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Chaotic dynamics of a dynamical system is not necessarily persistent. If there is (without any active
intervention from outside) a transition towards a (possibly nonchaotic) attractor, this phenomenon is called
transient chaos, which can be observed in a variety of systems, e.g., in chemical reactions, population dynamics,
neuronal activity, or cardiac dynamics. Also, chimera states, which show coherent and incoherent dynamics in
spatially distinct regions of the system, are often chaotic transients. In many practical cases, the control of the
chaotic dynamics (either the termination or the preservation of the chaotic dynamics) is desired. Although the
self-termination typically occurs quite abruptly and can so far in general not be properly predicted, previous
studies showed that in many systems a ‘terminal transient phase” (TTP) prior to the self-termination existed,
where the system was less susceptible against small but finite perturbations in different directions in state space.
In this study, we show that, in the specific case of chimera states, these susceptible directions can be related to
the structure of the chimera, which we divide into the coherent part, the incoherent part and the boundary in
between. That means, in practice, if self-termination is close we can identify the direction of perturbation which
is likely to maintain the chaotic dynamics (the chimera state). This finding improves the general understanding
of the state space structure during the TTP, and could contribute also to practical applications like future control
strategies of epileptic seizures which have been recently related to the collapse of chimera states.
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I. INTRODUCTION

In systems which show chaotic transients an apparently
chaotic dynamics can be observed for a certain amount of time
[characterized by positive (finite time) Lyapunov exponents
and the sensitive dependence of initial conditions], until a
transition towards a possibly nonchaotic attractor occurs. In
contrast to persistent chaos whose state space structure is
determined by a chaotic attractor, chaotic saddles are often
the underlying structure of transient chaos [1,2]. Chaotic tran-
sients appear in diverse fields, e.g., in population dynamics
[3], ecology [4,5] (underlying chaotic saddle discussed in [6]),
coupled FitzHugh-Nagumo oscillators [7], nuclear magnetic
resonance (NMR) lasers [8], turbulence [9], neural networks
[10–12], cardiac dynamics [13], or plankton blooms [14].
In this study we discuss the dynamics of chimera states,
defined by the coexistence of spatial regions with coherent
and incoherent dynamics. They can be found in many real-
life systems, like in superconducting quantum interference
devices (SQUIDS) [15,16], the cognitive organization of the
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brain [17,18], in biological systems like self-propelled par-
ticles [19], or neural networks [20,21]. In addition, chimera
states were found in quantum mechanics [22] or mechanical
oscillators [23]. In 2011, Wolfrum and Omel’chenko showed
[24] that their results indicated that chimera states may also
be a transient phenomenon.

In many systems with transient chaos, the transition be-
tween the chaotic dynamics and the final attractor is of high
interest for many reasons, in particular regarding the poten-
tial control of the dynamics (either the termination or the
preservation of the chaotic dynamics). Often, the upcoming
self-termination of the chaotic dynamics (without any exter-
nal interaction) is not visible in conventional observables a
reasonable amount of time before the transition, and there-
fore it is currently not clear whether a prediction of the
end of a chaotic episode is, in principle, possible. However,
in [25,26] it was shown in spatially extended systems and
low-dimensional maps that the transition from the chaotic
regime towards the (nonchaotic) attractor of the system is
a process with a finite length, called the ‘terminal transient
phase” (TTP), which manifests in a change of the state space
structure. During this final phase, the system is susceptible
against small but finite perturbations only in specific direc-
tions.

This means in the case of spatially extended systems that
before self-termination the system can only be perturbed sig-
nificantly (such that self-termination is prevented) in specific
regions of the spatial domain. While in [25,26] these regions
could only be empirically identified, we show in this study that
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FIG. 1. Exemplary snapshots of chimera states (a) in a one-
dimensional ring of oscillators [Eq. (1)] with N = 40, and the
(b) two-dimensional system [Eq. (3)] for system size A = 3 × 3 =
9 arb. units (discretized on a square grid of 30 × 30 oscillators). In
both cases spatially separated regions of coherent and incoherent
dynamics of the phase oscillators exist simultaneously.

for the case of transient chimera states [one-dimensional (1D)
and two-dimensional (2D)] these regions have a direct relation
to the actual state of the system (they relate to the distinction
between coherent and incoherent parts of the chimera state
and the boundary region between those). In [27] Yao et al.
investigated in general how 1D chimera states react to local
perturbations of finite amplitude. However, with the relation
mentioned above we suggest in this study regions of the
chimera state where small but finite perturbations will most
likely cause a prevention of the upcoming self-termination, if
it is close to the collapse. The localized (in space and time)
application of a finite perturbation is therefore in contrast to
former control strategies of chimera states, which mostly rely
on feedback control or other (global) approaches [28–31].

