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The Bose-Einstein condensates in a finite depth potential well provide an ideal platform to study the quantum
escape dynamics. In this paper, the ground state, tunneling, and diffusion dynamics of the spin-orbit coupling
(SOC) of Bose-Einstein condensates with two pseudospin components in a shallow trap are studied analytically
and numerically. The phase transition between the plane-wave phase and zero-momentum phase of the ground
state is obtained. Furthermore, the stability of the ground state is discussed, and the stability diagram in the
parameter space is provided. The bound state (in which condensates are stably trapped in the potential well),
the quasibound state (in which condensates tunnel through the well), and the unstable state (in which diffusion
occurs) are revealed. We find that the finite depth potential well has an important effect on the phase transition
of the ground state, and, interestingly, SOC can stabilize the system against the diffusion and manipulate the
tunneling and diffusion dynamics. In particular, spatial anisotropic tunneling and diffusion dynamics of the two
pseudospin components induced by SOC in quasibound and unstable states are observed. We provide an effective
model and method to study and control the quantum tunneling and diffusion dynamics.
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I. INTRODUCTION

Spin-orbit coupling (SOC) represents a major source of
magnetic interaction which involves the fine structure in
atomic physics. SOC also plays a crucial role in solid
mataries, such as topological insulator [1,2], spintronic de-
vices [3], spin Hall effects [4–7], and quantum computation
[8]. In a cold atomic system, we aim at the neutral atoms,
which cannot experience the spin-orbit coupling naturally and
it therefore has to be engineered. SOC can be induced by
Raman lasers in this case. Then the hyperfine structure (play-
ing a role of the quasi-spin-up and -down states) is involved
for cold atoms because of the Raman coupling between the
hyperfine ground states [9,10]. It becomes indispensable in
many ultracold gases with the experimental realization of
SOC with equal Rashba [11] and Dresselhaus [12] contribu-
tions, especially Bose-Einstein condensates (BECs) [13,14].
It has been shown that spin-orbit coupled Bose-Einstein
condensates (SOC-BECs) can be generated by two counter-
propagating Raman lasers, and most experimental parameters
can be controlled by optic or magnetic means [15,16]. SOC-
BECs exhibit many interesting localized phenomena, such as
solitons [17–20], gap solitons [21–23], and vortex structure
[24,25]. In particular, many quantum ground-state phases have
been investigated, such as the zero-momentum phase, the
plane-wave phase, and the stripe phase [13–15,25–30]. Inter-
estingly, it is found that SOC can maintain the system’s sta-
bility with stable soliton-like localized phenomena in a purely
attractive SOC-BEC in free space, and it is also observed
that SOC can stabilize the system against collapse [31–34].
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Furthermore, the anisotropic expansion dynamics induced by
SOC is revealed in free space [35,36]. Usually, infinite depth
harmonic potential is employed to trap the BECs. The conden-
sates can be trapped stably or get collapsed in this potential
well with different states. Correspondingly, the studies of the
ground state and the stability of the SOC-BECs are focused on
the case of free space or an infinite depth harmonic potential
well.

Different from the case of the infinite depth potential well,
there is a metastable state (quasibound state) for atoms in the
finite depth potential well, where tunneling occurs [37–40].
Tunneling is of great significance to quantum physics and
chemistry and much work have been reported, such as imag-
ing of materials [41] and tunneling lifetime, which can be
controlled by varying the depth of the shallow trap [42]. Tun-
neling is vital to the quantum transport and the corresponding
quantum well structure. Thus, deep study and understanding
of the tunneling dynamics are still an open question. Because
of the highly controllability of atomic interaction and trap
geometries, an atomic condensate in the shallow trap provides
an ideal platform to explore the quantum tunneling dynamics
[43–45]. However, the previous studies on the tunneling dy-
namics of the atomic condensates in the shallow trap do not
take the SOC into account, and the pseudospin component of
the system is simple. The influence of SOC on the ground-
state phase transition, the stability of the ground state, and the
tunneling dynamics with two pseudospin components in the
shallow trap are not clear. We expect that rich quantum escape
dynamics will occur in SOC-BECs.

