
PHYSICAL REVIEW E 102, 032221 (2020)

Detection of unknown signals in arbitrary noise
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We devise a simple method for detecting signals of unknown form buried in any noise, including heavy tailed.
The method centers on signal-noise decomposition in rank and time: Only stationary white noise generates data
with a jointly uniform rank-time probability distribution, U (1, N ) × U (1, N ), for N data points in a time series.
Signals of any kind distort this uniformity. Such distortions are captured by rank-time cumulative distributions
permitting all-purpose efficient detection, even for single time series and noise of infinite variance.
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I. INTRODUCTION

Signal detection is ubiquitous in physics experiments, be it
a passage of an elementary particle, arrival of a gravitational
wave, or a radar echo. However, instrumental noise, clutter,
unwanted fluctuations, and signal interference are also ever
present. Thus, signal separation from noise is an essential part
of any experiment. Although the literature on this problem is
vast and contains a bewildering variety of solutions, these are
mostly specialized, e.g., lock-in amplifiers perform remark-
ably in detecting low-level signals obscured by noise, but the
signal form must be known. Here we address situations where
signal form is not known nor is the noise of a conventional
variety. We propose a rather general yet simple approach to
signal-noise decomposition and apply it to the detection of a
variety of signals.

To that end, consider n “time” series (i.e, any integer-
indexed serially ordered data), each composed of N real-
valued elements. Such n time series may represent n seismic
or electroencephalogram (EEG) detectors, n hot wires in a
turbulent flow, multichannel radar measurements, multicolor
satellite measurements, n individual stock prices in a port-
folio, etc., each acquiring N realizations (entries of a time
series) of a noisy fluctuating process. Each series can be
viewed as a signal (to be detected) buried in noise. However,
despite its ubiquity, noise is difficult to define precisely yet
generally (e.g., Refs. [1–3]) because, as the adage goes, one
man’s noise is another man’s signal [4]. In particular, signal
detection and processing literature has been dominated, for
over a century, by the additive Gaussian white noise model
and the least-squares approach of maximum likelihood [5–7].
Yet pronounced fluctuations associated with “black swan”
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events and heavy-tailed (algebraic) distributions have become
commonplace [8,9], ranging from photonics to air pollution
[10–13]. One example is Cauchy noise, whose pdf is

p(x) = 1

πσ

(
1 +

[x − μ

σ 2

]2)−1
, (1)

possessing infinite variance. It belongs to a stable family of
distributions, meaning that the sum of Cauchy-distributed ran-
dom variables is also Cauchy-distributed, and with the same
parameter [14]. Thus, the central limit theorem is violated
and no benefit in measurement accuracy is obtained from
averaging over n independent measurements, that is, no 1/

√
n

improvement. Yet, Cauchy noise is ubiquitous, e.g., arising in
the optics of Huygens’ principle, as a quotient of two normally
distributed variables [15], the lighthouse problem, [16], signal
detection [17], synthetic aperture radar speckle, [18], etc.

The purpose of this work is to propose a method that
largely bypasses the dependence on the probability distri-
bution of noise. This is accomplished by working solely
with ranked (sorted by magnitude) data1 and introducing
a mapping from raw data to rank-order space. A simple
distribution-invariant characterization of independent identi-
cally distributed noise is then given. Rank-based statistics
have been used before, e.g., in binary decision applications
of mathematical statistics and estimation theory [20,21] and
have even been applied to signal detection, e.g., the Wilkinson
sum test or the Kendall τ rank correlation coefficient [22] but
these were strictly one dimensional (1D), did not employ sym-
metries, and so are far narrower in scope than the proposed
method to be explained next.

To that end, for each of the n time series, sort the data by
magnitude in ascending order and record those N ranks in

1Rank is not always uniquely defined as ties are possible [19].
Throughout this work we break the ties by either adding tiny white
noise or assigning fractional ties.
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the corresponding N “time slots” or indices, e.g., Ref. [5].
The ranks are integer valued. Observe that because of in-
variance with respect to reshuffling, only when such data are
generated by stationary white noise is each permutation of
N ranks among the N indexed “time” slots equally likely,
occurring with probability 1/N!. Guided by this perfect du-
ality (indistinguishability and independence) of rank (r) and
time index (t) for this independent and identically distributed
noise, we introduce a mapping to the rank-time (r, t ) plane.
Then, for independent and identically distributed noise, as
n → ∞ rank-time duality is expressed by the fact that the 2D
discrete probability density (mass) function (pmf) is jointly
uniform, i.e., p(r, t ) = U (1, N ) × U (1, N ). This property of
p(r, t ) uniquely characterizes independent and identically dis-
tributed noise in the rank-time plane, akin to the fundamental
assumption of equilibrium statistical mechanics: All possible
microstates (rank-time partitions) are equally likely.

