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Bénard–von Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate
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The dynamics of pseudo-spin-1/2 Bose-Einstein condensates with weak spin-orbit coupling through a moving
obstacle potential are studied numerically. Four types of wakes are observed and the phase diagrams are
determined for different spin-orbit coupling strengths. The conditions to form Bénard–von Kármán vortex street
are rather rigorous, and we investigate in detail the dynamical characteristics of the vortex streets. The two point
vortices in a pair rotate around their center, and the angular velocity and their distance oscillate periodically.
The oscillation intensifies with increasing spin-orbit coupling strengths, and it makes part of the vortex pairs
dissociate into separate vortices or combine into single ones and destroys the vortex street in the end. The width
b of the street and the distance l between two consecutive vortex pairs of the same circulation are determined
by the potential radius and its moving velocity, respectively. The b/l ratios are independent of the spin-orbit
coupling strength and fall in the range 0.19–0.27, which is a little smaller than the stability criterion 0.28 for
classical fluids. Proper b/l ratios are necessary to form Bénard–von Kármán vortex street, but the spin-orbit
coupling strength affects the stability of the street patterns. Finally, we propose a protocol to experimentally
realize the vortex street in 87Rb spin-orbit-coupling Bose-Einstein condensates.

DOI: 10.1103/PhysRevE.102.032217

I. INTRODUCTION

When an obstacle potential moves at proper conditions,
a series of vortices will shed alternately at the two sides
of the wake. This phenomenon is known as Bénard–von
Kármán (BvK) vortex street [1–7] and it is common in clas-
sical fluids. When the BvK vortex street occurs, the fluid
produces periodically alternating lateral forces on the object.
If the frequency of the forces is close to the natural frequency
of the object, it will cause resonance and even damage the ob-
ject. Bose-Einstein condensates (BECs) are ideal test bed for
studying vortex street because they can provide direct insight
into the onset of the turbulence [8–11]. So they have aroused
great interest both in experimental and theoretical studies. Nu-
merical simulations on the quasi-two-dimensional (2D) scalar
BECs show that the BvK vortex street is observed in the
wake when the velocities have appropriate values while the
turbulent flow are generated by strong perturbation of the ob-
stacle at high velocities [9]. Quantum vortex shedding in high
flat-rate BEC was experimentally studied in 2016, and regular
shedding of the vortex pairs with same sign was observed
[12]. Hiroki et al. investigated numerically the dynamics of
an exciton-polariton superfluid and they found that the BvK
vortex street is generated in the wake behind an obstacle
potential [13].

Lin et al. had created a spin-orbit-coupled BECs with
two spin states of 87Rb in an experiment [14]. The success-
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ful realization of SOC BECs has attracted a lot attention
in the past decade, and many theoretical modes were pro-
posed [15–23]. Artificial SOC BEC offers more opportunities
to explore novel quantum states because of the coupling of
the internal spin states and the centroid operation [24–30]. To
the best of our knowledge, there is no experimental or theo-
retical investigations about BvK vortex street in SOC BECs,
and we wonder how SOC affects the stability of the vortex
street.

In this paper, we explore the dynamical properties of
SOC BEC with a moving obstacle by using the time-splitting
Fourier spectral method. Different types of wakes such as
vortex-antivortex pairs and BvK vortex street are observed.
In order to determine the parameter ranges corresponding to
different wakes, systematical simulations are performed for
different SOC strengths κ , potential radii d , and velocities υ.
The ratio of the width of the street to the distance between
two consecutive vortex pairs in one array is calculated to
characterize the stability of vortex street. The angular velocity
and distance of the two point vortices in a pair are calculated
at different SOC strengths κ . In addition, the drag force gen-
erated along with the vortex shedding is calculated, and the
physical mechanisms for different wake distributions are an-
alyzed. The paper is organized as follows: Sec. II formulates
the theoretical model for SOC BECs with a moving obstacle
potential. In Sec. III, we determine the phase diagrams that
show wake distribution patterns at different SOC strengths
and potential parameters. Section IV summarizes the main
results.
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II. THEORETICAL METHOD

The Hamiltonian of a BEC with SOC can be written in the
Gross-Pitaevskii (GP) form [30]

H =
∫

d�r ��†

( �p2

2m
+ Vop − h̄2k0

m
�p · σ⊥

)
��

+
∫

d�r
( ∑

j=↑,↓

g j j

2
|ψ j |4 + g↑↓|ψ↑|2|ψ↓|2

)
, (1)

where m is the atomic mass, k0 is the SOC strength, σ⊥ =
(σx, σy) are the 2×2 Pauli matrices, and g jl = 4π h̄2a jl/m
with a jl = al j ( j, l =↑,↓) being the s-wave scattering lengths
between the jth and lth components. Vop is the obstacle po-
tential. The wave function ��(�r) = [ψ↑(�r), ψ↓(�r)]T, and the
superscript T denotes transposition. The total number of the
particles are N = ∫ | ��|2d�r.