In this paper, the ground state and the stability of the
SOC-BECs with two pseudospin components trapped in the
finite depth potential well are studied using the variational
method and numerical simulation. The phase transition of the
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ground state and the stability of the ground state are analyzed.
The stable bound state, the quasibound state, and the unstable
diffusion state are revealed. It is shown that the parameter
of the finite depth potential well, atomic interactions, spin-
orbit coupling, and Raman coupling have strong coupling
effects on the ground state. The effect of the finite depth
potential on the phase transition depends on intraspecies and
interspecies interactions. When the intraspecies interaction is
greater (smaller) than the interspecies interaction, the finite
depth potential well suppresses (promotes) the transformation
of the system from zero-momentum phase into plane-wave
phase. The effect of the finite depth potential well on phase
transition disappears when intraspecies and interspecies inter-
actions are equal. Interestingly, spin-orbit coupling (Raman
coupling) can stabilize (destabilize) the system against dif-
fusion and manipulate the transition of the system between
the bound state, quasibound state (tunneling state), and un-
stable diffusion state. Moreover, the intuitive proof of this
phenomenon is provided. Furthermore, the tunneling and
diffusion dynamics in quasibound and unstable states are
discussed, and the spatial anisotropic tunneling and diffusion
dynamics induced by spin-orbit coupling are observed.

The paper is organized as follows. In Sec. II the model
and the variational analysis of the system’s ground state are
provided. In Sec. III the phase transition of the ground state
is discussed. In Sec. IV the stability of the ground state is
discussed. In Sec. V the tunneling and diffusion dynamics of
the system are discussed. In Sec. VI stability (instability) in-
duced by SOC (Raman coupling) are demonstrated intuitively.
Section VII is a brief summary.

II. THE MODEL AND VARIATIONAL ANALYSIS

We consider the 87Rb atom with total angular momentum
F = 1 and spin J = 1/2. First, a magnetic field is applied to
split the degeneracy of the ground state into |1, 1〉, |1, 0〉, and
|1,−1〉 states. The |1, 1〉 state is far detuned from the remain-
ing two states, thus the |1, 1〉 state is neglected [13]. Then
the Raman lasers effectively couple the |1, 0〉 and |1,−1〉
states. We label |1, 0〉 and |1,−1〉 as two pseudospin states
in analogy with an electron’s two spin states. From |ψ1〉 =
|1, 0〉 and |ψ2〉 = |1,−1〉, the SOC-BECs with two pseu-
dospin components can be characterized by � = (ψ1, ψ2)T

(hereafter the superscript T stands for the transposition), and
a one-dimensional symmetric finite depth potential well is
employed to trap the condensates (see Fig. 1). The dimension-
less Hamilton describing the system has the following form
[37–39,45–50]:

H = HSOC + G, (1)

and the physical variables are rescaled as � ∼ √
a0�, x ∼

a0x, where a0 = √
h̄/mω0 is the characteristic length along

the x direction, m is the mass of the atom, and ω0 is the
trapping frequency along the x direction. The dimensionless
single-particle Hamiltonian is

HSOC = −∂2/∂x2 − ikLσz∂/∂x + �σx + V (x). (2)

After the pseudospin rotation, HSOC including pxσz corre-
sponds to an equal weight mixing of Rashba and Dresselhaus
coupling [10,14,26,48]. The kL = k̃L/(2h̄a−1

0 ) is the dimen-

FIG. 1. The sketch of the model. c = 0.1.

sionless strength of the SOC, and � = �̃/(2h̄ω0) is the
dimensionless Raman coupling. σx and σz are the standard
2×2 Pauli matrices. V (x) = x2e−cx2

is the dimensionless shal-
low trap, which is shown in Fig. 1. This special finite depth
potential well can be generated by multiplying the broad
Gaussian envelopes generated by the waist of the trapping
laser beam and the central harmonic potential generated by
a second, more narrowly focused laser beam, or by a higher
Hermite-Gauss mode of the laser as used in creating BECs’
wave guides, or by a laser beam with embedded vorticity
induced by passing the beam through a phase mask [39].
With the increasing c, the trap is weakened, otherwise it is
strengthened, and the depth and width of the V (x) are both
governed by c. In this paper, we mainly discuss the com-
prehensive influence of this parameter on the system. G is
a 2×2 matrix describing the two-body interaction under the
mean-field approximation, where

G = diag(g11|ψ1|2 + g12|ψ2|2, g22|ψ2|2 + g12|ψ1|2); (3)

gii = 4aiiN h̄/mω0l2
⊥a0 and gi j = 4ai jN h̄/mω0l2

⊥a0 represent
the the dimensionless intra-species and interspecies interac-
tion, respectively. N denotes the total number of atoms, and
ai j and aii are the intraspecies and interspecies s-wave scat-
tering length. l⊥ = √

h̄/mω⊥ is the characteristic length in
the longitudinal plane with its trapped frequency ω⊥. We set
g11 = g22 = g in this paper owing to neglecting the Zeeman
fields effects.