This characterization of stationary white noise defines the
absence of a signal, delivers a simple signal-noise decom-
position, and allows one to understand signals broadly as
departures from pure randomness. This approach can be used
to test random number generators, e.g., Refs. [23,24], quantify
instrumental errors, and so on, but here we focus on signal
detection. Signals can be deterministic or random, steady
or transient, and the same framework holds. We illustrate
the method throughout on various heavy-tailed distributions,
including Cauchy, even when only a single realization (one
time series, n = 1) is available. To the best of our knowledge,
there are no comparable approaches for detection of unknown
signals.

A uniform pdf p(x, y) = 1 over a square is the contin-
uous analog to U (1, N ) × U (1, N ), for N data points, and
the associated cumulative distribution function (cdf) is sim-
ply C(x, y) = xy. Given the cdf for a sample time series, the
natural metric for signal detection is the deviation cumulative
distribution function, implemented on the discrete lattice as

δCk,l =
k∑

i=1

l∑
j=1

(pi, j − 1/N2) {k, l} = 1, 2, . . . (N − 1),

(2)
where pi, j is the probability mass function (pmf) and the
symbol δ indicates deviation.2

Signals generally cause δC values to deviate from zero. The
simplest scalar measure then is the arithmetic average over all
matrix entries, δC, calculated as

δC ≡ 1

(N − 1)2

N−1∑
j=1

N−1∑
k=1

δC j,k . (3)

This metric quantifies a trend in a particular single realization
of N samples but, due to sample variability, δC is a random
variable; zero mean for the pure noise ensemble.

2To avoid cumbersome notation, we shall use C to denote either
the ensemble cdf or the empirical one, the latter based on finite n
including a single realization, depending on the context.

After some algebra on (2) and (3), one obtains for a single
input data vector of N elements that

δC = 1

(N − 1)2

[
1

N

N∑
k=1

k rk − (N + 1)2

4

]
, (4)

where the kth raw entry maps to rank rk . To relate (4) to a
trend, note that for any monotonically increasing signal, rk =
k and so (4) attains its maximum, namely

max δC = 1

12

N + 1

N − 1
. (5)

The distribution for δC is discrete for all N . The number of
distinct values of (4) for pure noise, valid for N � 4, is3

a(N ) =
(

N + 3

3

)
+ 1 = N3 − N

6
+ 1 . (6)

The δC distribution approaches the Gaussian one for large N
with an asymptotic expansion for the standard deviation:

σδC ∼ 0.0826√
N

[
1 + 2.9499

N
+ . . .

]
. (7)

In practice, (7) is quite adequate as the standard of measure
against which to judge the statistical significance of δC.4

Finally, for general n, the count of distinct values becomes
n a(N ) − n + 1 and (7) is multiplied by 1

√
n.

Figure 1 illustrates application of another δC metric to
detection. The time series in Fig. 1(a) contains four Gaussian
pulses, 5 e−4t2

(typical shape in lasers or radar transmission,
etc.), embedded in Cauchy noise. The detection is always
blind as the shape is assumed unknown throughout. While
the variance of Cauchy noise is formally infinite, the nominal
sample-based signal-to-noise power (variance) ratio (SNR) is
4.4 × 10−4. A sliding window of 41 samples (�t = 1/14) is
used to compute p(r, t ) and then the deviation cumulative
distribution function δC. Plotted in Fig. 1(b) is the second
scalar detection metric derived from δC: the rms value of a
particular group component of the deviation cdf, as described
further below. The four prominent spikes line up perfectly
with the true pulse locations as demarcated by the red line.
The black dashed line indicates our detection threshold, set at
the 99.9% confidence limit for pure noise. Neither misses nor
false alarms occur.

To illustrate the importance of representing 1D time series
in the 2D rank-time plane, contrast the proposed approach
with the widely used matched filter where a conjugate replica
of the (known) waveform is used for detection [6]. The
matched filter has a major advantage as the signal form is
known but here fares poorly: A threshold that captures two
pulses yields 4 false alarms, for three pulses 32 false alarms,

3The On-Line Encyclopedia of Integer Sequences gives this ex-
pression for the number of distinct values taken by the entropy for
permutations π (k) of [1..N]. It also gives the number of distinct,
equally spaced, values taken by the sum of k π (k), or k rk in our
terms.