II. MODELS

In this study we investigate two systems of coupled phase
oscillators on a 1D and 2D extended domain, respectively,
using periodic boundary conditions in both cases.

In the 1D ring of oscillators, the temporal evolution of the
phase �k of oscillator k is determined by [24]

∂�k (t )

∂t
= ω − 1

2R

k+R∑
j=k−R

sin[�k (t ) − � j (t ) + α1D] , (1)

where we chose R = 0.35N (with N the number of phase
oscillators, and indices j are considered modulo N), the phase
lag parameter [32] α1D = 1.46, and a vanishing natural fre-
quency ω = 0. Equation (1) was solved using a fourth order
Runge-Kutta method with dt = 0.1. The order parameter
Z1D(t ) reads as follows:

Z1D(t ) =
∣∣∣∣∣

1

N

N∑
k=1

ei�k (t )

∣∣∣∣∣ . (2)

An exemplary chimera state of the system is shown in
Fig. 1(a) with N = 40 oscillators [1]. See Supplemental
Material at [33] for exemplary transient episodes of a 1D and
2D chimera. The episodes shown here are also discussed in
Figs. 3 and 4, respectively.

FIG. 2. The logarithms of the average transient lifetime 〈T 〉IC for
varying system sizes in (a) the one-dimensional system and (b) the
two-dimensional system, respectively. In both cases, the average
lifetimes for single domain sizes were determined via a nonlinear
least-squared fit, shown in Fig. 6. The resulting average lifetimes are
shown here, where the error bars are too small to be visible. They are
fitted regarding Eq. (6) (with a nonlinear least-squared regression).
The fit parameters are given in Table I.

In the 2D case, we use the model discussed in [34]

∂φ(x, t )

∂t
= −

∫
T 2

G(|x − x′|)

× sin [φ(x, t ) − φ(x′, t ) + α2D]dx′ , (3)

with the phase lag parameter α2D = 0.38π . The integration
is performed over a flat torus equivalent to the square A =
L × L with periodic boundary conditions. To achieve transient
(rather than persistent) chimera dynamics we modified the
coupling of the phase oscillators by introducing a coupling
range σ = 0.3:

G(|x − x′|) = 1

π
exp

(
−|x − x′|2

σ 2

)
. (4)

We solved Eq. (3) on a 2D quadratic domain (with size
A = L × L) using a fourth order Runge-Kutta method with
temporal step size dt = 0.5 and a grid spacing of h = 0.1.

The order parameter Z2D(t ) can be defined via a local order
parameter Z2D(t ) = 1

A

∫
Z loc

2D (x, t )dx which is given by

Z loc
2D (x, t ) =

∣∣∣∣ 1

N

∫
T 2

G(|x − x′|)eiφ(x′,t )dx′
∣∣∣∣, (5)

where N is a normalization constant [such that Z loc
2D (x, t ) = 1

for a uniform φ(x′, t )]. Due to periodic boundary conditions
the integration domain is a 2D torus T 2 which is discretized
to enable numerical integration. An exemplary chimera state
of the system is shown in Fig. 1(b) for L = 3 (30 oscillators
in each direction).

The condition for the end of the chaotic episode is chosen
to be Z1D(t )>0.95 for the 1D case (average value during
chaotic episodes was 〈Z1D〉 ≈ 0.76 ± 0.05).

In the 2D system, the dynamics can either self-terminate to
the globally coherent state, or to plane waves. To cover both
cases, we defined self-termination if the standard deviation of
Z2D(t ) during a time interval of τ = 5 arb. units is <0.0001.
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FIG. 3. The averaged phase velocity during the final episode
of an exemplary chimera state (1D) is shown in subplot (a) [self-
termination occurs at t = 10470 arb.units, vertical (gray) line], with
the associated order parameter Z1D(t ) (dashed black) and the local
Lyapunov exponent λ1(t ) (solid blue) in subplot (b). The length
of the TTP is in (a) and (b) depicted as the (gray) shaded region.
In (c) and (e) Tsus(t ) is plotted, where the average was taken over
all perturbations (c) and over perturbations associated to coherent
(×), incoherent (+) and boundary regions (•), in (e), respectively.
The error bars in (c) are standard deviations due to averaging over
different initial conditions [Eq. (7), for the sake of clarity not shown
in (e)]. Subplots (d) and (f) both depict the state of the chimera (black
dots) at time t1 during the TTP (also marked in the other subplots),
together with the distribution of Tpert (t1) [solid red, subplot (d)] and
the Lyapunov vector γ1 which corresponds to the largest Lyapunov
exponent. The boundary regions of the chimera state in (d) and (f)
are marked as the (gray) shaded areas. Note, that while subplots (a),
(b), (d), and (f) show results regarding a single exemplary trajectory,
subplots (c) and (e) show quantities which are averaged over 50
initial conditions.

