcritical regime. Less stringent containment measures
are not always able to drive the model in the subcritical
regime, and they merely decrease the rate μ of the exponential
growth.

IV. CONSTANT KERNEL

For the constant kernel F (τ ) = 1, Eq. (4) becomes

n(t ) = λ

t−1∑
t ′=0

n(t ′). (28)

The initial condition is n(0) = 1. Equation (28) can be also
written as

n(t ) = (1 + λ)n(t − 1), (29)

which is solved to yield

n(t ) = λ(1 + λ)t−1 = λ

1 + λ
eμt , (30)

with

μ = ln(1 + λ). (31)

For any infectivity λ > 0, the rate μ is always positive. The
number of new infections n(t ) exhibits a pure exponential
growth. The total number of infected individuals N (t ) also
grows exponentially with time,

N (t ) =
t∑

t ′=0

n(t ′) = (1 + λ)t = eμt . (32)

Therefore, for any λ > 0, the system is in the supercritical
regime.

The above qualitative predictions can be also deduced from
our general formalism. Indeed, for the constant kernel F (τ ) =
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1, we have F (x) = x
1−x , and Eq. (19) implies that the epidemic

threshold is vanishing: λc = 0. We also note that, for 0 < λ �
1, the exponential rate μ given by Eq. (31) is asymptotically

μ = λ + O(λ2). (33)

Thus, the rate μ follows the power-law scaling (22) with λc =
0, D = 1, and β = 1.

V. POWER-LAW KERNEL

The power-law kernel exemplifies kernels with a slow de-
cay in time. Below, we show that, for α � 1, the epidemic
threshold vanishes, λc = 0, and n(t ) exhibits an exponential
asymptotic growth for any value of λ > λc = 0. Therefore,
the containment measures can be effective in pushing the dy-
namics in the subcritical regime only if α > 1. For any α > 1,
the epidemic threshold is, indeed, positive, λc > 0, so the
containment measures bring the epidemics to the subcritical
regime when λ < λc.

A. Epidemic threshold

We tacitly assume that α > 0 since α = 0 reduces to the
constant kernel. When F (τ ) = τ−α , the generating function
F (x) is a polylogarithmic function of order α,

F (x) = Liα (x) =
∑
n�1

xn

nα
. (34)

According to the general solution of the model given in
Sec. III A, the generating function N (x) becomes

N (x) = 1

1 − λ Liα (x)
, (35)

and the epidemic threshold of this model is given by

λc = lim
x→1−

1

Liα (x)
. (36)

Figure 1 shows the plot of the epidemic threshold λc versus
the power-law exponent α.

Since Liα (x) diverges at x = 1 when α � 1, we conclude
that λc = 0 when 0 � α � 1. The most gentle logarithmic di-
vergence occurs in the marginal case of α = 1 when Li1(x) =
− ln(1 − x). Thus, for any λ > 0, the epidemic is in the super-
critical regime when 0 < α � 1. According to Eq. (15), the
number n(t ) of new infected individuals grows exponentially
with time at rate μ > 0 given by Eq. (14). The larger the
decay exponent α, the more stringent are the containment
measures, so the rate μ is a decreasing function of α. Hence,
for 0 < α < 1, the containment measures mitigate the spread
of the epidemics but cannot stop its exponential growth.

For α > 1, the epidemic threshold is finite,

λc = 1

Liα (1)
= 1

ζ (α)
> 0, (37)

where ζ (α) = ∑
n�1 n−α is the ζ function. Thus, for λ < λc,

the containment measures push the dynamics in the subcriti-
cal regime stopping the exponential growth. Since ζ (α) > 1
for all α > 1, the epidemic threshold λc is bounded from
above, viz.,

λc < 1. (38)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

c

FIG. 1. The epidemic threshold λc versus the exponent α charac-
terizing the power-law kernel (7). The epidemic threshold vanishes,
λc = 0, for 0 < α � 1; when α > 1, the epidemic threshold is an
increasing function of α obeying λc � 1.

The ζ function has a simple pole at α = 1, and near the
pole, it admits an expansion,

ζ (α) = 1

α − 1
+ γE + O(α − 1), (39)

where γE = 0.5772 156 649 · · · is the Euler-Mascheroni con-
stant. Using this expansion, one deduces the scaling of the
epidemic threshold when 0 < α − 1 � 1,

λc = α − 1 − γE (α − 1)2 + O[(α − 1)3]. (40)

We now discuss, in detail, the supercritical, critical, and
subcritical regimes for the power-law kernel with decay expo-
nent α > 0.