4For a thorough application to the key problem of linear regression
see Appendix A.
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FIG. 1. Proposed method illustrated on a Gaussian pulse S(t ) = 5 exp(−4t2) buried in Cauchy noise. (a) Time series of Cauchy noise with
four (unknown) Gaussian pulses to detect. Vertical scale is clipped to show detail. (b) The detection metric (see text) is shown, where the four
spikes line up with the true pulse locations (red). The detection threshold is marked by the black dashed line. (c) Raw data for the sliding
window of N = 41 centered about the first detected pulse, plotted full scale. (d) The raw data of panel (b) converted to rank from 1 to 41 so,
e.g., the sharp negative spike highlighted in gray at left maps to 1 while the large positive outlier in gray at right maps to 41. This collapse of
outliers permits the underlying signal to be detected. Ratio of variance or signal-to-noise power ratio is technically zero for the Cauchy noise
but the nominal, sample-based value is ≈4 × 10−4; (e) p(r, t ), rank-order probability mass function (pmf) of signal plus noise (n = 106), with
the Gaussian “ridge” seen in the maximum of p vs. t . (f) The δC of signal plus noise (see text), nearly exact with n = 106.

and for all four pulses an overwhelming 69 false alarms. One
can improve the matched filter with a 2D rank-time repre-
sentation, using a dot product with the ensemble average δC
(normalized and reshaped as a unit vector) of Fig. 1(e). While
this then does match our detector in Fig. 1(b), it requires prior
knowledge of the signal form.

For weak signal detection in additive Cauchy noise, the
form of the locally optimal detector is given in Ref. [17]
and denoted there as �(x). The detector is nonlinear in
the data x and, as with matched filters, assumes the form
of the signal is known. The detector further relies on the
specific assumption of Cauchy noise with a known loca-
tion parameter. Despite the special purpose design and the
a priori information, for the time series in Fig. 1(a), a
threshold for �(x) that just captures all four pulses still
gives two false alarms, thereby underperforming the proposed
general method.

One can discern the Gaussian-like ridge in p(r, t ) of
Fig. 1(e), a signal-induced distortion of the uniform pmf of
pure independent and identically distributed noise. Note that
parity with respect to both arguments (r, t) of C flips from
that of p(r, t ) (e.g., even to odd) as indicated by the mixed
derivative relation for the continuous analog between cdf

and pdf:

p(x, y) = ∂2C(x, y)

∂x∂y
. (8)

From Fig. 1(f) we see that the area integral of δC vanishes
because δC is even in rank and odd in time. Any 1D f (x) can
be decomposed into odd and even component as 1/2[ f (x) +
f (−x)] + 1/2[ f (x) − f (−x)] but how does one extend the
notion of parity to 2D? A natural extension to consider is each
argument at a time, i.e.,

f (x, y) = f0 + f1 + f2 + f3, (9)

where:

f0 = [ f (x, y) + f (−x, y) + f (x,−y) + f (−x,−y)]/4

f1 = [ f (x, y) + f (−x, y) − f (x,−y) − f (−x,−y)]/4

f2 = [ f (x, y) − f (−x, y) + f (x,−y) − f (−x,−y)]/4

f3 = [ f (x, y) − f (−x, y) − f (x,−y) + f (−x,−y)]/4,

as given in, e.g., Ref. [25], motivated by the discussion in
Ref. [26]. However, this seemingly straightforward odd or
even decomposition does not quite suit our purposes here.
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II. SYMMETRIES OF NOISE VIA δC(r, t )

Even in a featureless white noise, transient patterns and
spurious trends arise by chance. This sampling variability in
the r, t plane must be characterized in order to detect weak
signals buried in noise. In contrast to signals, the hallmark of
pure noise is rank-time duality. For the ensemble limit this du-
ality is seen for example in that the pdf p(r, t ) is invariant with
respect to rotation by π/2 in the (r, t ) plane. For fluctuations
about that equilibrium, duality means that the probability of
any perturbation δp(r, t ) is the same as for δp(t, r), suggesting
the relevance of symmetries.