In experiments, BEC is usually confined in a harmonic po-
tential. When the trap is strongly anisotropic (ωz � ωx, ωy),
BEC will be disk-shaped in the xy plane. Thus, the dy-
namic behaviors of the BEC can be described by a set
of quasi-2D GP equation (GPE) within the approxima-
tion of mean-field theory [31]. In this work, we consider
a quasi-2D spin-1/2 BEC with Rashba spin-orbit cou-
pling (SOC), in which an obstacle potential is moving. In
the following, we normalize the length and time by the
healing length a0 = √

h̄/mω0 and the characteristic time
1/ω0 with ω0 = min(ωx, ωy), under which E → E/(h̄ω0),
ψ → ψ/

√
n0mω0/h̄, g jl → g jlmn0/(lz h̄2

√
2π ), where lz =√

h̄/mωz, and n0 is the given particle density. The dimension-
less coupled GPE read

i∂tψ↑ = [−1/2∇2 + Vop + iκ∂− + g↑↑|ψ↑|2 + g↑↓|ψ↓|2]ψ↑,

i∂tψ↓ = [−1/2∇2 + Vop + iκ∂+ + g↑↓|ψ↑|2 + g↓↓|ψ↓|2]ψ↓,

(2)

where κ = k0
√

h̄/mω0, ∂± = ∂/∂x ± i∂/∂y. The ground state
is the plane-wave state for g↑↓/g↑↑ < 1 and the stripe state
for g↑↓/g↑↑ > 1, which breaks the rotational symmetry of the
system [32].

We numerically solve Eq. (2) by the Fourier spectral
method [33] under periodic boundary conditions. The initial
state uses the ground state, and it is obtained by the imaginary-
time propagation method with a zero potential velocity [34].
When the nonlinear dynamical evolution is performed, the
obstacle potential is assumed moving at a constant velocity υ.
At the beginning of computation, small random disturbance is
added on the ground state to break the symmetry of the sys-
tem. The computational domain is taken to be 256a0×64a0,
and steady inflow-outflow boundary conditions are used to
deal with the vortices by “recycling” flow in a periodic domain
[35].

III. NUMERICAL RESULTS

Now we employ a Gaussian potential with peak strength V0

and radius d of the form

Vop = V0e− (x−x0+υt )2+y2

d2 ,

which moves along the −x direction from the initial posi-
tion x0. Figure 1 shows the density and phase distribution
of the BEC wakes caused by the obstacle potential. From
Figs. 1(a) and 1(e), it is clear that quantum vortices cannot
be excited when the obstacle potential moves at low velocities
or its radius is small. It indicates, according to the d’Alembert
paradox, that a stable velocity field can be created in a dissi-
pationless system.

In ordinary perfect fluids, it is well known that a shock
begins to form when the velocity reaches a critical value. In
BECs, however, the shock waves are replaced by the gen-
eration of vortices due to the absence of intrinsic molecular
damping. The generation of vortices leads to a vortical dissi-
pative flow on a large scale. When the velocity has appropriate
values, a pair of vortex-antivortex will be emitted as shown
in Figs. 1(b) and 1(f), and they have opposite circulations
±h/m. When the vortex-antivortex pair is shed, the velocity
field of the vortices balances the velocities behind the obstacle
potential, which makes the local velocities smaller than the
critical velocity. After the vortex pair leaves the obstacle for a
distance, its contributions to the velocity around the obstacle
weaken and the total velocity becomes greater than the critical
value again, and a new vortex pair is generated. The rotation
of the vortices obey ...(+−)(−+)(+−)...,where + and −
indicate the clockwise and counterclockwise circulations. The
line between the two vortex centers in a pair keeps perpen-
dicular to the moving direction of the pair. Eventually, the
emitted vortex pairs evolve into a V-shaped wake, as shown
in Fig. 1(b).

When the obstacle potential moves with larger velocities,
BvK vortex street appears [Figs. 1(c) and 1(g)]. Similar to
the scalar BEC, two point vortices with same circulation h/m
form a pair. A series of clockwise and counterclockwise pairs
are shed alternately. After the vortex pair is shed, the two vor-
tices rotate around their center while they move along the −x
direction, and the translation velocity oscillates slightly. The
average velocity of the vortex pairs is υ̃n 
 0.66

√
h̄ω0/m 


0.044 mm/s. The average distance between two rows of the
vortex street is b = 4.39a0, and the distance between two
neighbor pairs in the same row is l = 20.33a0. The ratio b/l
is 0.22, which is a little smaller than the stability condition
b/l = π−1cosh−1

√
2 ≈ 0.28 of the classical Kármán vortex

street. The translation velocity can also be obtained theoreti-
cally by υ̃t = h/(

√
2lm), which gives 0.042 mm/s. It can be

seen that the numerical result is consistent well with the theo-
retical prediction. With increasing of the obstacle velocity, the
emission of the vortices becomes more irregular, as shown in
Figs. 1(d) and 1(h). For all of the cases in Fig. 1, the profiles
of wave functions ψ↓(r) are omitted because they are similar
to ψ↑(r).

