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Heterogeneity in outcomes of repeated instances of percolation experiments
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We investigate the heterogeneity of outcomes of repeated instances of percolation experiments in complex
networks using a message-passing approach to evaluate heterogeneous, node-dependent probabilities of belong-
ing to the giant or percolating cluster, i.e., the set of mutually connected nodes whose size scales linearly with
the size of the system. We evaluate these both for large finite single instances and for synthetic networks in the
configuration model class in the thermodynamic limit. For the latter, we consider both Erdős-Rényi and scale-free
networks as examples of networks with narrow and broad degree distributions, respectively. For real-world
networks we use an undirected version of a Gnutella peer-to-peer file-sharing network with N = 62 568 nodes
as an example. We derive the theory for multiple instances of both uncorrelated and correlated percolation
processes. For the uncorrelated case, we also obtain a closed-form approximation for the large mean degree
limit of Erdős-Rényi networks.
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I. INTRODUCTION

Ever since the start of research into random graphs and
complex networks, the problem of percolation has taken
center stage, starting with determining the conditions under
which random graph ensembles do exhibit a so-called giant
or percolating cluster that occupies a finite fraction of the
system in the large system limit [1–4]. With the growing
importance of networks and network-based technologies in
real life, percolation as a process on existing networks, where
edges (or nodes) are kept with some probability p and are
deleted with probability 1 − p, has been much studied. The
survival (and size) of a giant cluster is taken as a measure of
the resilience of a network against random failure of nodes
or links [5,6]. In these papers, generating function methods
were used to evaluate the average fraction of nodes in the giant
component as well as average sizes of finite connected clusters
that are not part of the giant component. Such methods have
also been used to analyze the sizes of avalanches of cascading
failures in interacting systems [7]. Studies of percolation in
complex networks, both with and without additional structure,
have been linked to the issue of network resilience against
random failure or intentional disruption of components ever
since; for some more recent results see, e.g., Refs. [8–15] and
references therein. However, it is also worth highlighting an-
other important aspect of network resilience that goes beyond
connectivity properties as captured by percolation, namely,
the issue of the integrity of nontrivial collective states in net-
worked systems with interacting degrees of freedom; see, e.g.,
Refs. [16–19]. Indeed, while stochastic dynamical systems
defined on complex networks could not support nontrivial
collective states without a giant connected component, such
states may become unstable as a result of random (or targeted)
removal of links or nodes well before the giant component
disappears.

There is an interesting link between the long-term behavior
of SIR (susceptible-infected-recovered) models of infection
dynamics and bond percolation on complex networks, which
appears to have been made as early as 1983 [20]. It was
generalized to cover heterogeneous transmission processes
[21] and investigated using generating function methods in
Ref. [22], concentrating on instabilities against outbreaks and
on the average size of the epidemic. Studies of the dynamics of
epidemics in complex networks on the other hand, rather than
concentrating on overall average probabilities of infection or
recovery, have resorted to a heterogeneous dynamic mean-
field theory which allows one to take (some of) the hetero-
geneity of network structures into account [23,24]. In these
studies a so-called degree-based approximation is adopted
which assumes that the fate of a node in a complex network
during an epidemic depends solely on its degree. While this
simplifies matters sufficiently for equations of motion to be
analytically tractable, it misses several key aspects of the full
heterogeneity in the problem. The design of optimal immu-
nization strategies using degree-based heterogeneous mean-
field theories [25,26] may therefore well miss opportunities
as further aspects of heterogeneity could be exploited. For a
recent overview we refer to Ref. [27].

The formulation of a cavity or message-passing ap-
proach to single-network instances of percolation probabil-
ities [28,29] paved the way to assess the fate of individual
nodes under random bond (or site) removal. This was ini-
tially investigated to some extent in the context of infection
dynamics in Ref. [30] with the full heterogeneity in the
problem first exposed only in Ref. [31]. It is worth noting
that degree-based information can also be recovered from the
generating function approach, which has traditionally been
used to analyze mainly average behavior. Indeed, in Ref. [32]
it was demonstrated that degree-based information about per-
colation probabilities can be obtained using expressions for
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the average percolation probabilities by “unfolding” them
according to degree. In that paper it was also shown that
iterated versions of the self-consistency equations from which
percolation probabilities are normally obtained can be used
to go beyond degree-based approximations and recover the
full distributions of percolation probabilities first obtained in
Ref. [31].

The distribution of percolation probabilities of individual
nodes in complex networks is one aspect of the variability
in the percolation problem one may want to characterize.
Another aspect that was recently addressed is the question
of fluctuations of percolation probabilities of network nodes
across two separate random (not necessarily independent)
realizations of percolation experiments [33]. A closely related
problem concerns the evaluation of joint percolation prob-
abilities, more specifically the question of determining the
fraction of nodes that would be part of the giant cluster in all of
a set of τ (once more not necessarily independent) percolation
experiments, which was recently solved in Ref. [34] and has
been discussed as a measure of the stability of the giant cluster
in the percolation problem. In Refs. [33,34] these questions
were mostly addressed at a global level, though the authors of
Ref. [34] have looked at local signatures, such as the influence
of node degrees (as predicted within a generating function
approach), and used simulations to assess heterogeneity of
degree-dependent outcomes.