III. RESULTS

A. Determining average lifetime of transients

In both systems, the appearance of chimera states was
transient, thus after some time the dynamics collapsed to the
globally coherent state or traveling waves (in the 2D case).
Whereas this transient behavior was known and investigated
for systems of 1D coupled oscillators [24,35,36], with the
proper setting of α2D and the adaption of the coupling σ

we could observe transient behavior also on two dimensional
spatial domains [33]. In 2D the dynamics is characterized
by spatial like waves rotating around meandering incoherent
regions. See Supplemental Material at [33] for exemplary
transient episodes of a 1D and 2D chimera. The episodes

FIG. 4. For an exemplary 2D transient chimera state three snap-
shots of the phase φ at times t1, t2, and t3 before self-termination
are shown in subplot (a). These points in time are also marked in
subplots (b), where the order parameter Z2D(t ) (dashed black) and
the (largest) local Lyapunov exponent (solid blue) is shown for the
same initial condition shown in (a). The TTP is depicted in (b) as
the gray shaded area. In (c) and (d) Tsus is plotted, where the average
was taken over all perturbations (c) and over perturbations associated
to coherent (×), and incoherent (+) regions, in (d), respectively.
The error bars in (c) are standard deviations due to averaging over
different initial conditions [Eq. (7), for the sake of clarity not shown
in (d)]. This distinction between coherent and incoherent parts of
the chimera state is discussed in Fig. 5. Note that, while subplots
(a) and (b) show results regarding a single exemplary trajectory,
subplots (c) and (d) show quantities which are averaged over 20
initial conditions.

shown here are also discussed in Figs. 3 and 4, respectively.
Spiral wave chimeras were also observed in an experimental
setup of coupled chemical oscillators [37].

We measured for the 1D and 2D systems the average tran-
sient lifetime 〈T 〉IC for varying domain sizes (the subscript
IC indicates the average over many initial conditions). For
this purpose, the number of oscillators was varied (technical
details are given in the Appendix). The exponential scaling
of 〈T 〉IC with the system size shown for both cases in Fig. 2
indicates that the dynamics belongs to the group of type-II
supertransients (according to [38]). The transient lifetime in
these systems typically grows with:

log10(〈T 〉IC) ∼ (ãX )γ , (6)

where X = N for the 1D ring of oscillators Eq. (1), and X = A
for the 2D model Eq. (3). The fit parameters for both models
are given in Table I.

In [1,38,39], type-II supertransients are described with an
“abrupt” transition to the (non)chaotic attractor, quantified,
for example, by Lyapunov exponents or other observables. In
systems with type-I supertransients, these quantities decrease
rather gradually over time. In addition to the exponential
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TABLE I. Fit parameters regarding Eq. (6).

ã [arb. units] γ [arb. units]

1D 0.046 ± 2.6×10−5 1.55 ± 0.02
2D 0.46 ± 0.013 0.68 ± 0.004

dependence of 〈T 〉IC on the system size, in the investi-
gated systems “abrupt” transitions from the chaotic regime
to the (possibly) nonchaotic attractor can be observed via the
temporal evolution of Lyapunov exponents or the order pa-
rameter Z1D/2D(t ). In particular, the timescale of change of the
(local) Lyapunov exponent τchange (quantified by the temporal
period associated with the maximum of a Fourier frequency
spectrum), is much smaller than the average transient life-
time 〈T 〉IC. For example, τ 1D

change ≈ 4.8 arb. units � 1.33 ×
104 arb. units ≈ 〈T〉IC (for a domain size of N = 40) and
τ 2D

change ≈ 150.9 arb. units � 1.75 × 104 ≈ 〈T〉IC (for a do-
main size of A = 30 × 30).