In order to investigate the ground state of the system, the
variational method is used, and the trial wave function with
Gaussian form can be provided [38]:

�(x, t ) =
(

ψ1

ψ2

)
= 1√

2

(
e

iφ
2
√

1 + s
−e

−iφ
2

√
1 − s

)

× e− x2

2R2 +ipx

(
√

πR)
1
2

. (4)

The trial wave function is normalized, i.e.,
∫

[ψ∗
1 ψ1 +

ψ∗
2 ψ2] dx = 1. p and R are the momentum and width of the

wave packets, respectively, s (−1 � s � 1) is the expectation
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FIG. 2. The corresponding equilibrium s and R in the ground state against kL under different c. We set g = 1 and � = 1.

value of the spin, and φ is the phase difference between the
two pseudospin components.

We can obtain the energy of the system by E =∫
[�∗HSOC� + 1

2�∗G�] dx:

E = p2 + 1

2R2
+ R2

2(1 + cR2)
3
2

+ kLsp − �
√

1 − s2 cos φ

+ g + g12 + (g − g12)s2

4
√

2πR
. (5)

Using ∂E
∂qi

= 0, where qi=R, s, φ, p, the ground-state solutions
are obtained, φ = 0, and

p = −1

2
kLs, (6)

1

R3
+ 3cR2

2(1 + cR2)
5
2

+ g + g12 + (g − g12)s2

4
√

2πR2
= R

(1 + cR2)
3
2

,

(7)

s f = 0,

(
f = k2

L − g − g12√
2πR

− 2�√
1 − s2

)
. (8)

R and s can be obtained by solving Eqs. (7) and (8), in
which the solution with the minimum energy represents the
ground state of the system. When the system is in the ground
state, R is a finite width, and different ground-state phases
depending on s occur.

III. THE GROUND-STATE PHASE DIAGRAM

The ground state exists when Eqs. (7) and (8) have real
solutions. Meanwhile, s = 0 represents the zero-momentum
phase without spin polarization and s �= 0 represents the
plane-wave phase with spin polarization. Here we focus on
only the phase transition between the zero-momentum phase
and the plane-wave phase.

Figure 2 shows the numerical solution of the stationary
width for the wave packet R and expectation value of the
spin s against the strength of SOC under different interspecies
interaction g12/g and parameter c (we set g = 1 and � = 1).
There is a critical value kLC that s remains at 0 for kL < kLC

(condensates are in a zero-momentum phase), while s in-
creases with increasing kL for kL > kLC (condensates are in
a plane-wave phase), where

kLC =
√

(g − g12)/
√

2πR + 2�, (9)

and kLC is the phase transition point determined by f = 0 and
s = 0. Correspondingly, R keeps unchanged for kL < kLC due
to decoupling between s and R; however, R changes with kL

for kL > kLC . Interspecies repulsion widens the ground-state
width R. The increase of c weakens the potential well and
leads to a broadening of R, i.e., R increases with increase of
g12 and decrease of c. Furthermore, R is positively correlated
with the strength of SOC when g12/g < 1 [see Fig. 2(a)],
i.e., R increases with the increase of kL for kL > kLC , while
R is negatively correlated with the strength of SOC when
g12/g > 1 [see Fig. 2(c)], i.e., R decreases with the increase
of kL for kL > kLC . In particular, R remains invariable with
the change of kL when g12/g = 1 is satisfied [see Fig. 2(b)].
Interestingly, the variation of R against SOC kL is continuous,
but the slope is discontinuous at the phase transition point,
and this corresponds to a second-order phase transition when
g12/g �= 1. In addition, we can see the phase transition point
kLC increases with c when g12/g > 1, while c has a weak
influence on kLC when g12/g � 1. Those are further clarified
in Fig. 3.