B. Supercritical regime

The general solution of the model, Sec. III A, implies that,
in the supercritical regime, the number of individuals infected
at time t obeys the asymptotic scaling,

n(t ) � Aμeμt , (41)

with μ > 0 satisfying Eq. (14) which becomes

1 = λ Liα (e−μ). (42)

The amplitude Aμ in (41) is given by (16) which gives

Aμ = eμ Liα (e−μ)

Liα−1(e−μ)
. (43)

In Fig. 2(a), we provide numerical evidence of the expo-
nential grow of n(t ) in the supercritical regime λ > λc. Both
n(t ) and N (t ) exhibit the exponential growth with the same
growth rate and only amplitudes differ,

N (t ) � Ceμt , (44)

with C = Aμ/(eμ − 1).
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FIG. 2. The number n(t ) of newly infected individuals for the power-law kernel (7) is plotted versus time t for α = 1.5, 2.0, 2.5. Panel
(a) refers to the supercritical regime with λ = 1.5λc; panel (b) refers to the critical regime with λ = λc; panel (c) refers to the subcritical regime
with λ = 0.5λc.

The growth rate μ > 0 depends on α and λ. For α 	= 1, the
rate μ is implicitly determined by Eq. (42). This transcenden-
tal equation does not admit a general explicit solution. One
exception is the marginal case of α = 1 when the polylog-
arithmic function becomes Li1(x) = − ln(1 − x). Combining
this with Eq. (42), we extract an explicit expression,

μ = − ln(1 − e−1/λ), (45)

in the marginal case of α = 1.
We now present various asymptotic expansions of μ for

different values of α. In particular, we analyze the scaling of
μ for λ → ∞ and for λ → λ+

c at α � 0.

1. Scaling of μ for λ → ∞
For the constant temporal kernel, the growth rate reads

μ = ln(1 + λ), see Eq. (31), so it diverges logarithmically as
λ → ∞. The presence of nontrivial power-law containment
measures (α > 0), the rate μ also diverges logarithmically as
we now demonstrate. Indeed, combining the definition (34) of
the polylogarithmic function,

Liα (e−μ) = e−μ + 2−αe−2μ + · · · ,

with Eq. (42), we find

μ = ln(1 + λ) − 1 − 2−α

λ
+ O(λ−2). (46)

This analytical prediction is supported by numerical results,
see Fig. 3 where we plot ln(1 + λ) − μ versus α. In the limit
λ → ∞, we observe the same leading term as for α = 0 with
an α-dependent subleading correction of order of 1/λ. Thus,
the containment measures lead only to subleading corrections
to a diverging value of μ.

2. Scaling of μ when λ → λ+
c

Here, we examine the behavior of the growth rate μ in the
λ → λ+

c limit. The linear scaling (20) occurs when α > 2. A
more general scaling law (22) with dynamical exponent β > 1
occurs in the range of 0 < α < 2. There are two anomalies:
when α = 1, the exponent β diverges, whereas when α = 2,
there is an additional logarithmic correction to the linear
scaling (20). These scalings are summarized in Table I. We

now derive these results and establish the dependence of the
amplitude D and the exponent β on α.

(a) The case of 0 � α < 1.
From the definition (34) of the polylogarithmic function,

one extracts the expansion,

Liα (x) = (1 − x)α−1�(1 − α) + O(1), (47)

when x → 1−. Substituting this expansion into Eq. (42), we
obtain

μ � Dλ1/(1−α), D = [�(1 − α)]1/(1−α). (48)

Thus, λc = 0 and β = (1 − α)−1.
(b) The case of α = 1.
The epidemic threshold also vanishes in this case, λc = 0,

and the explicit solution (45) leads to the exponential scaling,

μ = e−1/λ + O(e−2/λ). (49)

Thus, the exponent β is effectively infinite.
(c) The case of 1 < α < 2.
The epidemic threshold is λc = 1/ζ (α). The polylogarith-

mic function admits the asymptotic expansion,

Liα (x) = ζ (α) + (1 − x)α−1�(1 − α) + · · · , (50)

10-1 100 101 102 103
10-4

10-3

10-2

10-1

100

ln
(1

+
)-

=0.7
=1.0
=1.4
=2.0
=2.5

FIG. 3. The discrepancy ln(1 + λ) − μ between the growth rate
μ and its universal leading behavior is plotted versus λ for the model
with power-law kernel (7). The results for different values of the
exponent α = 0.7, 1.0, 1.4, 2.0, 2.5 are shown.
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TABLE I. The growth rate μ characterizing the exponential asymptotic behavior of the number of infected individuals n(t ) ∼ eμt for the
power-law kernel F (τ ) = 1/τα in the supercritical regime λ > λc.