In the present paper, we take into account the full het-
erogeneity of the problems studied in Refs. [33,34]. For the
sake of definiteness we consider bond percolation. However,
the methods can easily be adapted to cover node percolation
as well. Our paper is organized as follows. In order to keep
the paper self-contained, we briefly review in Sec. II the
well-known message-passing approach to bond percolation,
starting with the formulation for large single instances, and
then formulating equations describing the limit of infinite
system size for networks in the configuration model class. In
Sec. III we then formulate the theory for multiple instances of
the percolation processes, starting with independent instances,
which will allow us to uncover the full heterogeneity in
the problem of the stability of the giant cluster studied in
Ref. [34]. In Sec. III B we derive closed-form expressions
for the distribution of percolation probabilities for multiple
uncorrelated instances in the large mean degree limit for
Erdős-Rényi (ER) networks. In Sec. III C we present the
modifications required to cover the effect of correlation be-
tween multiple instances of the percolation processes. This
allows us to analyze the full heterogeneity of the fluctuation
problem studied in Ref. [33] and to generalize it beyond
the two-instances case. Section III D analyzes more general
correlations. Our main results are presented and discussed in
Sec. IV, and we summarize and discuss our findings in Sec. V.

At this point it is useful to compare and contrast the nature
of the heterogeneity treated in the present paper with other
forms of variability that have been discussed in the context
of percolation. The size of the giant connected component
(measured as a fraction of system size) has been proven to
be self-averaging in the thermodynamic limit in networks of
the configuration model class [35]. Although a formal proof
is still missing, the same is expected to hold for the distri-

bution of node-dependent percolation probabilities studied in
Ref. [31]. The origin of the heterogeneity in that problem is
indeed very simple and related to the fact that upon random
node or link removal, nodes with high connectivity to the
densest regions of a network will continue to have a high
probability to remain part of any giant connected component,
while nodes whose connection to dense regions of a network
is tenuous will have low probability to do so. In essence,
the variability of local environments creates the heterogeneity
of percolation probabilities for any typical realization of a
percolation process. This type of heterogeneity may make it
difficult to properly identify the emergence of a giant perco-
lating component in some real-world networks of (fixed) finite
size [14]. Indeed, in networks of finite size, every connected
component occupies a finite fraction of the system. Therefore,
traditional methods for finding the location of the incipient
percolation transition may give conflicting results [14] and
cannot be resolved by a finite-size scaling analysis, as the size
of any given real-world network cannot be varied.

The type of heterogeneity just described is radically dif-
ferent from the (dynamical) heterogeneity that gives rise to
non-self-averaging time-dependent overall percolation prob-
abilities in so-called explosive percolation [36]. The phe-
nomenology is observed in network growth processes with
“choice.” Rather than randomly linking up pairs of nodes as in
the ER model [1,2], more than one random edge is proposed
to be connected to the growing network, but only one of them
is actually selected in a manner that is designed to delay the
emergence of a giant connected component. This can result
in a (delayed) explosive percolation phenomenon, for which
the time-dependent fraction of nodes in the giant component
can in some cases be shown to be non-self-averaging, even in
the thermodynamic limit [37]; for a recent review we refer to
Ref. [38].

Another form of heterogeneity is related to rare realiza-
tions of the configurations of links or nodes that are actually
removed from the system in a percolation process. For ER
networks, they were first studied using Large Deviations
theory in Ref. [39]. In a subsequent numerical study [40] of
percolation on ER networks and 2D lattices it was shown that
such rare events can give rise to bistability or coexistence
of nonpercolating and percolating configurations in large fi-
nite systems. This phenomenon was recently confirmed in
Refs. [9,41], using a combination of a message-passing ap-
proach and Large Deviations techniques. Rare configurations
of removed nodes were shown to be able to suppress the giant
component for values of the node removal probability where
it would exist if configurations of node removals were typical.

II. BOND PERCOLATION

We consider a percolation process on graphs in the con-
figuration model class. To investigate the heterogeneity of
outcomes of repeated instances of percolation experiments on
the same graph, we use a message-passing approach [28,29].
We follow the methods outlined in Ref. [31] to expose the
heterogeneity in the results. The approach taken in Ref. [29]
investigates percolation by focusing on distributions of sizes
of finite clusters. However, as we concentrate solely on
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percolation probabilities here, we adopt a slightly different
approach from that in Refs. [29,31], using a message-passing
formulation closer to that of Ref. [28] to directly determine
the probability for a given node to belong to the giant or
percolating component (abbreviated with GC from now on),
if it exists.

Networks in the configuration model class are maximally
random, subject to a prescribed degree distribution. Thus,
denoting by ki the degree of node i, one has that pk =
Prob(ki = k) for some degree distribution p = (pk )k∈N , and
there are no degree-degree correlations.

A. Message passing for large single-network instances

To formulate the message-passing approach, we introduce
indicator variables ni denoting whether node i is in the GC
(ni = 1) or not (ni = 0), and link variables xi j that denote
whether the edge (i j) is kept in a single realization of the
percolation process (xi j = 1) or not (xi j = 0). Clearly, for a
node i to be in the GC it must be connected to it through
at least one of its neighbors. This requires, for at least one
of the edges (i j) connecting to node i, that both the edge is
kept in the percolation process (xi j = 1) and that the node j
is itself in the GC, even on a graph from which node i and all
edges emanating from it are removed. Such a graph is usually
referred to as a cavity graph. Introducing an indicator variable
n(i)

j , taking the value 1, if node j neighboring on i is indeed
in the GC on the cavity graph, and 0 if it is not, the condition
above is expressed as

ni = 1 −
∏
j∈∂i

(
1 − xi jn

(i)
j

)
, (1)

where ∂i denotes the set of nodes connected to i on the original
graph.

For the (cavity) indicator variables n(i)
j we have by analo-

gous reasoning

n(i)
j = 1 −

∏
�∈∂ j\i

(
1 − x j�n( j)

�

)
, (2)

where ∂ j \ i denotes the set of nodes connected to j on the
cavity graph with i removed.