To explore the phase transition in the ground state more
comprehensively, we make the phase diagram in the (�, kL)
plane under different parameter of the potential well c and
interspecies repulsion g12/g [see Figs. 3(a)–(d)]. For a fixed

FIG. 3. Phase diagram in (�, kL) plane under different c and
g12/g. We set g = 1.
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g12/g (we set g = 1), condensates transfer from the zero-
momentum phase into the plane-wave phase with the increase
of kL and decrease of �. Phase transition curves integrally
shift right when interspecies repulsion is enhanced, i.e., the
plane-wave phase expands to a larger � region with the in-
crease of g12/g. When g12/g = 1, the effect of c on the phase
transition disappears completely [see Fig. 3(b)]. However,
Figs. 3(c)–3(d) illustrate that increasing c suppresses the con-
densates transforming from the zero-momentum phase into
plane-wave phase when g12/g > 1, and the suppression be-
comes more significant for large interspecies repulsion. Thus,
for SOC, the parameter of the potential well and interspecies
interaction can be adjusted to design the ground-state struc-
tures of the condensates.

IV. THE STABILITY OF THE GROUND STATE

Condensates cannot be trapped in the potential well when
parameter c becomes large enough (the finite depth potential
well tends to the situation of the free space), and conden-
sates enter into the unstable state where diffusion occurs with
intraspecies repulsion. In this case, Eqs. (7) and (8) do not
have real solutions. Sufficiently small c corresponds to the
potential well of infinite depth, where condensates are trapped
in the well stably. Between the two extremes, i.e., for the
finite depth potential well, there is a metastable state (i.e.,
quasibound state) where tunneling occurs. We can divide the
ground state into a bound state and quasibound state by the
chemical potential,

μ =
∫

(ψ∗
1 , ψ∗

2 )H (ψ1, ψ2)T dx, (10)

where μ is the chemical potential of the condensates. Inserting
equilibria R, p, s, φ into Eq. (10), one obtains the chemical
potential of the ground state,

μ = R

2(1 + cR2)
3
2

− 1

4
k2

Ls2 + 1

2R2
− �

√
1 − s2

+ (g + g12) − (g − g12)s2

2
√

2πR
. (11)

The trapping potential V (x) → 0 when x → ∞ (see
Fig. 1), i.e., the background potential is 0. Then, when the
chemical potential is stronger than the the background po-
tential (chemical potential μ > 0), i.e., the chemical potential
is positive, the atoms can tunnel outside the finite depth po-
tential well, and the condensates are in the quasibound state
in this case. When the chemical potential of the condensates
is weaker than the background potential (μ < 0), i.e., the
chemical potential is negative, it is impossible for atoms to
escape outside the potential well, and the condensates are in
the bound state in this case. Thus, the transition from the qua-
sibound to bound state occurs when the ground-state chemical
potential μ changes the sign from positive to negative [38].
Therefore, by combining stationary equations (7) and (8) and
the ground-state chemical potential from Eq. (11), the g-c
plane is divided into three regions (see Fig. 4): the unstable
state (i.e., diffusion state), bound state, and quasibound state
(i.e., tunneling state).

FIG. 4. Stability phase diagram in the g-c plane, (a) with differ-
ent strength of SOC kL under Raman coupling � = 1, and (b) with
different � under kL = 1.5. We set g12 = 1.