α 0 < α < 1 α = 1 1 < α < 2 α = 2 α > 2

μ Dλ1/(1−α) e−(1/λ) D(λ − λc )1/(α−1) −D(λ − λc )/| ln(λ − λc )| D(λ − λc )

when x → 1−. By inserting this expansion into Eq. (42), we
arrive at Eq. (22) with

β = 1

α − 1
, D =

[
− ζ 2(α)

�(1 − α)

]1/(1−α)

. (51)

(d) The case of α = 2.
The polylogarithmic function Li2(x) admits the asymptotic

expansion,

Li2(x) = ζ (2) + (1 − x)[ln(1 − x) − 1] + · · · (52)

when x → 1−. By inserting Eq. (52) into Eq. (42) and recall-
ing that λc = 1/ζ (2) = 6/π2, we get

μ � −D
(λ − λc)

ln(λ − λc)
, D = ζ 2(2) = π4

36
. (53)

Thus, when α = 2, the rate μ acquires a logarithmic correc-
tion to the linear in λ − λc scaling.

(e) The case of α > 2.
From the definition (34) of the polylogarithmic function,

one extracts the expansion,

Liα (x) = ζ (α) − (1 − x)ζ (α − 1) + o(1 − x). (54)

Inserting this expression into Eq. (42), we find

μ � D(λ − λc), D = ζ 2(α)

ζ (α − 1)
. (55)

Thus, the dynamical exponent is universal β = 1 for all α >

2. The prediction (55) can be also deduced by specializing the
general result (21) to the power-law kernel with α > 2.

Figure 4 shows numerical results providing evidence for
the asymptotic scaling behaviors of the growth rate μ as a
function of λ − λc discussed above.

C. Critical region: α > 1 and λ = λc

An asymptotic analysis (see Appendix A for details) shows
that at the epidemic threshold λ = λc = 1/ζ (α), the num-
ber of newly infected individuals n(t ) exhibits the following
asymptotic behaviors:

n(t ) �
{Atα−2, for 1 < α < 2,

A/ln t, for α = 2,

A, for α > 2.

(56)

The amplitude A in Eq. (56) actually depends on α,

A =
{−ζ (α)/[�(α − 1)�(1 − α)], for 1 < α < 2,

ζ (2), for α = 2,

ζ (α)/ζ (α − 1), for α > 2.

(57)

Thus, the average number of new cases remains constant when
α > 2; otherwise, the number of newly infected individuals
decays with time. The predictions of Eq. (56) are confirmed
by the direct numerical integration of the dynamics dictated
by Eq. (4) in the critical regime λ = λc, see Fig. 2(b). By using
the asymptotic expression for n(t ) in Eq. (56), we deduce the

scaling of the total number N (t ) of infected individuals at time
t , given by

N (t ) �
{Ctα−1, for 1 < α < 2,

Ct/ln t, for α = 2,

Ct, for α > 2,

(58)

with

C =
{

ζ (α)/[�(α − 1)�(2 − α)], for 1 < α < 2,

ζ (2), for α = 2,

ζ (α)/ζ (α − 1), for α > 2.

(59)

Thus, in the critical regime, λ = λc with α > 1, the total
number of infected individuals grows linearly in time when
α > 2 and sublinearly when 1 < α � 2.

D. Subcritical region: α > 1 and λ < λc

In this subcritical regime, the asymptotic behavior of newly
infected individuals is algebraic,

n(t ) � At−α, A = λ

[1 − λ ζ (α)]2
. (60)

Thus, the asymptotic behavior is dominated by the time de-
pendence of the power-law kernel F (τ ). One can establish
(60) by performing an asymptotic analysis of the behavior of
N (x) as x → 1−, which, in turn, requires the knowledge of
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FIG. 4. The growth rate μ versus λ − λc for the power-law kernel
(7) with different values of the exponent α.
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the behavior of Liα (x) as x → 1−. The details are presented
in Appendix B. The analysis is rather straightforward in the
range of 1 < α � 2 but becomes more and more tedious as
the exponent α increases. We have verified (60) in detail when
α < 3, and we have argued for the validity of the simple
general prediction (60), although our proof quickly becomes
unwieldy, e.g., it requires the asymptotic expansion until order
k and k fold differentiations when k < α � k + 1. Our numer-
ical results, see Fig. 2(c), are in excellent agreement with the
theoretical prediction (60) for all values α > 2 where we have
performed simulations.

Using Eq. (60), we find that the total number of infected
individuals N (t ) saturates to a constant value,

N (t ) = A
[
ζ (α) − 1

α − 1
t1−α

]
+ O(t−α ). (61)

VI. EXPONENTIAL KERNEL

Let us assume that the effective infectivity of an individual
decays exponentially with time F (τ ) = e−γ τ . The constant
kernel corresponds to γ = 0, so we tacitly assume that γ > 0.
Equation (4) can be written as the recurrence,

n(t ) = e−γ (1 + λ)n(t − 1) (62)

valid for any t � 2 with initial condition n(1) = λe−γ . The
solution to the above recurrence reads

n(t ) = λ

1 + λ
eμt , (63)

with

μ = ln(1 + λ) − γ . (64)

For the exponential kernel, the generating function,

F (x) = Gγ (x) =
∞∑

m=1

(xe−γ )m = e−γ x

1 − xe−γ
(65)

has the radius of convergence R = eγ > 1. The epidemic
threshold is

λc = 1

Gγ (1)
= eγ − 1. (66)

Thus, the containment measures suppress the spreading of the
epidemic when λ < λc = eγ − 1.