The phase diagram for different values of d and υ at
the SOC strengths κ = 0.01, 0.03, 0.06, and 0.09 is obtained
by performing systematical simulations. The regions I–IV in
Fig. 2 correspond to the four types of the wakes in Fig. 1,
that is, the steady laminar flow, the vortex pair, BvK vortex
street, and irregular turbulence. Figure 2(a) is for the SOC
strength κ = 0.01, and the BvK vortex streets generate when
0.8a0 < d < 1.6a0 and 0.64

√
h̄ω0/m < υ < 0.78

√
h̄ω0/m.

For κ = 0.03, the region to form BvK vortex streets de-
creases slightly. Steady vortex streets occur at the parameters
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FIG. 1. Density |ψ↑|2 (upper panel) and phase (lower panel) distributions of condensates with an obstacle potential for different radius
d and velocity υ. (a) No vortex at (d, υ ) = (0.5, 0.60). (b) V-shaped vortex pairs at (d, υ ) = (0.5, 0.84). (c) BvK vortex street at (d, υ ) =
(1.2, 0.73). (d) Irregular at (d, υ ) = (1.4, 0.73). The white arrows in panel (b) indicate the directions that the vortex-antivortex pairs move. The
dimensionless intra- and intercomponent interaction coefficients are g↑↑ = 1, g↑↓ = 0.9. SOC strength κ = 0.01. The density is normalized
by n0. The view of field is 64a0×64a0. The computational domain is taken to be 256a0×64a0, and the obstacle potential begin moving at
x = −16a0 along the −x direction.

0.9a0 < d < 1.5a0 and 0.64
√

h̄ω0/m < υ < 0.76
√

h̄ω0/m,
as shown in Fig. 2(b). When κ increases further to 0.06, the
conditions for generating the BvK vortex street gets quite
restricted; it appears only in a small parameter region 1.1a0 <

d < 1.3a0 and 0.66
√

h̄ω0/m < υ < 0.68
√

h̄ω0/m. When κ

increases to 0.09, steady BvK vortex streets are not observed

in the parameter range of our simulations. However, vortex
street structures with short lives appear at the area marked
by × in Fig. 2(d). In fact, in the regions near the boundaries
of the steady vortex street [outside of the solid white lines
in Figs. 2(b) and 2(c)], paroxysmal vortex streets appear but
they cannot exist for a long time. Examples of the paroxysmal
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FIG. 2. Dependence of the patterns of wakes on the SOC strength κ , radius d , and velocity υ of the obstacle potential. The I–IV regions
correspond to the flow patterns shown in Figs. 1(a)–1(d), respectively. The dimensionless intra- and intercomponent interaction coefficients are
g↑↑ = 1, g↑↓ = 0.9. SOC strength κ is 0.01, 0.03, 0.06, and 0.09, respectively. The area surrounded by white solid lines is the range of vortex
streets.
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FIG. 3. Density distribution |ψ↑|2 of condensates with differ-
ent SOC strength κ , radii d , and velocities υ. g↑↑ = 1, g↑↓ = 0.9.
The field of view is 128a0×64a0. (a) κ = 0.01, d = 1.2, υ = 0.66.
(b) κ = 0.03, d = 0.9, υ = 0.73. (c) κ = 0.03, d = 1.5, υ = 0.68.
(d) κ = 0.06, d = 1.2, υ = 0.66. (e) κ = 0.06, d = 1.2, υ = 0.72.
(f) κ = 0.09, d = 1.2, υ = 0.72.

vortex streets are illustrated in Fig. 3(e). The above results
suggest that increasing SOC strengths weakens the stability
of the vortex pairs, and it eventually destroys the formation of
the von Kármán vortex street.

Compared with other phases, the conditions to form BvK
vortex street are rather rigorous. Previous studies on scalar
BEC show that smaller obstacles tend to shed the vortex
pairs and larger ones tend to generate vortex streets [9]. The
vortex pairs appear in all of the diameters in our simulations;
however, BvK vortex street occurs only for some potential
diameters with combination of proper velocities. The dis-
crepancies suggest that the dynamic characteristics of the
quantized vortices are changed dramatically by the coupling
between spin and orbital motion degrees of freedom, and it
explains why the BvK vortex street is difficult to observe
experimentally for SOC BEC.