We now proceed to extend the notion of parity to two
dimensions based on symmetries and the associated 2D point
groups. The f1, f2, f3 terms in (9) already achieve this asso-
ciation, corresponding to Cx

1 ,Cy
1, R2 symmetries, respectively,

that is, reflections (about x and about y axes) and a rotation.
But the 2D point group characterization is completed by two
dihedral elements: D4, representing the eight symmetries (ro-
tations and reflections) of the N × N square [27], and D2,
the reduced four symmetries of the rectangle, and these are
merged in the single remaining term f0. The proper expression
of rank-time duality requires these be distinguished. To that
end, we split f0 as:

f (D4 ) = [ f (x, y) + f (−x, y) + f (x,−y) + f (−x,−y)

+ f (y, x) + f (−y, x) + f (y,−x) + f (−y,−x)]/8,

(10)

f (D2 ) = [ f (x, y) + f (−x, y) + f (x,−y) + f (−x,−y)

− f (y, x) − f (−y, x) − f (y,−x) − f (−y,−x)]/8,

(11)

with the first term capturing the key rank-time invariance of
pure noise. Expanding δC in place of the general function
f above, one thus obtains five symmetry components for
the deviation cdf. This decomposition is orthogonal, i.e., for
continuous functions, the integral of any dissimilar pair over
the symmetric domain vanishes.5 This five-term decomposi-
tion (D4 and D2, reflections C(x)

1 and C(y)
1 , and rotation R2)

forms the basis for improved detection as the signal-induced
broken rank-time symmetry affects the five group components
differently.

For example, the Gaussian pulse in Fig. 1 is even in time
and so then is the signal-induced deviation from the uniform
p(r, t ) of noise. From (8), the resulting δC is odd in time, as
seen in Fig. 1(f). The latter is observed to be even in rank.
This pairing of even in rank (x) and odd in time (y) indicates
use of the symmetry-matched even-odd C(y)

1 component of
δC for such detection. The strongest response of C(y)

1 is to
a parabolic signal in time. Similarly, δC of even-even D4

symmetry for pure noise is most readily perturbed by a signal
linear in time (or any monotonic transformation thereof), see
Appendix C for details. For signals of unknown parity, or none
at all, one monitors all five components looking for significant
departures from pure noise.

5The discrete equivalent is that the double sum over the correspond-
ing Hadamard product vanishes.

As this work is devoted to (threshold) detection, one needs
a simple scalar metric based on δC. Furthermore, to set con-
fidence limits for detection the sampling variability of pure
noise must be characterized for each of the five components.
The mean value of δC introduced at (3) is available only
for D4 as the remaining group averages vanish identically.
Another natural detection metric (statistic) is that already used
in Fig. 1, the rms value. For δC itself this is calculated as

δCrms ≡
√

δC2 ≡ 1

(N − 1)

[
N−1∑
j=1

N−1∑
k=1

(δC j,k )2

]1/2

(12)

and similarly for the five group components of δC.
The resulting five rms values are evaluated to yield the

cdfs plotted in Fig. 2. Results for (N = 320, n = 100) (blue
curves) are from a Monte Carlo run of 105 trials. The δC (2)

rms, for
reflection group C(y)

1 , is used for detection of Gaussian signals
in the bottom trace in Fig. 1(a) (y is time).

The N = 10, n = 1 results (red curves) are exact as we
take advantage of the fact that, once reduced to rank, there
are precisely N! permutations of the integers from 1 to N ,
each equally likely. The group cdfs for each rank permuta-
tion are readily computed by direct enumeration of all 10! =
3 628 800 microstates. This is equivalent to the true ensemble
limit as n → ∞. The distributions in Fig. 2 for (N = 10, n =
1) stand apart mainly due to n = 1. Increasing just to n = 2 at
fixed N notably reduces the gap in D2 and C(x,y)

1 in Fig. 2(a)
due to a cancellation that is absent when n = 1.6

Figure 2(b) is a detailed exploration of the rms distribution
for C(y)

1 in order to further interpret the detection of the Gaus-
sian pulses of Fig. 1 where the C(y)

1 was used. Plotting vs. x2

clarifies the asymptotic form, and a fit for slope and intercept
yield the dashed line, thereby extending the reliable range for
meaningful estimates. All four pulse detections are seen to lie
well beyond the threshold.

III. DETECTION EXAMPLES FOR A SUITE OF SIGNALS

To showcase this single unified all-purpose detection
scheme for any signal of unknown form buried in heavy-tailed
noise, four disparate examples are given in Fig. 3. To the best
of our knowledge, no method of such breadth is available
elsewhere. The four signals are the chirp, the sinc function:
sin(x)/x, evaluated on x = [−4, 4], the Weierstrass function
(interpolating between regular and algebraic tails; see Ref. [9],
p. 13): f (x) = ∑∞

n=0 an cos(bn π x), a = 0.99 b = 6, and the
Devil’s staircase [28].