Figure 4 is the stability phase diagram in the g-c plane
for different kL and �. It illustrates, for the fixed kL and
�, when c increases (the trap is weakened), the stability
can be maintained by reducing the interspecies repulsion or
increasing the intraspecies attractive. Figure 4(a) shows that,
with the increase of kL, the regions of bound and quasibound
states expand to the weak attractive intraatomic interaction
region and even to the weak repulsive intra-atomic interaction
region for the larger c case under the fixed �; i.e., SOC can
balance the mean-field repulsion to prevent the condensates
against the diffusion. However, when kL is large enough
(kL > 3), the influence of kL on the stability diagram is in-
hibited. The system enters into the fully polarized plane-wave
phase for the fixed � with large kL, s tends to 1 and hardly
changes (see Fig. 2), and Eq. (7) related to the stability is
independent on s and kL in this case. Figure 4(b) shows that,
for the fixed kL with increasing �, the regions of the unstable
state expand to the strong attractive intra-atomic interaction
region, i.e., Raman coupling promotes the diffusion of the
condensates. Thus, strong SOC (or weak Raman coupling)
can stabilize the system and manipulate the transition of the
system between the bound state, quasibound state, and unsta-
ble diffusion state. As marked by point D1 (D2) in Fig. 4(a)
[Fig. 4(b)], the condensates experience the diffusion state in
the zero-momentum phase (bound state in the plane-wave
phase), quasibound state in the plane-wave phase, and bound
state in the plane-wave phase (diffusion state in the zero-
momentum phase) transitions successively with the increase
of kL (�) under the fixed � (kL). In addition, when c is
sufficiently small (the depth of the potential well tends to infi-
nite) and the atomic-repulsion is large enough, the potential
well loses the property of finite depth, i.e., the quasibound
state disappears, and in this case, condensates transfer from
the stable bound state to unstable diffusion state directly (see
Fig. 4). Moreover, Fig. 4 appears as a sharp corner between the
quasibound state and the bound state for negative g and small c
region; it could be explained that the width of the ground-state
wave packets become smaller than the width of the trap as
attractive interactions are increased or the the trapping ability
of the potential well is weakened, and therefore the trap has
a weak effect on the energy of the system. Similarly, when
the attractive intraspecies interaction reaches a certain value,
the system is all stable under arbitrary value of c as shown in
Fig. 4. Sufficiently strong attractive interactions result in the
much narrower wave packets, which are far smaller than the
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FIG. 5. The time evolution of the wave packets and the spin dynamics corresponds to the cases of B1 (the first column), B2 (the second
column), and B3 (the third column) as marked in Fig. 4(a) with kL = 0 (without SOC).

width of the potential well in corresponding cases, so that the
wave packet is trapped stably. Equations (7) and (8) always
have real solutions under arbitrary value of c. However, these
corresponding solutions cannot lead the chemical potential as
Eq. (11) tends to 0, thus the vertical lines emerged in Fig. 4.

V. THE TUNNELING AND DIFFUSION DYNAMICS

In order to verify the stability phase diagrams, direct
numerical simulation of the dimensionless Gross-Pitaevskii
(GP) equation describing the system and the wave packets
|ψ1| and |ψ2| with their time evolutions of the spin dynamics
under the weak excitation in different states as marked by
(B1, B2, B3) in Fig. 4(a) are shown in Figs. 6 and 7, and

the case of the condensates without SOC is shown in Fig. 5.
Taking the equilibrium states (or after perturbation) as the
initial condition [see Eq. (4)], we use the fourth-order Runge-
Kutta method to solve H� = i�̇ numerically with the time
step 0.0001 and space step 0.1, and the corresponding spatial
coordinates are calculated to reach 10 000.

The inserts in the second columns of Figs. 5–7 are
the enlargements of the corresponding wave packets.
Figure 8 is the time evolution of the particle number Ñj,σ

(Ñ j,σ = ∫
σ

ψ∗
j ψ jdσ ) escaped from the shallow trap of differ-

ent components along different spatial directions. j = (1, 2)
represents the jth component, and σ = (L, R) represents the
escape direction of atoms; i.e., σ = L(R) means atoms es-
caped from the left (right) side of the well.
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FIG. 6. The time evolution of the wave packets and the spin dynamics corresponds to the cases of B1 (the first column), B2 (the second
column), and B3 (the third column) as marked in Fig. 4(a) with kL = 0.5 (in zero-momentum phase).

As is shown in the first columns of Figs. 5–7, the wave
packets are stably trapped in the potential well with initial
Gaussian form in the bound state for all cases. In the bound
state, periodic spin exchange occurs under the weak excitation
near the ground state (	s = 0.1), and the spin exchange in
the plane-wave phase is slowed (i.e., with low spin oscillation
frequency) but the spin oscillation amplitude is amplified to
	s = ±1 (see the last rows of the first column in Figs. 5–7).
The second columns in Figs. 5–7 illustrate the time evolutions
of the wave packets and the spin dynamics in the quasi-
bound state; the wave packets inside the well remain Gaussian
form while the atoms of two pseudospin components tunnel
out from the potential well asymmetrically in space in the
presence of SOC [see Figs. 6 and 7, 8(c), and 8(e)] but
symmetrically in space in the absence of SOC [see Figs. 5
and 8(a)]. As is shown in the third columns in Figs. 5–7,
when the condensates are in an unstable state, the potential
well is too weak to trap the condensates, and the condensates
spill out from the top of the potential well asymmetrically
in space in the presence of SOC [see also Figs. 8(d) and
8(f)] but symmetrically in space in the absence of SOC [see
also Fig. 8(b)] accompanied with the rapid collapse of the
wave packets inside the well. That is, in the absence of SOC,
Fig. 5 indicates that the tunneling and diffusion behaviors of
the two pseudospin components are almost the same; i.e., the
wave packets of component ψ1 and ψ2 almost coincide, and