Averaging Eq. (1) over all realizations of the percolation
process gives

gi = 1 −
∏
j∈∂i

(
1 − pg(i)

j

)
(3)

for the probability gi for node i to belong to the GC under the
percolation process. This result assumes independence of the
random variables associated with different edges emanating
from a node and is only exact on trees for which averages over
different branches factor. It is generally assumed (and con-
firmed by experiments) that this is an excellent approximation
for large finitely connected systems, which are locally treelike,
and that it becomes asymptotically exact in the limit of infinite
system size N → ∞. Following the same logic, averaging (2)
gives

g(i)
j = 1 −

∏
�∈∂ j\i

(
1 − pg( j)

�

)
(4)

for the probability of node j adjacent to i to be part of the giant
cluster on the cavity graph with i removed.

Equation (4) can be solved iteratively on any large single
instance of a graph, and the site-dependent percolation proba-
bilities gi can then be computed using Eq. (3). Note that as the
solutions to Eq. (4) will be heterogeneous due to their local
environments, so will the gi even across nodes with the same
degree.

B. Thermodynamic limit

In the thermodynamic limit Eq. (4) constitute an infinite
recursion. Assuming that a probability law exists for the g(i)

j ,
the probability density π̃ (g̃) can be obtained by demanding
probabilistic consistency of Eq. (4). Following by now stan-
dard reasoning, π̃ (g̃) is obtained by summing probabilities of
all realizations of the right-hand side (rhs) of Eq. (4) for which
g(i)

j ∈ (g̃, g̃ + dg̃], assuming that the g( j)
� on the rhs in Eq. (4)

are drawn independently from π̃ . Hence, Eq. (4) translate into

π̃ (g̃) =
∑

k

k

c
pk π̃ (g̃|k) (5)

with

π̃ (g̃|k) =
∫ [

k−1∏
ν=1

dπ̃ (g̃ν )

]
δ

{
g̃ −

[
1 −

k−1∏
ν=1

(1 − pg̃ν )

]}
.

(6)
Here k

c pk is the probability that a randomly chosen edge
links to a node of degree k, and δ(·) is the Dirac δ distribu-
tion. Furthermore, we have adopted the shorthand dπ̃ (g̃ν ) =
dg̃ν π̃ (g̃ν ).

Equation (5) is efficiently solved using a population dy-
namics algorithm. The distribution π (g) of node-dependent
percolation probabilities gi is then similarly obtained from
Eq. (3), to give

π (g) =
∑

k

pkπ (g|k), (7)

in which

π (g|k) =
∫ [

k∏
ν=1

dπ̃ (g̃ν )

]
δ

{
g −

[
1 −

k∏
ν=1

(1 − pg̃ν )

]}

(8)
are the distributions percolation probabilities conditioned on
nodes having degree k. It is straightforward to show that these
equations are equivalent to the marginal densities describing
the percolation-probability sector in Ref. [31], which were
obtained following a different route based on cluster-size
distributions.

III. FLUCTUATIONS, CORRELATIONS, AND STABILITY
OF THE GIANT CLUSTER

We now turn to the fluctuations and correlations of perco-
lation probabilities and the stability of the GC under repeated
instances of a bond percolation process. The fluctuations and
correlations of percolation probabilities were recently inves-
tigated at the global level in Ref. [33], whereas the stability
of the GC was investigated in Ref. [34], again mostly at the
global level.
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We start our study of the local statistics of these quantities
with the case of independent instances of the percolation
process, thereafter generalizing to correlated instances.

A. Independent instances

Let ni(τ ) denote the indicator variable that designates
whether node i is part of the GC for all instances in a set
τ of percolation experiments [ni(τ ) = 1] or not [ni(τ ) = 0].
Labeling individual instances by t ∈ τ , from (1) we obtain
ni(τ ) = ∏

t∈τ ni(t ), so

ni(τ ) =
∏
t∈τ

⎧⎨
⎩1 −

∏
j∈∂i

[
1 − xi j (t )n(i)

j (t )
]⎫⎬⎭, (9)

where xi j (t ) indicates whether the edge (i j) is present in ex-
periment t , [xi j (t ) = 1)] or not (xi j (t ) = 0). Similarly n(i)

j (t ) ∈
{1, 0} denotes whether or not node j is in the GC of the cavity
graph (with node i removed) in instance t . Clearly,

n(i)
j (t ) = 1 −

∏
�∈∂ j\i

[
1 − x j�(t )n( j)

� (t )
]

(10)

as in Eq. (2).
When the percolation experiments are independent,

Eqs. (9) and (10) can be straightforwardly averaged giving

gi(τ ) = 〈ni(τ )〉 =
∏
t∈τ

⎧⎨
⎩1 −

∏
j∈∂i

[
1 − pt g

(i)
j (t )

]⎫⎬⎭ (11)

for the probability of node i to belong to the GC for all
independent instances in the set τ . Here pt = 〈xi j (t )〉 is the
overall probability to retain bonds in percolation experiment
t . The cavity probabilities g(i)

j (t ) must satisfy

g(i)
j (t ) = 1 −

∏
�∈∂ j\i

[
1 − pt g

( j)
� (t )

]
(12)

and are independent of t if the bond retention probabilities
pt are. Henceforth, we assume that pt ≡ p, ∀t ∈ τ , though
it is clear that generalizing to experiment-dependent edge
retention probabilities is straightforward.