B. Identification of a TTP

In the following we consider a fixed domain size [N =
40 (1D) and A = 3 × 3 hence 30 × 30 oscillators (2D)]. As
a next step we randomly chose several initial conditions
and applied small but finite localized perturbations (ampli-
tude � = 0.1 for both systems) during the phase just before
self-termination. Note that the perturbations were applied to
trajectories just before self-termination. With this approach,
we wanted to identify those perturbations which can prevent
the upcoming self-termination. In detail, perturbations were
applied at single oscillators independently and the resulting
average lifetime of the perturbed trajectory was measured
beginning with the point in time when the perturbation was
applied (only one perturbation at a time was performed).
That means, in the one-dimensional case we independently
applied 40 perturbations, leading to 40 perturbed trajecto-
ries with new lifetimes Tk where k = {1, . . . , 40}. Hence,
30 × 30 = 900 perturbations were applied in the 2D model.
The average taken over all perturbed trajectories 〈T 〉pert =
1
N

∑
k T k

pert describes then how susceptible the state is against
finite perturbations (at the given point in time). Since 〈T 〉pert

so far describes only the state space structure regarding a
single trajectory, the procedure was performed for many initial
conditions, and 〈T 〉pert was additionally averaged over the
investigated initial conditions (time was normalized such that
the temporal points of termination of all trajectories coincide):

Tsus(t ) = 〈〈T (t )〉pert〉IC . (7)

In the following section, it will be demonstrated that the
derived quantity Tsus(t ) describes how susceptible the system
is against finite perturbations. With the algorithm described
above, the existence of a TTP (finite amount of time before
self-termination where the system reacts significantly differ-
ent against finite perturbations than during earlier phases)
could be verified in many systems (cardiac tissue models,
neuronal models, low-dimensional maps) [25,26].

We could determine a TTP also in the investigated systems
of coupled phase oscillators. In Fig. 3(a) a typical trajectory

of the 1D system is shown (the averaged phase velocity 〈�̇k〉,
details can be found in the Appendix) during the final phase
before self-termination (tterm ≈ 10 470 arb. units). Similarly,
Fig. 4(a) shows three snapshots (t1, t2, and t3) of φ during the
final phase of a typical trajectory in the 2D system. In both
cases the upcoming self-termination is not obviously visible
in quantities like the order parameter Z1D/2D(t ) or the largest
local Lyapunov exponent λ1(t ) [dashed black and solid blue
in Figs. 3(b) and 4(b), respectively] a significant amount of
time beforehand. The collapse seems to be rather abrupt.

However, by computing Tsus during the phase before self-
termination we can show that the TTP is also present in
both systems of oscillators. In Figs. 3(c) and 4(c) Tsus is
shown (averaged over 50 and 20 initial conditions for 1D
and 2D, respectively). In both cases, Tsus decreases a signif-
icant amount of time before the self-termination, meaning
that when time approaches self-termination (t = 0), fewer
and fewer perturbations can significantly change the reference
trajectory anymore. The approximate temporal length of the
TTP (which depends also on the perturbation amplitude �

[25,26]) is then defined by the interval from the beginning
of the decrease of Tsus until the point of self-termination.
We could therefore identify the length of the TTP in both
cases TTP1D = 100 arb. units and TTP2D = 3000 arb. units
[additionally marked as a (gray) shaded region in Figs. 3(a)
and 3(b) (1D), and Fig. 4(b) (2D)]. Thereby the temporal
length is significantly longer than the Lyapunov time τ L

1D ≈
12.46 arb. units and τ L

2D ≈ 116.2 arb. units (where τ L = 1
λ1

).
This means that the state space structure in the vicinity of

the reference trajectory is different in regions close to exits
from the chaotic regime. The underlying mechanism for the
decrease of Tsus is that perturbations in specific directions
(applied to specific oscillators) have basically no relevant
effect concerning the upcoming self-termination. That means
parts of the system are nonsusceptible for finite perturbations.
Examples for both systems are shown in Figs. 3(d) and 5(b)
where Tsus is shown for specific points in time before self-
termination (t1 in the 1D case, t1, t2, and t3 in the 2D case) of
an exemplary trajectory.

C. Identification of (non)susceptible regions

The existence of a TTP and related spatially connected
regions of (non)susceptibility have been shown for other spa-
tially extended systems previously [25,26], but the emerging
patterns of these regions could not be related to the actual state
of the system. However, in the particular case of transient
chimera states, we find a relation between the state of the
chimera and its “vulnerability” against small perturbations
(when the system is close to self-termination). Specifically, we
categorize the 1D chimeras into a coherent part, an incoherent
part, and the boundary between those regions (in 2D we distin-
guish only between a coherent and an incoherent regime). We
determined these regions by using the averaged phase velocity
〈�̇k〉 (1D) and in 2D the local order parameter defined in
Eq. (5) [shown in the 2D case in Fig. 5(a) for three points in
time]. More details about the categorization of different parts
are given in Appendix C.