the atom clouds of both components tunnel and are diffusive
totally symmetrically [see also Figs. 8(a) and 8(b)] in space
accompanied with periodic spin oscillations in the bound
state, quasibound state, and unstable state (see the last rows
in Fig. 5). However, for the cases of condensates with SOC
in both quasibound and unstable states (see Figs. 6 and 7),
SOC leads to space anisotropic tunneling and escape of the
pseudospin components ψ1 and ψ2, and a larger amount of
the ψ1 (ψ2) component tunnels or escapes along the negative
(positive) x direction [see also Figs. 8(c)–(f)]. This would
be the results of the additional momentum induced by SOC,
which has opposite directions for two pseudospin components
[see Eq. (2)]. In addition, when the atoms tunnel out or escape
from the well, the atom clouds of both components are diffu-
sive nearly symmetrically in space accompanied with damped
spin oscillations in the zero-momentum phase (see the second
and third columns in Fig. 6), while the condensates enter
into a new spin-polarized state and are diffusive asymmetri-
cally in space in the plane-wave phase (see the second and
third columns in Fig. 7); i.e., the diffusion velocity is larger
(smaller) in the negative (positive) x direction. The expansion
of the wave packet in the positive x direction appears as
a quick deceleration with a sharp edge which resembles a
form of an effective localization. Figures 5–7 also predict that
the tunneling dynamics and diffusion dynamics of the wave
packets behave in significant different characters.
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FIG. 7. The time evolution of the wave packets and the spin dynamics corresponds to the cases of B1 (the first column), B2 (the second
column), and B3 (the third column) as marked in Fig. 4(a) with kL = 3 (in plane-wave phase).

We note that spin dynamics in different states has different
oscillating characters. When the condensates are in the bound
state, the wave packets are trapped in the finite potential
well stably, and there is no density modulation in this case.
Periodic spin oscillations occur under the weak excitation
(	s = 0.1), and this is known as collective dynamics similar
to the collective dynamics in harmonic potential [51]. When
the condensates are in the quasibound and unstable state, con-
densates can tunnel or diffuse outside the finite depth potential
well, and the density modulation occurs in this case. The
collective dynamics of s are destroyed due to the instability
of the system, and the periodic spin oscillations are replaced
by the spin polarization; i.e., spin oscillations are damped

(see the second and third columns in Figs. 6 and 7). However,
in the absence of spin-orbit coupling (kL = 0), the density
modulation and spin oscillations are decoupled, and the den-
sity modulation is weak. The wave packets |ψ1| and |ψ2|
are almost overlapped, the periodic spin exchange caused by
Raman coupling � also occurs in the quasibound and unstable
states (see the second and third columns in Fig. 5).

We introduce the effective mass to illustrate the spatial
anisotropic tunneling and diffusion dynamics induced by SOC
in the plane-wave phase. It is shown that when the condensates
enter into a negative mass region, a marked asymmetry ex-
pansion dynamics is observed [35,36]. We obtain the effective
mass of the system by using 1/m∗ = ∂2E/∂ p2 in the ground
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FIG. 8. Time evolution of particle number escaped from the shal-
low trap of different components along different directions. (a) and
(b) correspond to the cases of Fig. 5, (c) and (d) correspond to the
cases of Fig. 6, and (e) and (f) correspond to the cases of Fig. 7.

state. Then the effective mass near the phase transition point
(s → 0) has the following form:

m∗ = − k2
L

k2
L − k2

LC

. (12)

When kL < kLC , the condensates are in the zero-momentum
phase, the effective mass of the ground state m∗ is positive,
and the diffusion dynamics is symmetry in space (see Fig. 6),
while when kL > kLC , the condensates are in plane-wave
phase, the effective mass of the ground state m∗ is nega-
tive, and this leads the spatial anisotropic diffusion dynamics
(see Fig. 7).