The probability density function (pdf) πτ of the joint
percolation probabilities gi(τ ) is then obtained exploiting
the independence of the g(i)

j (t ). Thus, by the same line of
reasoning that led to Eqs. (7) and (8), we obtain

πτ (g) =
∑

k

pkπτ (g|k) (13)

in which

πτ (g|k) =
∫ [

k∏
ν=1

dπ̃ (g̃ν )

]
δ

⎧⎨
⎩g −

[
1 −

k∏
ν=1

(1 − pg̃ν )

]|τ |⎫⎬
⎭

(14)

are the distributions of joint percolation probabilities condi-
tioned on nodes having degree k, and where |τ | denotes the
size of the set τ and π̃ is a solution of (5). For the average
probability

〈g(τ )〉 =
∫

dπτ (g) g (15)

for a node to belong to the giant component in a set τ of
independent percolation experiments, we then obtain

〈g(τ )〉 =
∑

k

pk[1 − (1 − p〈g̃〉)k]|τ |, (16)

where 〈g̃〉 = ∫
dg̃π̃ (g̃)g̃. Note that this result was obtained

directly by considering average behavior in Ref. [34].

B. The large mean degree limit

For “narrow” degree distributions where the standard devi-
ation of the degrees is much smaller than the mean degree,
it is relatively straightforward [31] to obtain closed-form
approximations of the results above. Here we consider the
Poisson degree distribution of ER graphs with large mean
degree 〈k〉 = c, for which the standard deviation σk = √

c is
small compared to the mean for c 
 1.

In the large mean degree limit the solution of (5) is well
approximated by the δ distribution π̃ (g̃) = δ(g̃ − g̃∗). The
value of g∗ is obtained by inserting this ansatz into (5)
and deriving a self-consistency equation for g∗. Assuming a
Poisson distribution for the degrees, we get

g∗ = 1 − e−pcg∗ . (17)

In order to obtain a nontrivial solution in the large c limit,
one has to adopt the scaling p = ρ/c at fixed ρ, so that (17)
becomes

g∗ = 1 − e−ρg∗ , (18)

which can be solved in closed form, giving

g∗ = 1 + W (−ρe−ρ )

ρ
, (19)

where W is the Lambert W function. For real-valued argu-
ments x � −e−1, its value W (x) is defined as (the principal
branch of) the solution of the transcendental equation WeW =
x; see Sec. 4.13 in Ref. [42].

In order to obtain the large mean degree limit of the distri-
bution πτ of joint percolation probabilities for |τ | independent
percolation experiments, we insert these results into Eq. (13),
which implies that the conditional probability for a node of
degree k to belong to the giant cluster is

g = gτ (k) = [1 − (1 − pg∗)k]|τ |. (20)

For a Poisson distribution of large mean degree, c 
 1, the
distribution of scaled degrees x = k/c is well approximated by
a normal distribution of mean 1 and variance 1/c. Hence from
(20), we derive a closed-form expression for the pdf πτ (g) as
follows. From (20), we have

x = x(g) = log(1 − g1/|τ |)
c log(1 − pg∗)

, (21)

such that a normal distribution π (x) = √ c
2π

exp[− c
2 (x − 1)2]

transforms into

πτ (g) = π (x)

∣∣∣∣dx

dg

∣∣∣∣ = − 1√
2πc

g−(1−1/|τ |)

|τ | (1 − g1/|τ |) log(1 − pg∗)

× exp

{
− c

2

[
log(1 − g1/|τ |)
c log(1 − pg∗)

− 1

]2
}

. (22)
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In Sec. IV we show that even for moderate values of the
mean degree c this already provides a good approximation
for the distribution of percolation probabilities across several
independent percolation experiments.

C. Correlated instances

When the instances of the percolation process are not
independent, the analysis becomes more involved. To average
ni(τ ) in Eq. (10) over the joint distribution of the instances for
all t ∈ τ , we first expand the products appearing in (10):

ni(τ ) =
∑
σ⊆τ

(−)|σ | ∏
j∈∂i

{ ∑
σ ′⊆σ

(−)|σ
′| ∏

t∈σ ′

[
xi j (t )n(i)

j (t )
]}

. (23)

The averages on the rhs do factor with respect to j due to the
assumed locally treelike nature of the systems we consider.
However, averages over the t products do not factor with
respect to t , although averages of the form 〈 ∏

t (xi j (t )n(i)
j (t ))〉

decouple in the xi j and n(i)
j sectors:〈 ∏

t∈σ

[
xi j (t )n(i)

j (t )
]〉 =

〈∏
t∈σ

xi j (t )

〉〈∏
t∈σ

n(i)
j (t )

〉
. (24)

Assuming the statistics of the xi j (t ) to be uniform and inde-
pendent across edges (i j), and introducing

p(σ ) =
〈 ∏

t∈σ

xi j (t )

〉
(25)

and

g(i)
j (σ ) = 〈

n(i)
j (σ )

〉 =
〈 ∏

t∈σ

n(i)
j (t )

〉
, (26)

we obtain gi(τ ) = 〈ni(τ )〉, giving

gi(τ ) =
∑
σ⊆τ

(−)|σ | ∏
j∈∂i

[ ∑
σ ′⊆σ

(−)|σ
′| p(σ ′)g(i)

j (σ ′)
]
, (27)

with the convention p(∅) = gi(∅) = g(i)
j (∅) = 1.