To embed weak (unknown) signals in a various types of
noise we use a convenient one-parameter (ν) noise distribution

6The linearity of the mean value implies that ensemble average of
δC (over n) and matrix average (over N) commute; noise cancellation
yields 1/

√
n regardless of the order of operations. By contrast, for

rms values the ensemble average of the mean square for pure noise
does not converge to zero, only the mean square of the ensemble
average.
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FIG. 2. (a) The cdfs of rms values (scaled by their means) of the five-term orthogonal expansion of δC for pure noise: dihedrals D4 and
D2, reflections C (x)

1 and C (y)
1 , and rotation R2. C (x)

1 and C (y)
1 share a cdf so only four curves are plotted and offset by 1 at the indicated bold tick

marks for clarity. The staircases for the coarse discretization of N = 10 and a single trial (n = 1) are surprisingly close to the smooth curves
for (N = 320, n = 100). The D4 cdf is notably broader and, in the case of N = 10, smoother than the other four. (b) As in Fig. 1(b), the rms
value for the C (y)

1 component of δC for (N = 41, n = 1) is shown. C (y)
1 works well because the signal is even in time when the sliding window is

centered at the peak. There is a noise-induced spike at about t = 500 in the plotted test statistic (Fig. 1) which lies near the indicated detection
threshold, while the weakest pulse near t = 1250 lies just above that threshold. Seemingly, this suggests that, in a long run, false negatives
and positives are commonplace. Not so, as panel (b) shows, by mapping the test statistic to the complement probability. The log[1 − cdf(x)]
approaches a simple asymptote (dashed line), indicating that the cdf itself approaches unity as exp(−0.0759 x2) for x2 > 2.5. The threshold in
Fig. 1(b), marked by the vertical bar, maps to a probability of 10−3 while the weakest of the four pulses (leftmost red star) is more than 10-fold
less likely. Based on the asymptotic expansion, the strongest pulse detection is seen to have a probability <10−7, well beyond the range of a
reasonably accessible Monte Carlo run.

(Student) [5]:

p(x) = 

(

ν+1
2

)
√

π ν 

(

ν
2

) (
1 + x2

ν

)− ν+1
2

, (13)

spanning the gamut from the normal distribution in the limit
of ν → ∞ to the Cauchy distribution (ν = 1).

Detection performance for the four examples of Fig. 3
depends on signal amplitude and the number n of available
traces. In Figs. 3(a)–3(c), n = 1 while for Fig. 3(d) we il-
lustrate a case with n = 16. For ease of comparison, signal
amplitudes were selected to yield similar performance “DET”
curves for Cauchy noise (blue).7 Typically the role of noise
in detection is accounted for through its variance in the de-
nominator of the SNR. However, as earlier noted, variance
is formally infinite for Cauchy noise and the finite samples
here yield implausibly small values, with single realizations
yielding SNR values in the range 10−4−10−9. This ambiguity
of SNR in relation to rank-based detection is due to rank
dispensing with all information on absolute magnitude. But, at
least for ν = 4 with σ 2 = 2, we can note the conventional and
well-defined four values of SNR given in the caption. These
span an order of magnitude, with small values for Figs. 3(a)

7See Appendix B for a simple analytic model for these DET curves.

and 3(c), and larger for Figs. 3(b) and 3(d), depending mostly
on spectral content. Simply put, for a fixed signal variance,
lower-frequency signals are easier to detect.

Figure 4(d) displays the Weierstrass function, whose spiky
character is itself already sufficiently noiselike that, in spite
of plotting n = 16 successive time traces in the second inset,
no hint of any signal is discernible by eye. But note the dots
overlain on the signal in the first inset. These are the (scaled)
mean rank averaged over n. And just as the Gaussian pulse
emerged in Fig. 1(d) for n = 40, so, too, here observe both the
general pairing of the 10 most prominent peaks in the signal
with outliers in rank (marked by the circled points), as well as
the similarity in overall weak downward drift. Detection for
this signal rests on the resulting anomalous value of the rms
D4 component of δC.

For detection of four Gaussian pulses in Fig. 1, a perfect
detection threshold was contrasted with performance of the
locally optimal detector, �(x) of Ref. [17]. Because �(x)
assumes the signal embedded in Cauchy noise is of known
form, its optimal window size follows. For δC, that window
will generally be wider to benefit from the added statistics
of arbitrary noise. Furthermore, as the signal in this work is
assumed unknown, one cannot prescribe a suitable window a
priori but rather must discover it during the detection process
based on δC. Nevertheless, to facilitate a simple qualitative
comparison in Fig. 1, we used a fixed window size given by
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FIG. 3. General method of detecting an arbitrary signal of unknown form in any noise: a demonstration on four disparate signals, with
N = 256. Noise is generated via (13) with the color-coded ν values for all panels as indicated in the legend of panel (a). The optimal symmetry
for each signal is shown in the inset. In blue is the signal used for all three DET curves. The same signal form in black [(a)–(c)] shows the
amplitude for a DET curve for Gaussian noise of unit variance that matches the Cauchy result (ν = 1). Infinite variance of noise for ν � 2
renders SNR ambiguous but σ 2 = 2 for ν = 2 with SNR values of [0.113, 0.525, 0.053, 0.888] for [(a)–(d)]. (a) The sinc function, sin(x)/x.
(b) A chirp signal, e.g., gravity waves recorded by LIGO (Appendix C explains the use of C (x)