In the 1D system, we observe that perturbations applied
at the boundary between the coherent and the incoherent
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FIG. 5. The first row shows the local order parameter Z loc
2D (t )

[Eq. (5)] of the system for the exemplary trajectory discussed in
Fig. 4 for three points in time t1, t2, and t3, corresponding to the
snapshots of φ shown in Fig. 4(a). The dashed orange line indicates
the isolines of Z loc

2D (t ) = 0.7 which is used to distinguish coherent
[Z loc

2D (t ) > 0.7] from incoherent regions [Z loc
2D (t ) < 0.7]. In the second

and third rows, the patterns of Tpert [subplot (b)] and the Lyapunov
vector γ1 corresponding to the largest Lyapunov exponent [subplot
(c)] are depicted, respectively, for the same points in time as in
(a). In (a) and (b), the dashed lines separate coherent regions and
incoherent regions [additionally marked by a gray shaded overlay in
(b)] obtained from the isolines in (a) to compare the patterns of Tpert

and the Lyapunov vector with the coherent or incoherent parts of the
chimera state.

regimes are more likely to perturb the trajectory significantly
(resulting in a large Tpert). This is shown in Fig. 3(d), where
the state of the chimera at point t1 [marked also in Fig. 3(a)]
is plotted in black. The boundary between the coherent and
incoherent regions is marked by the gray shaded region. The
distribution of Tpert in Fig. 3(d) shows that when close to the
point of self-termination, perturbations applied at oscillators
inside the boundary region are more likely to lead to sig-
nificant transient times Tpert (in comparison to the coherent
and incoherent regimes). We demonstrated statistically [by
averaging over the 50 initial conditions also used in Fig. 3(c)]
that there is actually a hierarchy: perturbations applied at the
boundary have the highest chance of perturbing the reference
trajectory significantly, whereas when they are applied at the
coherent region they have the least chance [dots (boundary), x
in Fig. 3(e)].

In the case of infinitesimal perturbations, the direction
of perturbation which will cause the largest separation of
a reference trajectory is described by (covariant) Lyapunov
vectors. Comparing the distribution of “significant” pertur-
bations Tpert [in Fig. 3(d)] with the first Lyapunov vector γ1

[solid blue in Fig. 3(f)], shows some similarities (peak in
right boundary), but indicates that our analysis using finite
perturbations contains additional or different information than
the Lyapunov approach since the left boundary region around
k ≈ 12 is not significantly recognized as a region of high
susceptibility by γ1.

Also in the 2D case the distribution of Tpert (Fig. 5 for t1,
t2, t3) can be related to the coherent or incoherent regions of
the chimera state [due to the low resolution (30 × 30) and the
specific structure of the chimera state we could not properly
define a boundary region here]. Coherent and incoherent re-
gions [separated by the dashed orange line in Fig. 5(a), the
points in time t1, t2, t3 relate to the three snapshots of the
chimera state in Fig. 4(a)] were distinguished by the local
order parameter Z loc

2D . In Fig. 5(b) the distribution of nonvan-
ishing Tpert for the exemplary trajectory mostly coincides with
the incoherent regions of the chimera state (boundaries be-
tween coherent and incoherent regions are marked by dashed
lines). This is quantified by Tsus which was averaged only
over perturbations in coherent regions [(x) in Fig. 4(d)] or
incoherent regions [(+) in Fig. 4(d)]. Similar to the 1D results,
perturbing the system in the incoherent region of the chimera
state is more likely to prevent self-termination if it is close.
Also, the first Lyapunov vector γ1 [depicted in Fig. 5(c)]
shows similarities to the distribution of Tpert [Fig. 5(b)]. How-
ever, comparable to the 1D results, γ1 does not cover all
susceptible regions (defined by nonvanishing Tpert) and only
partly coincides with coherent and incoherent regions (sepa-
rated by a dashed line).

IV. CONCLUSION

In this study we investigated transient chaotic chimeras. In
the 2D case we adapted the system of Martens et al. [34] such
that it shows (coherent) waves which rotate around meander-
ing incoherent regions.