An entirely analogous line of reasoning, for any ρ ⊆ τ

yields a set of self-consistency equations for the cavity ex-
pectations:

g(i)
j (ρ) =

∑
σ⊆ρ

(−)|σ | ∏
�∈∂ j\i

[ ∑
σ ′⊆σ

(−)|σ
′| p(σ ′)g( j)

� (σ ′)
]
. (28)

The equation (28) for ρ ⊆ τ define a hierarchy of 2|τ | − 1
ρ-point functions for each of the edges (i j) of the graph which
are parametrized by the set {p(σ ); σ ⊆ τ } of edge occupancy
expectations that represent the dynamical model underlying
correlations of edge occupancy. Note that the g(i)

j (ρ) depend

on all g(i)
j (σ ) with σ ⊆ ρ. These can in principle be solved

for any given large single instance of a graph, building the
hierarchy starting from the one-point functions required in the
standard percolation problem, using these to solve for all two-
point functions, using one-point and two-point functions to
solve for all three-point functions, and so on.

Alternatively, one can formulate a self-consistency equa-
tion for the pdf π̃ of the g(i)

j = (g(i)
j (ρ))ρ⊆τ . With reference to

(28), we obtain

π̃ (g̃) =
∑

k

k

c
pkπ̃ (g̃|k), (29)

with

π̃ (g̃|k) =
∫ [

k−1∏
ν=1

dπ̃ (g̃ν )

] ∏
ρ⊆τ

δ

{
g̃ρ −

∑
σ⊆ρ

(−)|σ |

×
k−1∏
ν=1

[∑
σ ′⊆σ

(−)|σ
′| p(σ ′)g̃ν (σ ′)

]}
, (30)

in complete analogy to constructions used earlier. Once the
solution of these self-consistency equations for the π̃ is found,
the pdf π (g) of the gi = [gi(ρ)]ρ⊆τ is then given by

π (g) =
∑

k

pkπ (g|k), (31)

in which the

π (g|k) =
∫ [

k∏
ν=1

dπ̃ (g̃ν )

] ∏
ρ⊆τ

δ

{
gρ −

∑
σ⊆ρ

(−)|σ |

×
k∏

ν=1

[∑
σ ′⊆σ

(−)|σ
′| p(σ ′)g̃ν (σ ′)

]}
(32)

are now a joint distributions for a set of 2lτ |−1 �-point func-
tions with 1 � � � |τ |, defined in terms of all nonempty
subsets of τ , conditioned on nodes having degree k.

Global averages are obtained by evaluating first moments
of π and the π̃ , for ρ ⊆ τ . Defining

〈g(ρ)〉 =
∫

dπ (g) g(ρ) and 〈g̃(ρ)〉 =
∫

dπ̃ (g̃) g̃(ρ),

(33)
we obtain

〈g(ρ)〉 =
∑
σ⊆ρ

(−)|σ |G0

[∑
σ ′⊆σ

(−)|σ
′| p(σ ′)〈g̃(σ ′)〉

]
(34)

fom Eqs. (31) and (32), with the 〈g̃(ρ)〉 satisfying the hierar-
chical set of self-consistency equations

〈g̃(ρ)〉 =
∑
σ⊆ρ

(−)|σ |G1

[∑
σ ′⊆σ

(−)|σ
′| p(σ ′)〈g̃(σ ′)〉

]
(35)

derived from Eqs. (29) and (30). Here G0 and G1 are the
generating functions of the degree distribution and the dis-
tribution of degrees of nodes reached by following a random
link, respectively:

G0(x) =
∑

k

pk xk and G1(x) =
∑

k

k

c
pk xk−1. (36)

Note that the complexity of the analysis for correlated
instances of percolation increases exponentially with the num-
ber of percolation experiments considered, and so will quickly
become prohibitively involved except for a relatively small
number of instances.
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FIG. 1. Distributions πτ (g) of percolation probabilities for a sample network with N = 62 586 nodes, constructed as an undirected version
of the Gnutella file-sharing platform data. Gray-scale coded probabilities are shown for all probabilities of retaining bonds with darker gray
representing a higher probability. Also shown are average percolation probabilities (full lines). Panel (a) corresponds to one instance of the
percolation experiment, panel (b) to two, panel (c) to four, and panel (d) to eight instances. Note that the upper left panel shows the data for a
single percolation experiment also presented in Fig. 1 of Ref. [31].

D. More general correlations

If one were interested in more general correlations, such as
probabilities that a node is part of the GC in all percolation
instances in the set τ while not in any instance in a comple-
mentary set τ̄ , one would have to consider

ni(τ, τ̄ ) =
∏
t∈τ

ni(t )
∏
t̄∈τ̄

[1 − ni(t̄ )]. (37)

To evaluate averages over all realizations of these instances of
the percolation process, one has to expand the expression of
these products in terms of cavity indicator variables, giving

ni(τ, τ̄ ) =
∑
σ⊆τ

(−)|σ | ∏
j∈∂i

[ ∑
σ ′⊆σ

∑
τ ′⊆τ̄

(−)|σ
′|+|τ ′|

×
∏

t∈σ ′∪τ ′
xi j (t )n(i)

j (t )

]
. (38)

Following the reasoning outlined above, the distributions
of gi(τ, τ̄ ) = 〈ni(τ, τ̄ )〉 are evaluated in terms of solutions of
Eqs. (29) and (30) as

πτ,τ̄ (g) =
∑

k

pkπτ,τ̄ (g|k) (39)

in which the

πτ,τ̄ (g|k)

=
∫ [

k∏
ν=1

dπ̃ (g̃ν )

]
δ

{
g −

∑
σ⊆τ

(−)|σ |
k∏

ν=1

×
[∑

σ ′⊆σ

∑
τ ′⊆τ̄

(−)|σ
′|+|τ ′| p(σ ′ ∪ τ ′)g̃ν (σ ′∪τ ′)