We, now, use Eqs. (64) and (66) to derive the properties of
the three different regimes. In the supercritical phase λ > λc,
the growth rate (64) is smaller than for the constant kernel
(corresponding to γ = 0). Close to the critical point, the scal-
ing of μ is similar to the scaling in for the constant kernel,
namely, it is linear in λ − λc,

μ = D(λ − λc), D = e−γ . (67)

In the critical phase, the number of new cases is constant in
time. In the subcritical phase, the number of new cases decays
exponentially. The total number N (t ) of infected individuals
is determined by Eq. (17) for any value of λ with μ given by
Eq. (64).

The scalings of the total number N (t ) of infected individ-
uals in the supercritical, critical, and subcritical regimes are
summarized in Table II.

TABLE II. Scaling of the total number of infected individuals
N (t ) for the power-law kernel and for the generalized exponential
kernel. Here, ω ∈ (0, 1) is an exponent depending on the value of α

with ω = α − 1 for α ∈ (1, 2) and ω = 1 for α > 2. The constant C
also depends on parameters. For the power-law kernel F (τ ) = 1/τα

with α = 2, the critical behavior develops a logarithmic correction
defined in Eq. (58) and not captured by the present table.

Kernel λ > λc λ = λc λ < λc

F (τ ) = 1/τα Ceμt Ctω C
F (τ ) = exp(−γ τβ ) Ceμt Ct C

VII. GENERALIZED EXPONENTIAL DECAY

In this section, we consider a two-parameter class of gen-
eralized exponential decay kernels,

F (τ ) = exp[−γ τ b], γ > 0 and b > 0. (68)

In this case, the generating function F (x) becomes

F (x) = Gγ ,b(x) =
∑
m�1

xme−γ mb
. (69)

From the general solution presented in Sec. III A, we find
that the generating function N (x) of the number of new in-
fected individuals reads

N (x) = 1

1 − λ Gγ ,b(x)
, (70)

and the epidemic threshold is given by

λc = 1

Gγ ,b(1)
=

[ ∞∑
m=1

e−γ mb

]−1

. (71)

In Fig. 5, we plot the epidemic threshold λc as a function of b
for generalized exponential kernels with γ = 1.

For all b > 0, values of Gγ ,b(1) and G′
γ ,b(1) are finite,

therefore, the growth rate μ exhibits the linear scaling (20) and
(21) in the λ → λ+

c limit. Specializing Eq. (21) to the kernel

0 1 2 3 4
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2
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6

8

c

=0.5
=1.0
=2.0

FIG. 5. The epidemic threshold λc for generalized exponential
kernel (68) is plotted versus b for γ = 0.5, 1.0, 2.0.
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FIG. 6. The number n(t ) of newly infected individuals is plotted versus time t for the generalized exponential kernel F (τ ) given by Eq. (68)
with γ = 1 and b = 0.50, 0.75, 1.00, 1.25. Panel (a) refers to the supercritical regime with λ = 1.5λc, panel (b) refers to the critical regime
λ = λc, and panel (c) refers to the subcritical regime λ = 0.5λc.

(68), we get Eq. (71) with

D = [Gγ ,b(1)]2

G′
γ ,b(1)

=

[∑
m�1

e−γ mb

]2

∑
m�1

me−γ mb
. (72)

The sums appearing in Eqs. (71) and (72) cannot be
generally expressed through known special functions. One
exception is the b = 2 case when recalling the definition of
the Jacobi θ function,

θ3(q) =
∞∑

n=−∞
qn2

, (73)

we rewrite the epidemic threshold as

λc = 2

θ3(e−γ ) − 1
. (74)

In the general case of arbitrary b > 0, the asymptotic be-
haviors of the sums in Eqs. (71) and (72) can be established
when γ → 0+. In this situation, we replace the summation by
integration and arrive at the following leading behaviors:

λc � γ 1/b

�
(
1 + 1

b

) , D � 2
�2

(
1 + 1

b

)
�

(
1 + 2

b

) . (75)

The number of newly infected individuals follows different
scaling behaviors depending on whether b > 1 or b < 1. The
kernel F (τ ) decays faster than exponential if b > 1, so the
generating function Gγ ,b(x) has an infinite radius of conver-
gence in this situation, and n(t ) follows Eq. (15). The growth
rate μ is determined by Eq. (14) that for the kernel (68)
becomes

λGγ ,b(e−μ) = 1. (76)

In Fig. 6, we show numerical results for the number of
newly infected individuals for b = 1.25 > 1 in the supercriti-
cal, critical, and subcritical regimes. The total number N (t ) of
infected individuals for b > 1 follows Eq. (17) for any value
of λ with μ given by Eq. (76).