1 ). (c) The Devil’s staircase, an example of extreme
intermittency, e.g., Ref. [28]. (d) The Weierstrass function with a = 0.99 and b = 6, an example of a continuous but nowhere differentiable
signal. The second inset (upper left) shows all 16 traces for the case of ν = 1. The vertical scale is clipped drastically down to signal level, yet
none is discernible by eye. Overlain on the blue inset signal is the mean rank (black dots), linearly rescaled to match the signal. Note how all
10 prominent signal peaks map to extremal values of mean rank (circles).

the vector defining each signal, and hence the results plotted
are only a conservative lower bound on detection performance
with δC.

Although the odd or even expansion was motivated by
signal forms, symmetries of pure noise are of broader
significance and can be used to detect overfitting and in-
strumental errors and test postextraction residual data, for
randomness, e.g., in metrology [29]. Sometimes parity itself
is the signal of interest, e.g., parity of the wave function
ψ associated with odd or even number of photons stored
in a cavity [30]. The five terms in the symmetry group
expansion detect subtle yet distinct deviations of the pos-
textraction residuals from the independent and identically
distributed noise.

We have confined the detection to signals in independent
and identically distributed noise but correlated (colored) noise
is ubiquitous so how is the proposed detection method af-
fected by correlation? Traditionally, the knowledge of the
correlation function is used to whiten the data and then
proceed with the detection algorithms suited to white noise
[6,31]. However, if the correlation function is not known,
then the main practical effect is that the effective number of
independent samples N is reduced. Note also that correla-
tion itself becomes a “signal,” subject to detection. Indeed,
insofar as correlation breaks the uniformity of p(r, t ) tending
to U (1, N ) × U (1, N ), it is a signal, albeit a random one as
was explored in a different context in Ref. [26] where it was
remarkably effective in distinguishing chaos from noise and
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FIG. 4. Detection and extraction of a weak linear signal buried in noise: Even for single realizations (n = 1), the proposed method is
nearly as efficient for heavy-tailed as for normal noise. The signal f (x) = α x/N is sampled uniformly at N points on [−1, 1]. Three noise
distributions are used: ν = 1 (Cauchy noise, blue), ν = 2 (red), and ν → ∞ (Gaussian noise, gold), with solid lines for the proposed method
and broken lines for conventional methods: dashed for least squares (LS) and dotted for Theil-Sen. (a) The means and standard deviations
of δC determine performance of the detection metric τ , a scaled difference of means (Welch statistic), defined in the legend, with subscripts
1 for signal absent and 2 for signal present. The ln-ln plot of τ vs. the (scaled) slope α shows τ = α + c for all cases plotted, varying only
in the intercept c. For normal noise, LS is slightly better. For Cauchy noise, the present method edges out Theil-Sen everywhere except for
α > 3. (b) Detection error trade-off curves for α = 40. Operating at PFA = PMD, detection error ranges from 20% at ν = 1 to 5% as ν → ∞.
The companion broken curves are almost identical. (c) Slope extraction for f (x) = exp(1) x/48 ≈ 0.0566 x. We determine slope by requiring
δC = 0 (see text) and match the Theil-Sen histogram as well as the narrower LS result.

in detecting various types of random processes. We have con-
firmed that the far simpler δC method proposed here matches
these results, reported in Ref. [26].

So how is the correlation revealed, in the language of
p(r, t )? Whereas for uncorrelated noise all positions in the
N × N matrix are indistinguishable, correlation breaks it and
boundary effects appear, distinguishing among interior points
with four nearest neighbors, edge points with three, and the
four corners with two. The limiting form of p(r, t ) is, there-
fore, perturbed and hence also the background xy form for the
equilibrium C. That departure induces a nonzero equilibrium
δC resulting from correlated pure noise but solely of R2 sym-
metry. Should one wish to proceed with the signal detection
rms metric suggested here, one recalculates the group devia-
tion cdfs of Fig. 2 and resulting thresholds.