]}
(40)

are the relevant joint distributions of a hierarchy of �-point
functions conditioned on node degree k, with 1 � � � |τ | +
|τ̄ |; the π̃ are now defined over an enlarged space with g̃ =
(g̃(ρ))ρ⊆τ∪τ̄ , and πτ,τ̄ (g) is the distribution of the probability
for a node to belong to the GC in every instance of the set τ

and in none of the set τ̄ .
Global averages are obtained as first moments, giving

〈g(τ, τ̄ )〉 =
∑
σ⊆τ

(−)|σ |G0

[ ∑
σ ′⊆σ

∑
τ ′⊆τ̄

(−)|σ
′|+|τ ′|

× p(σ ′ ∪ τ ′)〈g̃(σ ′ ∪ τ ′)〉
]
, (41)

which generalizes the global results of Ref. [33] to more than
two possibly correlated instances of a percolation experiment.
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FIG. 2. Distributions πτ (g) of percolation probabilities for an ER network of mean degree c = 2, for repeated instances of percolation, with
bond retention probability p = 0.75 (top full lines), and their deconvolutions according to degree, i.e., the individual contributions pkπτ (g|k) to
the total, for k = 0, 1, . . . , 9 and k � 10. The δ peaks at zero in each panel corresponds to p0πτ (g|0). Distributions of percolation probabilities
of nodes with higher degree are, not unexpectedly, supported at larger g. Panels (a)–(d) correspond to τ = 1, 4, 16, and 64 instances of the
percolation experiment, respectively.

IV. RESULTS

In what follows, we first present results for the stability
of the GC measured in terms of the probability that nodes
of the network would be part of it in several instances of the
percolation process as studied at the global level in Ref. [34].
The second set of results are covariances of nodes to be on the
GC in two correlated instances of a percolation process. This
problem was studied, once more on a global level, in Ref. [33].

In principle, distributions of any form of n-point cor-
relations can be evaluated using the theory presented in
Secs. III A–D, for both large single instances of real-world
networks and synthetic network ensembles in the thermody-
namic limit, provided they are in the configuration model class
and are sparse with finite mean degree. However, it is clearly
impossible to give a comprehensive overview of all results one
could obtain, given the large number of parameters to play
with such as degree distributions, bond retention probabilities,
or the number of, and correlations between, instances of the
percolation process. Therefore, we illustrate some key aspects
on a number of representative examples.

We first present the outcomes of multiple percolation in-
stances at a local level, using an undirected version of the
Gnutella file-sharing platform data [43] as an example. In
Fig. 1 we show gray-scale coded pdfs of joint percolation
probabilities for one, two, four, and eight instances of a

percolation experiment as a function of the bond retention
probability p ∈ [0, 1]. Given the large range of values of the
pdfs, they have been nonlinearly transformed into a gray-scale
mapping with darker tones corresponding to larger probabil-
ities. In each panel we also show the mean probability for
nodes to be in the GC for all instances of the percolation
process. It is clear that the mean probability (the first moment
of the pdf shown in gray-scale code) are only a very coarse
reflection of the heterogeneity of outcomes in this problem.
Notable in all panels are the distinct bands, with (in the case
of the Gnutella data) fairly sharply defined upper edges, that
become more and more blurred as we approach the critical
percolation probability pc from above. We further note that
the single instance result in the upper left panel replicates a
result of Ref. [31].

The main bands correspond to the contribution to πτ (g)
from nodes of different degrees k. The location of the sharp
upper cutoffs of the main bands can be predicted from
Eqs. (13) and (14), as 0 � g̃ν � 1. Upon insertion of the upper
bound g̃ν = 1, one obtains an upper bound for the support
of the contribution of degree-k nodes to πτ (g), viz., g �
(1 − (1 − p)k )|τ |. For p sufficiently far above the percolation
threshold, this agrees very well with the data in all panels. As
expected, the locations of the bands move to lower values of g
with increasing number of instances.
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FIG. 3. Distributions πτ (g) of percolation probabilities for a scale-free network with degree distribution pk ∝ k−3, k � 2, for repeated
instances of percolation, with bond retention probability p = 0.5 (top full lines) and their deconvolution according to degree for k =
2, 3, . . . , 11 and k � 12. As in the ER case, distributions of percolation probabilities of nodes with higher degree are supported at larger
g. Panels (a)–(d) correspond to τ = 1, 4, 16, and 64 instances of the percolation experiment, respectively.

Other less prominently visible bands can also be predicted
by considering properties of the first coordination shell around
a vertex. Formally this is done by replacing each of the π̃ (g̃ν )
appearing on the rhs of Eq. (14) by its expression in terms
of the rhs of the self-consistency equations (5) and (6) and
applying the same logic concerning the range of values for the
g̃ν ′ contributing to each π̃ (g̃ν ). This process can be iterated
to rationalize finer and finer details in the distributions. It
is worth noting that the reasoning regarding the location of
bands and their cutoffs is independent of the degree distribu-
tion. Thus bands with cutoffs will be visible in such repre-
sentations for any network. However, the band edges may be
less pronounced since they will be clearly identifiable only
if there is a sufficiently high density of cavity probabilities
g̃ close to their upper cutoff. As a general rule, therefore,
sharply defined bands and band edges will be observable only
sufficiently far above the percolation threshold. Indeed, as
the percolation threshold is approached, typical values of the
g̃ν will be smaller than 1, entailing that the bands in Fig. 1
blur and start to overlap. To illustrate this more quantitatively,
we show results for pdfs of joint percolation probabilities
for two synthetic network ensembles at fixed bond retention
probability p in Figs. 2 and 3. Note that each figure would
correspond to a vertical cut at fixed p in the representation
chosen in Fig. 1.