When b < 1, the kernel F (τ ) decays slower than expo-
nential, and the radius of convergence of Gγ ,b(x) is R = 1.
Therefore, we might expect deviations from the exponential
scaling described by Eq. (15) in the critical and subcritical
regimes. Here, we summarize the asymptotic behaviors in
these regimes (see Appendix C for the derivations). In the
critical regime, the asymptotic analysis shows that the number
of newly infected individuals n(t ) saturates asymptotically for
long times t (see Fig. 6) with the limit given by

lim
t→∞ n(t ) = Gγ ,b(1)

G′
γ ,b(1)

. (77)

Therefore, in the critical regime, the total number N (t ) of
infected individuals grows linearly with time for t � 1.

In the subcritical regime, the asymptotic scaling analysis
(see Appendix C) implies that n(t ) decays faster than t−2. Our
numerical analysis indicates that n(t ) decays, such as F (t ),
see Fig. 6(c). Therefore, in the subcritical regime, the total
number N (t ) of infected individuals for sufficiently long times
saturates to a constant value. The scalings of the total number
N (t ) of infected individuals in the supercritical, critical and
subcritical regime are summarized in Table II.

VIII. MULTIFOCI SI MODEL

An epidemic outbreak in one region of the world can
spread to other regions also in the presence of containment
measures forming several foci of the epidemics. We, thus,
consider a model in which the pandemic is formed by a set of
separated foci i where the outbreak starts at different times ti.
A realistic metapopulation model of this sort may account for
the mobility of the individuals across the different locations
utilizing transportation networks. Here, we employ a simpli-
fied mean-field approach and assume that the number of new
foci at time t = ti is a deterministic function of ti indicated by
ρ(ti ). We consider two functional forms for ρ(ti ):

(A) A power-law functional form for ρ(ti ),

ρ(ti ) = Btγ
i , (78)
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where γ � 0 and B > 0. A constant number of new foci as a
function of time corresponds to γ = 0; if γ > 0, the number
of new foci increases with time.

(B) An exponential functional form for ρ(ti ),

ρ(ti ) = Beθti , (79)

with θ � 0 and B > 0. If θ > 0, the number of new foci
increases exponentially as a function of time.

In both scenarios, the total number of cases I (t ) at time t
calculated across all the foci is given by

I (t ) =
t−1∑

1

Ni(t − ti )ρ(ti ), (80)

where Ni(t − ti ) is the total number of cases of the foci i at
time t . In principle, at every foci, different containment mea-
sures could be applied, but we focus on the simplest situation
when each focus follows the same dynamics and has the same
parameters.

IX. TOTAL NUMBER OF INFECTED IN THE
MULTIFOCI MODEL

In this section, we calculate the total number of infected
individuals I (t ) in the multifoci metapopulation approach.
Since we assume that every foci follows the same dynamics,
I (t ) is given by Eq. (80) with Ni being the same and just
shifted to the activation time ti, that is Ni(t − ti ) = N (t − ti )
at time t .

For the kernels which we employ, the asymptotic behavior
of N (t ) at long times can be cast in two major classes: the
exponential behavior and the power-law behavior. We now
separately consider these two cases.

A. Exponential case

Consider an exponential dependence of N (t ), i.e.,

N (t ) � Ceμt , (81)

where, without loss of generality, we consider μ > 0.
(A) If the number of new foci increases as a power law

Eq. (78), by putting Eq. (81) into Eq. (80) and limiting our-
selves to the situation when the growth of N (t ) is exponential
μ > 0, we obtain

I (t ) � C Li−γ (e−μ)eμt , (82)

where C = BC and where Lia(x) is a polylogarithm with index
a. Therefore, for μ > 0, the presence of different foci does not
change the exponential trend and I (t ) and N (t ) differ only by
a constant.

(B) If the number of new foci increases exponentially
Eq. (79), we put Eq. (81) into Eq. (80) to yield

I (t ) �
{Ceμt , if μ > θ,

Cteμt , if μ = θ,

Ceθt [eθ−μ − 1]−1, if μ < θ,

(83)

where C = BC. Thus, the presence of different foci changes
the exponential trends if and only if θ � μ.

B. Power-law case

We, now, consider the case in which the total number of
infected individuals N (t ) in each focus of the epidemics scales
as a power law,

N (t ) = Ctν (84)

for t � 1. We can assume that ν � 0. Indeed, the definition of
the total number N (t ) of infected individuals in a given focus,
given by Eq. (5) implies that N (t ) is a nondecreasing function
of time with N (t ) � n(0) = 1.