In the 1D ring of oscillators and the 2D system, a TTP was
identified, where the system is susceptible against small but
finite locally confined perturbations only in specific spatial
domains. The temporal length of this transition phase is much
larger than the Lyapunov time, which means that the dynam-
ics near the “exits” of the chaotic regime of the state space
is determined by a specific global structure (suggesting, for
instance, high-dimensional tubes).

We could furthermore show that a relation between the
actual state of the system and the patterns of susceptible
regions (defined by nonvanishing Tpert) exists: We found that
if a perturbation is applied during the TTP, it is more likely
to change the trajectory significantly if it is applied in the
1D case at the boundary between the coherent and incoherent
parts of the chimera and in the 2D case at incoherent parts of
the chimera. In practice we can therefore provide a suggestion
for the location of a perturbation, if the system is close to
self-termination and the preservation of the chaotic phase
is desired. These findings could in the future influence the
developments of control strategies for epileptic seizures which
have recently been related to the collapse of chimera states
[40]. Furthermore, the results presented in this study improve
the general understanding of the mechanism and control of the
transition towards the synchronized or coherent state, which
may play a role in many real-life systems [15–17,19,20,22,23]
where chimera states were found and controlling them could
become relevant in future applications. In a broad perspective,
the emergence of spontaneous synchronization plays a funda-
mental role, e.g., in dissimilar silicon nitride micromechanical
oscillators [41], where the authors suggest a new class of
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FIG. 6. In solid gray, the number of initial conditions Nch(t ),
which show chaotic dynamics at time t is shown, which typically
decreases exponentially. The average lifetime 〈T 〉IC was determined
by fitting Nch(t ) (nonlinear least-squared). The fit is depicted as the
dashed red line. An amount of time T1 was discarded for the fit to
separate out those initial conditions which converge to the resting
state immediately [initial drop of Nch(t )]. Also, the fit was performed
till Nch(t ) dropped below 50 initial conditions (marked by T2), due to
low statistics for t > T2.

devices in sensing, signal processing, and on-chip nonlinear
dynamical systems.
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APPENDIX A: INITIAL CONDITIONS AND DETECTION
OF SELF-TERMINATION

For the analysis of how the average transient lifetime
〈T 〉IC depends on the system size [results presented in Figs.
2(a) and 2(b) of the main paper] 1000 initial conditions
were created for each system (1D and 2D, respectively) and
for each system size (N = [22, 23, . . . , 50] (1D) and A =
[4.0, 4.41, 4.84, 5.29, 5.76, 6.25, 6.76, 7.29, 7.84, 8.41, 9.0,

9.61, 10.24, 11.56, 12.25, 12.96] (2D).
In the 1D case, the initial phases of the oscillators were

created randomly from the interval [−π, π ]. In the 2D system,

the quadratic domain was divided into four quarters with the
initial values [−2,−1, 1, 2]. In this way, a spiral-like dynam-
ics was initiated. For different initial conditions, the phase
of each oscillators was disturbed randomly by random values
from the interval [0, 1].

APPENDIX B: DETERMINING THE AVERAGE
TRANSIENT LIFETIME 〈T〉IC

The average transient lifetime 〈T 〉IC for each system size
was determined by creating 1000 initial conditions and then
measuring the number of initial conditions Nch(t ), which show
chaotic dynamics at time t . While Nch(t ) usually decreases
exponentially in systems of type-II supertransients [1], the
exponential decay rate is proportional to the average transient
lifetime. Figure 6 depicts Nch(t ) for the 1D case and an exem-
plary system size of N = 30.

APPENDIX C: DETERMINING COHERENT,
INCOHERENT, AND BOUNDARY REGIONS

To distinguish in the 1D case between coherent parts,
incoherent parts, and the boundary zone between those two
regions, an averaged phase velocity was determined (time
window was 50 arb. units). A value larger than −0.6 was
then associated with incoherent dynamics, a lower value
was associated with a coherent dynamics. In a second
step, the boundary zone of a fixed number of six oscilla-
tors was defined at the transition between the coherent and
incoherent parts.

APPENDIX D: LYAPUNOV ANALYSIS

The Lyapunov exponent and the Lyapunov vector cor-
responding to the largest Lyapunov exponent were de-
termined by computing the evolution of small but finite
perturbations (via linearized equations) along the respec-
tive trajectory. By using a QR decomposition every ten
simulation steps of local Lyapunov exponents were ex-
tracted and perturbations were orthonormalized via a QR
decomposition.

In the 2D case, the local order parameter Z loc
2D (x, t )

[Eq. (5)] was used (with the threshold <0.7: incoherent, >0.7:
coherent).
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