Figure 2 shows the pdfs πτ (g) for joint percolation proba-
bilities in multiple instances of the percolation process, for an

ER network of mean degree c = 2 with a bond retention prob-
ability p = 0.75. Results are obtained in the thermodynamic
limit solving Eqs. (5) and (6) and using the solution to evaluate
Eqs. (13) and (14). Panels correspond to results for different
numbers of instances of the percolation process. Along with
the full pdfs we also show their degree-based deconvolutions
defined by Eqs. (13) and (14). Band edges appear far less
sharp than for the Gnutella network, in part as contributions
from different degrees strongly overlap. Nonetheless, in the
upper left panel (single instance), the upper band edges from
degree 1 nodes at g = 0.75 and degree 2 nodes at g = 0.9375
can be clearly discerned. Also prominent are satellite subband
edges due to the degrees of nearest neighbors of degree 1
sites and to combinations of degrees of the neighbors of
degree 2 sites. Again the dominant weight of joint percolation
probabilities and the various band edges move to lower values
of g with increasing number of instances. For example (upper
right panel in Fig. 2 ), with four uncorrelated instances the
upper band edge for degree 1 nodes is at g = p4 � 0.3164,
and at g = [1 − (1 − p)2]4 � 0.7725 for degree 2 nodes.

Figure 3 shows analogous results for a scale-free network
with degree distribution pk ∝ k−3, for k � 2, but now with
p = 0.5 as the bond retention probability, again evaluated
in the thermodynamic limit using Eqs. (5) and (6) and (13)
and (14). Band edges are more sharply defined in this case,
mainly because the large weight of events with g̃ → 1. Their
location, however, is the same as in the Gnutella example and
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FIG. 4. Distributions πτ (g) of joint percolation probabilities for an ER network of mean degree c = 10, comparing results of the large
mean degree approximation (22) (black full line) with results obtained for a large single realization of a network with N = 10 000 nodes
(histograms) with bond retention probability p = 0.2. Panels (a)–(d) correspond to one, two, four, and eight instances, respectively.

as it would be in an ER network at the same value of p.
A main noticeable difference compared to the ER network
is the survival of the peak of the pdf of joint percolation
probabilities at g � 1 even for large numbers of repetitions
of the percolation process. As already noted in Ref. [34], this
is due to the presence of hubs with high degrees in systems
with broad degree distributions. Here we can quantitatively
confirm this at a local level: As shown in the lower right panel
of Fig. 3, for 64 instances virtually all the contribution to the
joint pdf of percolation probabilities at g � 0.5 comes from
nodes with degrees k � 12.

Figure 4 compares results of the large mean degree approx-
imation (22) for an ER network with results obtained for a sin-
gle such network of N = 10 000 nodes, with mean degree c =
10, for |τ | = 1, 2, 4, and 8 uncorrelated instances with bond
retention probability p = 0.2. Despite the moderate value of
the mean degree, the main features of these distributions are
captured fairly well by the large mean degree approximation.
Nevertheless, it misses some of the fine structure of well-
identifiable peaks which are due to different types of local
environment of nodes.

In Fig. 5 we plot the pdfs of joint percolation probabilities
to illustrate the effect of correlation between two instances.
Panels (a) and (b) show results for the ER network considered
in Fig. 2 (mean degree c = 2, bond retention probability p =
0.75), while panels (c) and (d) show results for the scale-free
network considered in Fig. 3 (degree distribution pk ∝ k−3,
for k � 2, bond retention probability p = 0.5). Left and right

panels compare uncorrelated instances with positively and
negatively correlated ones respectively at different values of
the (anti-)correlation coefficient.

We note that negative correlation increases the probability
of having low values of the joint percolation probability and
suppresses the probability of having large values of the joint
percolation probability. The opposite trend is observed for
positive correlation. These results are plausible as negative
correlation in the percolation process enhances the probability
to remove different edges in the two instances, thus decreasing
the likelihood that nodes remain on the GC in both instances.
Conversely, positive correlation increases the probability to
remove the same edges in the two instances, thus increasing
the likelihood that (the same) nodes remain on the GC in
both instances. In the extreme case where the correlation ap-
proaches 1, the joint effect of two highly correlated instances
becomes indistinguishable from that of a single instance.

Finally, in Fig. 6 we plot the distribution of the co-
variances Ci = 〈ni(t )ni(t ′)〉 − 〈ni(t )〉〈ni(t ′)〉 for pairs of cor-
related instances, taking the ER network (mean degree c =
2, bond retention probability p = 0.75) as an example. The
results demonstrate once more that there is rich structure in the
distribution of the covariance, which the average as evaluated
in Ref. [33] cannot reveal. The left panel of Fig. 6 shows
distributions of the covariances for several positive values of
correlation between the two instances. As r → 1, we expect
the distribution of the covariances between two instances to
approach that of the variance of a single instance. Comparison
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FIG. 5. Distributions π2(g) of joint percolation probabilities for the ER network at p = 0.75 considered in Fig. 2 [panels (a) and (b)] and
for the scale-free network at p = 0.5 considered in Fig. 3 [panels (c) and (d)] for two instances of the percolation process. Panels (a) and
(c) compare results for uncorrelated instances r = 0 (black full line) with positively correlated instances with coefficients r = 0.5 (purple
line) and r = 0.75 (green line). Panels (b) and (d) compare results for uncorrelated instances r = 0 (black full line) with negatively correlated
instances with coefficients r = −0.5 (purple line) and r = −0.75 (green line).