(A) We now insert Eq. (84) into Eq. (80) and approximate
the sum by an integral in the long time limit. Computing the
integral, we obtain

I (t ) � C B(1 + γ , 1 + ν) t1+γ+ν, (85)

where B(a, b) is the Euler β function,

B(a, b) =
∫ 1

0
dx xa−1(1 − x)b−1. (86)

The replacement of the sum by an integral is asymptotically
justifiable when γ > −1. Note that both I (t ) and N (t ) grow
algebraically. The presence of different foci accelerates the
growth 1 + γ + ν > ν when γ > −1. If γ � −1, we estimate
the sum in Eq. (80) more carefully and get

I (t ) � Ctν ×
{ln t, γ = −1,

ζ (−γ ), γ < −1.
(87)

(B) If the number of new foci increases exponentially,
Eq. (79), we put Eq. (84) into Eq. (80) to yield

I (t ) � C Li−ν (e−θ )eθt , (88)

where C = BC and the polylogarithm function Lia(x) is de-
fined in Eq. (34). Therefore, in this case, the total number of
infected across all the foci is growing exponentially with rate
θ . In other words, I (t ) growth in time is dominated by the rate
at which new foci are established.

X. CONCLUSIONS

We proposed an epidemic model with time-dependent in-
fectivity that mimics different types of containment measures.
This model allows one to study the onset of epidemics and the
role that time-dependent infectivity can have on the spread
of the disease. We demonstrated that different containment
measures can either lead to a slowing down of the exponen-
tial spread by modulating the growth rate μ or can bring
the epidemic to a halt when they push the dynamics in the
subcritical regime. In particular, exponential and generalized
exponential temporal kernels always induce a finite epidemic
threshold λc, so they stop epidemics provided that λ < λc.
Sufficiently steep power-law temporal kernels also induce a
nonvanishing epidemic threshold—this happens when the de-
cay exponent characterizing the kernel satisfied exceeds unity:
α > 1. In the supercritical regime, λ > λc, the total number of
infected individuals grows exponentially with a characteristic
timescale that diverges at the critical point following different
universality classes depending on the kernel; in the subcritical
regime, the total number of infected individuals saturates to
a constant; in the critical regime, the number of infected
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individuals grows in time linearly or sublinearly. These results
have been obtained assuming a well-mixed approximation and
by considering a single focus of the epidemic.

We also briefly investigated the multifoci version in the
simplest situation when each focus follows the same dynam-
ics. We showed that if the number of new foci increases as a
power law of time, in the supercritical regime the total number
of cases across different foci scales, such as the total number
of cases in each focus. In the critical and subcritical regimes,
the total number of cases across different foci can grow faster
than linearly. Qualitatively different behaviors emerge also
in the supercritical regime when the number of new foci
increases exponentially with rate exceeding the “bare” rate μ.

There are many avenues for future work. An obvious im-
portant challenge is to model stochastic characteristics and
account for large fluctuations observed in pandemics. Stochas-
tic characteristics are difficult to describe even in the classical
SIR model in the critical regime [39–46], and they may
play an important role in our model. Finally, the multifoci
metapopulation approach could be expanded by considering
the effect of social and transportation networks.
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APPENDIX A: DERIVATION OF EQ. (56)

In this Appendix, we derive the announced asymptotic
behaviors (56) of the number of new infected individual n(t )
in the critical regime for the power-law kernel. We also de-
rive the predictions (57) for the amplitude, and compute the
subleading term in the special case of α = 2 when the conver-
gence to the leading asymptotic is anomalously slow.

Our starting point is Eq. (35) that we rewrite as

N (x) = 1

1 − λcLiα (x)
. (A1)

We keep in mind known relations λ = λc = 1/ζ (α) character-
izing the critical regime of the power-law kernel in the α > 1
range.

To establish Eq. (56), we expand the right-hand side of
Eq. (A1) in the region x → 1−; the asymptotic behavior of
n(t ) follows from this expansion. The polylogarithmic func-
tion Liα (x) exhibits different asymptotic behaviors in the x →
1− limit depending on whether different values of α is smaller
or larger than 2. Therefore, we separately treat the cases of
1 < α < 2, α = 2, and α > 2.

1. The case of 1 < α < 2

In this range, the polylogarithmic function Liα (x) admits
the asymptotic expansion (50) which we insert into Eq. (A1)
and arrive at

N (x) � − ζ (α)

�(1 − α)
(1 − x)1−α, (A2)

as x → 1−. Thus,∑
t�0

n(t )xt � − ζ (α)

�(1 − α)
(1 − x)1−α, (A3)

which implies the long-time behavior,

n(t ) � − ζ (α)

�(α − 1)�(1 − α)
tα−2 (A4)

stated in Eqs. (56) and (57) when 1 < α < 2. Using the Eu-
ler identity �(y)�(1 − y) = π/ sin(πy), one can also rewrite
(A4) as

n(t ) � (α − 1)ζ (α) sin[π (α − 1)]

π
tα−2. (A5)

As a simple “physical” confirmation of Eq. (A4), one
can substitute Eq. (A4) into the sum on the left-hand side
of Eq. (A2), note that in the x → 1− limit the summation
can be replaced by integration; computing the integral, one
recovers the right-hand side of (A2). A rigorous derivation of
the asymptotic of the coefficients from the singular behavior
of the generating function can be performed by a variety of
techniques, e.g., by using Tauberian theorems [49] or complex
analysis [50]; see the textbook [51] for numerous examples.