In summary, a simple signal-noise decomposition is pro-
posed based on mapping raw data onto the rank-time plane
and observing that only independent and identically dis-
tributed (pure) noise possesses a jointly uniform pdf, is
invariant with respect to reshuffling, and satisfies rank-time
duality. Mapping the raw data to rank-time space requires no
original noise modeling at all in order to obtain distributions
of δC and the group-based rms metrics based on the formu-
lation in terms of relative cdf δC. Further, insofar as ranking
is invariant to monotonic (nonlinear) transformations, multi-
channel and, indeed, multisensor data can be readily “fused”
and “apples can be compared to oranges.” Mapping pure noise
data onto the rank-time plane led to the recognition that sym-
metries of noise are essential and the five symmetry group
components are more selective, yielding a robust detection
of rather complex a priori unknown signals in heavy-tailed
arbitrary noise, even in single time series.
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APPENDIX A: LINEAR REGRESSION WITH δC

Using δC to fit a line to noisy data or to detect a ramp
signal (linear trend) is described here. While our results for
detecting step functions (e.g., breaks in time series) or de-
tecting rectangular pulses are nearly identical, the linear case
enables a companion discussion on slope extraction. We fo-
cus on the practically important case of n = 1, a single time
series. Considering the vast literature on the question [1,5],
it is surprising to learn that linear regression in heavy-tailed
noise remains challenging [17,32]. To that end, Fig. 4 shows
that the proposed general-purpose method works for all noise
distributions.

For detection, framed as a binary decision, one asks: Given
a time series of N points, is there a signal? The figure of merit,
quantifying detection performance is

τ = μ2 − μ1√(
σ 2

1 + σ 2
2

)
/N

, (A1)

the scaled difference of the random variable δC(N ) averages
with and without the signal. Computation of δC(N ) is O(N ),
following the reduced form (4) in the main text.

Here we use the same convenient one-parameter (ν) noise
distribution as given by (13). The Cauchy variance, albeit for-
mally infinite, is ∼106−108 for a Monte Carlo (MC) sample in

032221-7



GLENN IERLEY AND ALEX KOSTINSKI PHYSICAL REVIEW E 102, 032221 (2020)

Fig. 4(a) with N = 48, n = 105. The N scaling of the normal-
ized difference between the mean slopes [y axis in panel (a)]
is such that the plot is independent of N given f (x) = αx/N .

The logarithmic plots of τ versus the parameter α in
Fig. 4(a) demonstrate that the proposed rank-time approach is
robust and all purpose, performing nearly as well for heavy-
tailed noise as for Gaussian. The Cauchy result overlaps
with the Gaussian when shifted left by ≈ −0.61. Comparable
detection for the two hence results if the signal in Cauchy
noise is amplified by a factor of exp(0.61) ≈ 1.82, a modest
penalty for changing to such heavy-tailed noise, where LS
fails. Comparison plots of τ are shown for LS and Theil-
Sen methods, roughly matching our results. The latter is a
median-based special-purpose method, designed specifically
for heavy-tailed noise and used exclusively for linear regres-
sion [26,32].

The probability of missed detection vs. the probability of
false alarm is plotted in Fig. 4(b) for various values of ν.
As in Fig. 4(a), the proposed method closely approximates
the LS result for Gaussian noise and the Theil-Sen result for
Cauchy. Illustrating the interpretation of these curves, for a
weak signal in a single time series in heavy-tailed noise, at
the cost of ≈50% false alarms, one can reduce the probability
of a miss to only ≈1%. The signal could be, say, a decrease
in global cloud coverage (so-called global dimming) during
the past 20 years when reliable satellite observations became
available [33].

The distribution of extracted slopes is shown in Fig. 4(c).
For each time series consisting of signal plus noise, a slope
is subtracted such that the residual rank data yield δC = 0.
Slopes determined from this “detrending” by annulling of
δC closely match the Theil-Sen results, peaking at the same
theoretical mean, and with nearly equal variance. Similar
agreement obtains for Gaussian noise. For that case with unit
noise variance, SNR = (α/N )2 (1/3 + (N − 1/3)/(N − 1)2).
For α = exp(1) and N = 48, SNR ≈ 1.1 × 10−3, that is, a
weak signal.8

The δC-based linear trend detection is a simple and flexi-
ble all-purpose approach for single time series, matching the
standard techniques not only for both heavy-tailed noise and
normal noise but also for all values of ν and any other dis-
tribution. To reiterate, such generality stems from the simple
fact that all stationary white noise reduces to a universal cdf
in the rank-time plane. Any departure therefrom as measured
by δC is the indicator of a trend.