In order to understand the tunneling and diffusion dynam-
ics more clearly, the variation of the total particle number N

inside the well (N = ∫ √
1
c

−
√

1
c

[(ψ∗
1 ψ1 + ψ∗

2 ψ2) dx]) with time

t for different cases shown in Figs. 5–7 is shown in Fig. 9.
The escaping rate of the atoms from the potential well is
different for the bound, quasibound, and unstable states. The
number of atoms in the potential well remains unchanged in
the bound state, i.e., condensates do not undergo tunneling
or diffusion. In the quasibound state, condensates continue
to escape from the potential well, and the particle number in
the potential well reduces to 0 for a relatively long time, i.e.,
tunneling occurs. In the unstable state, the particle number
in the potential well decreases to 0 in a very short time,
and condensates diffuse and spill over the potential well in
this case. As mentioned earlier, the SOC can enhance the
stability of the system, however, once the atoms escape from
the potential well, i.e., the system deviates from the ground
state, kL (an additional momentum) promotes the diffusion
and tunneling weakly, i.e., larger kL causes relatively obvious
tunneling and diffusion rate. Thus, tunneling and diffusion can

FIG. 9. Time evolution of the total particle number inside the
shallow trap for the cases shown in Figs. 5–7. Dotted lines represent
kL = 0, dashed lines represent kL = 0.5, and solid lines represent
kL = 3.

be more precisely controlled, which plays a significant role in
quantum transportation.

VI. SOC (RAMAN COUPLING) INDUCED STABILITY
(INSTABILITY) OF THE SYSTEM

The SOC (Raman coupling) induced stability (instabil-
ity) shown in Fig. 4 can be verified by solving the full GP
equation numerically just as in Sec. V (the weak excitation
is not considered in this case). Figure 10 (Fig. 11) is the
time evolution of the wave packets for the case of D1 (D2)
marked in Figs. 4(a) and 4(b) when kL (�) increases, and
the inserts in the second columns of Figs. 10 and 11 are
the enlargements of the corresponding wave packets. As is
shown in Fig. 10, the condensates experience a diffusion

FIG. 10. The time evolution of the wave packets corresponds to
the cases of D1 as marked in Fig. 4(a) for different kL . We set � = 1.
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FIG. 11. The time evolution of the wave packets corresponds
to the cases of D2 as marked in Fig. 4(b) for different �. We set
kL = 1.5.

state in the zero-momentum phase, quasibound state in the
plane-wave phase, and bound state in the plane-wave phase
transitions successively with the increase of kL under the
fixed �.

However, Fig. 11 indicates that, for the fixed kL, when �

increases, the condensates experience a bound state in the
plane-wave phase, a quasibound state in the plane-wave phase,
and an unstable diffusion state in the zero-momentum phase
transitions successively. Those prove the positive (negative)
effect of SOC (Raman coupling) on enhancing the system
stability intuitively and confirm the theoretical prediction of
Fig. 4. In order to further clarify this mechanism, the effec-
tive potential E versus R obtained from Eq. (3) is plotted in
Fig. 12.

Figure 12(a) clarifies that the minimum effective potential
corresponding to the ground state appears gradually with the
increase of kL under the fixed �; i.e., kL indeed plays a role
in maintaining stability of the system. However, Fig. 12(b)
manifests that increasing � results in the gradual disappear-
ance of the effective potential’s minimum under the fixed kL;
i.e., � indeed plays a role in weakening the stability of the
system.

FIG. 12. The effective potential E versus R for the cases D1 and
D2 as marked in Fig. 4 with different kL and �.

VII. SUMMARY

In conclusion, we investigate the phase transition and sta-
bility of the ground state of SOC-BECs with two pseudospin
components trapped in a finite depth potential well by varia-
tional method and numerical simulation. The phase transition
from the zero-momentum phase to the plane-wave phase still
occurs in the finite depth potential well system. The finite
depth potential well is beneficial to the phase transition from
the plane-wave phase to the zero-momentum phase when
interspecies interaction is larger than the intraspecies interac-
tion. The effect of the finite depth potential well on the phase
transition becomes significant for larger repulsive interspecies
interaction. Importantly, different from the infinite depth har-
monic potential well, a metastable state (quasibound state)
exists between the bound and unstable diffusion states where
tunneling occurs. SOC can enhance the stability of the system,
but once the system is far from the ground state, SOC as an
external momentum will promote the condensates to escape
from the finite depth potential well. Interestingly, SOC re-
sults in spatial anisotropic tunneling and diffusion dynamics.
The mechanisms and differences between the diffusion and
tunneling dynamics are also revealed. This work provides an
effective model and method to study quantum tunneling and
diffusion dynamics.
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