2. The case of α = 2

The polylogarithmic function Li2(x) has the asymptotic
expansion (52) which we insert into Eq. (A1) and obtain

N (x) � ζ (2)

1 − ln(1 − x)

1

1 − x
, (A6)

from which we deduce the leading asymptotic behavior re-
ported in (56) and (57) at α = 2. The presence of logarithms
often implies that the subleading term is just logarithmically
smaller than the leading term, and, then, the sub-sub-leading
term is another logarithmic factor smaller. The derivation
of these subleading terms is a bit long, but it uses standard
techniques [50,51]; alternatively, it can be also extracted from
the general results presented in Ref. [51]. Keeping just the
leading and subleading terms yield the following asymptotic:

n(t ) � ζ (2)

ln t + γE + 1
, (A7)

where γE is the Euler-Mascheroni constant and we have
dropped the terms of the order (ln t )−3. Using Eq. (A7), we
obtain a slightly more precise version of Eq. (58) at α = 2,

N (t ) � ζ (2)t

ln t + γE
. (A8)

3. The case of α > 2

When α > 2, the polylogarithmic function Liα (x) admits
the asymptotic expansion (54) which we insert into (A1) and
get

N (x) � ζ (α)

ζ (α − 1)
(1 − x)−1, (A9)

implying that the number n(t ) of new infected individuals
saturates

lim
t→∞ n(t ) = ζ (α)

ζ (α − 1)
, (A10)

as stated in Eqs. (56) and (57) at α > 2.
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APPENDIX B: DERIVATION OF EQ. (60)

In this Appendix, we derive the announced asymptotic
behavior (60) applicable in the subcritical regime. We start
with Eq. (35) that we rewrite, here, for convenience,

N (x) = 1

1 − λ Liα (x)
. (B1)

The subcritical regime λ < λc = 1/ζ (α) is possible for all
α > 1. Since N (1) is finite, we consider the expansion of
N (1) − N (x) in the x → 1− limit. By using Eq. (B1), one
can derive the asymptotic expression of n(t ) in the range of
1 < α � 2. This is carried out below first when 1 < α < 2
and, then, at α = 2. In these cases, we recover the asymptotic
scaling in Eq. (60). The same method, in principle, applies to
all α > 2, but our treatment is less rigorous there as it is based
on the analysis the 2 < α < 3 range than the 3 < α < 4 range,
etc., and it quickly becomes cumbersome.

1. The case of 1 < α < 2

In the 1 < α < 2 range, the deviation of Liα (x) from
Liα (1) = ζ (α) scales as

Liα (x) − Liα (1) � �(1 − α)(1 − x)α−1, (B2)

when x → 1−. This is just the rewriting of Eq. (50). Using
Eqs. (B1) and (B2), we find

N (1) − N (x) � − λ�(1 − α)

[1 − λζ (α)]2
(1 − x)α−1. (B3)

Recalling the definition of the generating function N (x), we
get

∑
t�0

n(t )[1 − xt ] � − λ�(1 − α)

[1 − λζ (α)]2
(1 − x)α−1. (B4)

Differentiating with respect to x to obtain

∑
t�0

tn(t )xt−1 � (1 − x)α−2 λ�(2 − α)

[1 − λζ (α)]2
(B5)

leading to the announced asymptotic behavior (60) in the 1 <

α < 2 range.

2. The case of α = 2

When α = 2, we rewrite (52) as

Li2(1) − Li2(x) � (1 − x)[ln(1 − x) − 1]. (B6)

Using Eqs. (B1) and (B6), we find

N (1) − N (x) � (1 − x)[ln(1 − x) − 1]
λ

[1 − λζ (2)]2
, (B7)

from which we deduce∑
t�0

tn(t ) xt−1 � − ln(1 − x)
λ

[1 − λζ (2)]2
(B8)

leading to the announced asymptotic (60) at α = 2.