of the distribution of the covariances at r = 0.99 with the
distribution of the variances in Fig. 6 shows this indeed to
be the case. The right panel of Fig. 6 shows the distributions
for several negative values of correlation between the two

instances. Clearly the distribution of the covariances is now
supported at negative values, but the distributions of the
covariances is not just the mirror image of the corresponding
distribution at positive r. This will be the case only for
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FIG. 6. (a) Distribution π (C) of the covariances between two instances of a percolation process on an ER network of mean degree c = 2,
with bond retention probability p = 0.75 with correlation coefficients r = 0.5, 0.75, and 0.99 (narrow to broad curves), respectively. Also
shown is the single instance distribution π (V ) of variances of percolation probabilities. The distribution of covariances for the highly correlated
case is very close to the distribution of variances, which exhibits a divergence at V = 0.25. (b) Distribution π (C) of the covariance between
two instances of a percolation process for the same system, but for anticorrelated instances, with correlation coefficients r = −0.5, −0.75,
and −0.99 (narrow to broad curves), respectively.
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a value p = 0.5 of the bond retention probability. For the
covariances, a deconvolution by degree reveals that, e.g., in
the r = 0.5 case, the dominant contribution to the peak at
C � 0.092 comes from the k = 1 sites, while most of the
structure at smaller C is due to k = 2 sites. Analogous features
are observed in the anticorrelated case (e.g., at r = −0.5),
where the the dominant peak at C � −0.081 is mainly due
to k = 1 sites, and further structures at smaller |C| are mainly
due to k = 2 sites. High-degree sites will in general show only
small values of C (or |C| in the anticorrelated case).

V. SUMMARY AND DISCUSSION

In the present paper, we have analyzed the heterogeneity
of outcomes of percolation in complex networks in a set
of several possibly correlated instances of the percolation
process, thereby expanding the analysis of Ref. [31] to this
more complex problem. At a global level these problems
were recently considered in Ref. [33] with emphasis on av-
erage variance and average covariances in pairs of instances,
and in Ref. [34] with emphasis on average joint percolation
probabilities for multiple instances of a percolation process.
The latter were advocated as a measure of the stability of
the giant (or percolating) component in a given network. The
problem is clearly relevant when assessing the robustness of
the functionality of supply or communication infrastructures
against repeated failures of components.

With that context in mind it becomes clear, however, that
average joint percolation probabilities are not necessarily
the most appropriate measure, and that full distributions of
joint probabilities contain far more information regarding the
exposure of key components of a net against repeated failures
of components elsewhere in a net. This was the main reason to
embark on the present project. One would in particular want to
ensure for critical components in a network to be connected in
such a way that the probability for them to remain part of the
GC even in many instances of a percolation process remains
close to 1.

Although in the present paper we have considered only the
case of bond percolation, it would be straightforward to extend
our analysis to node percolation or to percolation in directed
networks.

Specifically, we have demonstrated that there is a consid-
erable heterogeneity of the probabilities of individual nodes
to remain part of the GC across instances of a percolation
experiment, both for the Gnutella file-sharing network as an
example of a real-world network and for synthetic networks in
the configuration model class. While the degree of a node is an
important feature influencing its joint percolation probability,
it does not determine it entirely, as shown by the the fact

that the degree-dependent distributions of joint percolation
probabilities are themselves broad. The shape of these degree-
dependent distributions changes markedly with the number
of percolation instances and with the correlation between
the instances. While positive correlation enhances large joint
percolation probabilities and suppresses small joint perco-
lation probabilities in comparison to uncorrelated instances,
the opposite trend is observed for negative correlations. We
reiterate that the heterogeneity described in the present paper
is different from that observed in explosive percolation, and
that it is a typical phenomenon that is not caused by rare
configurations of removed bonds.

The link between sizes of epidemics in a SIR models of
infectious diseases and bond percolation allows us to expose
the heterogeneity of the risk of being affected by a series of
epidemics. Realistically, one should use different pt in such
studies, and while this is covered by our general theory, we
have produced results only for pt ≡ p for the sake of simplic-
ity. The heterogeneity of risk profiles exposed by our results
might well be used for the design of vaccination strategies
which would keep probabilities of infection for key personnel
low across several epidemics.

In the present paper, we have not investigated any dynamic
features of epidemic spreading, though these can be incor-
porated into a message-passing approach as demonstrated
in Ref. [44] for SIR models, and used to evaluate time-
dependent average infection probabilities. A very interesting
recent study [45] that built on the results of Ref. [44] also
reveals local dynamic features such as times to infection
after outbreak. Studies of this type may be very useful to
explore the efficiency of different social distancing strategies
that might be contemplated in cases of a highly infectious
epidemic, given that societies after implementation of distanc-
ing measures might be better described in terms of contact
network structures than in terms of well-mixed populations
(as assumed in classical mean-field theories). To be applicable
to typical respiratory diseases, one would have to extend
the message-passing approach to capture the dynamics of a
susceptible-exposed-infected-recovered (SEIR) model, which
is thought to better capture dynamic infection histories than
the SIR model class, although SIR and SEIR models do
exhibit the same epidemic threshold and the same asymptotic
size as the SIR case. Also, in severe cases, where social
distancing measures are indeed contemplated, transmission
probabilities would be time-dependent, and the effect of non-
negligible fractions of recovered individuals at the time of an
introduction of such measures (or, for that matter, their easing)
would have to be taken into account in order to assess their
effects. We believe that much of this is within reach of current
techniques.
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