The conventional slope estimate from the LS fit is in units
of standard error, interpreted as a likelihood via the Student
distribution. While this and all such comparisons inevitably
invoke statistical ensembles, the present formulation offers a
discrete binary test of consistency for such estimates without

reference to any parent distribution: Evaluate δC (0)
of the raw

data and compare it to δC (1)
for the detrended data. A telling

case is linear regression of pure Gaussian noise, for which LS
returns residual test values greater in magnitude than those
for the raw data approximately 12% of the time. The fraction

8Note that LS a local quadratic minimization problem while δC
seeks a zero crossing.

increases with increasing skewness or kurtosis of the noise.
For the Theil-Sen method with Cauchy noise, such an out-
come occurs ∼6% of the time. Any slope estimate disobeying

| δC (1) | < | δC (0) | would seem to constitute a fortiori grounds
for its rejection. None of this contradicts LS being a maximum
likelihood estimator meaning, for example, that no linear
estimator can beat the LS standard deviation in Fig. 4(c).
But the focus here is on a single trace: Is this slope for this
data acceptable? Any single realization includes a transient
odd-parity component either opposing or reinforcing the trend
due to signal. The binary test simply addresses consistency in
estimating the effective linear trend arising from the sum of
these two; not merely the latter. For any single realization, the
two sources of trend are indistinguishable.

APPENDIX B: ANALYTIC APPROACH TO
DETECTION-ERROR TRADE-OFF (DET) CURVES

The five DET curves in Fig. 4(b) expand on the five τ

loci lying on the vertical dashed line at α = 40 in Fig. 4(a).
These “trade-off” curves show the balance for any selected
threshold between the fraction of false alarms and that for
missed detections. Depending on the context, one picks the
“operating” point on the trade-off curve and a common choice
is the intersection of the trade-off curve with the main diago-
nal where PFA = PMD. Various practical detection algorithms
often give rise to fairly intricate curves. Here, however, the
curves are all smooth and almost perfectly symmetric when
reflected about the diagonal. Such structure can be readily
understood on the simplifying assumption that both the pdf
of the chosen test statistic, e.g., δC, for noise alone and the
pdf for that of noise plus signal are Gaussian (normal), with
equal variance, and the former is zero mean.

On those assumptions it follows after integration that

PFA(s) = 1
2 [1 − erf(s/

√
2)]

PMD(s) = 1
2 [1 − erf(τ/

√
N − s/

√
2)],

yielding a parametric representation of the curves in Fig. 4(b).
Each DET curve then is completely prescribed once its τ

value is read from Fig. 4(a). For the DET curve associated
with least-squares detection in Gaussian noise, the parametric
result is graphically indistinguishable from the dashed line.
For the other four DET curves, the parametric result does not
exactly overlie the plotted one but remains quite close, with
the tiny deviations due the departure from the perfect normal
pdf. The operating point follows from the above representa-
tion as:

PFA = PMD = 1
2 [1 − erf(τ/2

√
N )].

APPENDIX C: OPTIMAL SIGNALS

What types of signals disturb which of the five δC sym-
metry components the most? Alternatively, are there signals
such that, in the absence of noise, the five-term expansion of
δC in Eqs. (9)–(11) collapses to a single term? It turns out
that there is such a signal for R2 and, for the remaining four
cases, it is almost the case as only a small residual remains in
a companion term.
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Returning to rms as the metric, here we complete the main
text characterization of signals exciting various δC patterns.
C(x)

1 and R2 components form an orthogonal complement
to D4 (odd signals) and C(y)

1 (even signals), respectively.
Specifically, C(x)

1 pairs with a signal oscillating at the grid
scale frequency inside a linear envelope (optimizing variance
and mean, respectively) and R2 by the same oscillation in a
quadratic envelope. In particular, the chirp signal in Fig. 3(b)
can be viewed as a rapid oscillation inside a linear (mono-
tone) envelope, leading to C(x)

1 as the preferred metric for its
detection.

The maximum for the D2 rms value is attained simulta-
neously with a minimum of the D4 contribution and resists a
simple characterization. The signal has odd parity and its form
must be sought in series form with coefficients determined
numerically.

In parallel to (5), for these optimal signals, the explained
variation captured by each of three of the four elementary
maximizing forms is of the form

(
δC{D4,C

(x,y)
1 }

rms

δCrms

)2

∼ 15

16

(
1 − c

N2

)
, (C1)

while the fourth is

[
δC (R2 )

rms

δCrms

]2

∼ 1 − c

N2
. (C2)

For the D2 limited results suggest the asymptotic form
ρ2

δC{D2} ≈ 0.9.
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