3. The case of α > 2

For α > 2, we rewrite Eq. (54) as

Liα (1) − Liα (x) � ζ (α − 1)(1 − x). (B9)

Using Eqs. (B1) and (B9), we find

N (1) − N (x) � λζ (α − 1)

[1 − λ ζ (α)]2
(1 − x). (B10)

The same treatment as before gives∑
t�0

tn(t ) = λζ (α − 1)

[1 − λζ (α)]2
, (B11)

which only implies that n(t ) should decay faster than t−2.
To derive the announced asymptotic (60) for α > 2, one

should employ the expansion of Liα (1) − Liα (x) which is
more accurate than the leading term given by Eq. (B9). Let us
first consider the region 2 < α < 3. In this range, the required
more accurate form reads

Liα (1) − Liα (x) = ζ (α − 1)(1 − x) − B(1 − x)α−1 + · · · .

(B12)

Differentiating Eq. (B12) twice with respect of x and using the
identity,

d2Liα (x)

dx2
= Liα−2(x) − Liα−1(x)

x2
(B13)

we obtain

Liα−2(x) − Liα−1(x) � B(α − 1)(α − 2)(1 − x)α−3 (B14)

in the x → 1− limit. The leading behavior of the left-hand
side of Eq. (B14) is provided by the leading asymptotic of
Liα−2(x), and it reads

Liα−2(x) � �(3 − α)(1 − x)α−3. (B15)

Thus, we fix the amplitude in (B14),

B = �(3 − α)

(α − 1)(α − 2)
. (B16)

Using Eqs. (B1) and (B9), we obtain∑
t�0

n(t )[1 − xt ] � λζ (α − 1)

[1 − λζ (α)]2
(1 − x)

− λ

[1 − λζ (α)]2
B(1 − x)α−1,

which we differentiate twice with respect to x to yield∑
t�0

t (t − 1)n(t )xt−2 � (1 − x)α−3 λ�(3 − α)

[1 − λζ (α)]2
, (B17)

where we have also used Eq. (B16). From the above expres-
sion, we confirm the announced asymptotic (60) in the range
of 2 < α < 3. The same tedious analysis using allows one to
confirm Eq. (60) at α = 3. In the range of 3 < α < 4, one
needs to use an extra term,

Liα (1) − Liα (x) = ζ (α − 1)(1 − x) + B2(1 − x)2

−B3(1 − x)α−1 + · · · . (B18)
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The most important is the singular term B3(1 − x)α−1, with
amplitude B3 found after differentiating Eq. (B18) three times
with respect of x. One, then, obtains∑

t�0

t (t − 1)(t − 3)n(t )xt−2 ∼ (1 − x)α−4, (B19)

from which one confirms Eq. (60) in the range of 3 < α < 4.
The above tedious proof extends to all α > 2. The sim-

plicity of the final result Eq. (60), hints on a possible general
derivation circumventing the consideration of the infinitely
many intervals k < α < k + 1 for all integers k � 1, and the
separate analysis of α = k with k � 2 where the logarithms
arise in the intermediate steps but disappear from the final
formula given by Eq. (60).

APPENDIX C: ASYMPTOTIC ANALYSIS OF THE
GENERALIZED EXPONENTIAL KERNEL WITH b < 1

In this Appendix, we discuss the derivation of the asymp-
totic expansion for n(t ) for the generalized exponential kernel
with b < 1. In the critical regime, the generating function
N (x) satisfies

N (x) = 1

1 − λcGγ ,b(x)
. (C1)

In the x → 1− limit, we, therefore, obtain

N (x) � Gγ ,b(1)

G′
γ ,b(1)

(1 − x)−1, (C2)

leading to the asymptotic behavior (77), namely,

lim
t→∞ n(t ) = Gγ ,b(1)

G′
γ ,b(1)

. (C3)

In the subcritical regime, λ < λc, we obtain

N (1) − N (x) � λ G′
γ ,b(1)

[1 − λGγ ,b(1)]2
(1 − x), (C4)

as x → 1−, which we treat as in Appendix B and find

∑
t�1

tn(t ) = C1 ≡ λG′
γ ,b(1)

[1 − λGγ ,b(1)]2
(C5)

telling us that n(t ) decays faster than t−2.
To derive a more precise prediction one can use the same

trick as in Appendix B, namely to establish a more precise
expansion than Eq. (C4). One gets, however, the regular ex-
pansion,

N (1)−N (x) � C1(1−x)+ 1
2C2(1−x)2+ 1

6C3(1 − x)3+ · · · ,

from which∑
t�1

t (t − 1)n(t ) = C2,
∑
t�1

t (t − 1)(t − 2)n(t ) = C3,

etc. The first sum rule implies that n(t ) decays faster than t−3,
the second tells us that n(t ) decays faster than t−4. Proceeding,
one finds that n(t ) seemingly decays faster than any power of
time. Recall, that for the power-law kernel, the decay of n(t )
in the subcritical regime is qualitatively the same as the decay
of the kernel F (τ ). This may occur also for the generalized
exponential kernel, and our simulation results agree with this
conjecture. Theoretically, however, we only established that
the decay of n(t ) is faster than any power law.
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