To offer more details for the dynamic evolutions and the
dependence of the vortex structures on different parameters,
typical diagrams of BvK vortex street are illustrated in Fig. 3.
At weak SOC strengths, the structure of vortex street as shown
in Fig. 3(a) can exist for a long time, and no paroxysmal
vortex street is observed. For κ = 0.03, stable vortex streets
can exist for a long time for the parameters in region III
of Fig. 2(b). Figures 3(b) and 3(c) show the vortex streets

TABLE I. The ratio of the width b of the vortex street to the
distance l between two consecutive vortex pairs in one array at
different parameters.

κ d υ b l b/l

0.01 1.2 0.66 5.0 26.0 0.19
0.03 0.9 0.73 4.5 17.9 0.25
0.03 1.2 0.73 5.0 18.5 0.27
0.03 1.2 0.68 5.0 24.6 0.20
0.03 1.5 0.68 5.8 27.4 0.21
0.06 1.2 0.66 5.3 26.2 0.20

generated at d = 0.9a0 (the left end) and d = 1.5a0 (the right
end). Short-lived vortex street structures can be observed at
smaller d = 0.7a0 and larger d = 1.7a0. When κ increases
to 0.06, long-term stable vortex streets can be observed only
in a quite small region as shown in Fig. 2(c), but short-lived
vortex streets occur at similar parameter ranges as given in
Fig. 2(b) (for the d values in 0.8a0–1.8a0). Figures 3(d)
and 3(e) show the dynamic evolution of the wakes gener-
ated at d = 1.2a0 with the velocities υ = 0.66

√
h̄ω0/m (at

the lower boundary) and υ = 0.72
√

h̄ω0/m (above the upper
boundary). The structure of the vortex street is comparatively
stable in Fig. 3(e) when the obstacle potential moves from
x = −120a0 to x = −220a0. In the wakes close to the ob-
stacle potential, “V-shaped” vortex pairs are formed. When
the SOC strength reaches 0.09, it is hard to observe steady
vortex street. Figure 3(f) shows the wakes at d = 1.2a0 and
υ = 0.72

√
h̄ω0/m for κ = 0.09. The vortex pairs shed from

the obstacle still form vortex street, and the edges of the point
vortices are clear for some limited time. As the time goes on,
part of the vortex pairs may merge into single-point vortices,
and they gradually evolve into disordered states. This means
that increasing κ affects not only the distributions of vortex
pairs but also the stability of the point vortices.

For classical fluids, the ratios of the width b of the street
to the distance l between two consecutive vortex pairs in one
array is an important criterion to the stability of BvK vortex
street, and the b/l values should be close to 0.28. We calculate
the b/l ratios for typical vortex streets formed at different
conditions and the results are presented in Table I. For κ =
0.03, we choose four wakes at d = 0.9a0 and 1.5a0 (left and
right boundaries), and d = 1.2a0 with υ = 0.68

√
h̄ω0/m and

0.73
√

h̄ω0/m (the lower and upper boundaries). It is found
that the width b of the street is approximately proportional to
the obstacle potential radius d . The distance l has a strong
negative correlation with the velocity υ of the obstacle and a
weak positive correlation with the radius d . The b/l ratios are
in the range 0.19 to 0.27 for stable BvK vortex streets. It is
clear that the SOC strength κ does not affect the b/l ratios. In
fact, we calculated the b/l ratios for all of the stable vortex
streets, the b/l ratios fall in the range 0.19–0.27, and the
values are generally around 0.22. It seems that b/l has larger
values when the parameters are close to the upper boundaries.
It is also noticed that the b/l values are about 0.22 for the
vortex pairs generated in Fig. 3(f), but the structure of the
vortex street can maintain only for a certain period of time
and evolves eventually into irregular patterns. This implies
that suitable b/l ratio is a necessary condition to form BvK
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FIG. 4. (a) Contour plots of density |ψ↑|2 centered at a specific
pair of point vortices in Fig. 1(c). The view field is 10a0×10a0.
(b) Angular velocity vs time t . (c) The distance between two point
vortices vs time t . The physical parameters are the same as those in
Fig. 1(c).

vortex street, but it cannot guarantee the stability of the vortex
street. The stability conditions are not only related to the b/l
ratios but also to the SOC strengths.

After the BvK vortex street is generated, the two vortices
in a pair are shed from the same side of the obstacle and
rotate with same circulation. So they rotate as a whole with the
circulation opposite to the rotation of the individual vortices.
Figure 4(a) shows a vortex pair that rotate counterclockwise.
The physical parameters are the same as those in Fig. 1(c).
The angular velocity (ω̃) varies nearly periodically, as shown
by Fig. 4(b), and the average angular velocity is 0.17.
Figure 4(c) shows the distance d̃ between two vortices in a
pair. It is obtained by tracking the coordinates of two point
vortices in the numerical simulations. It can be seen that d̃ also
changes periodically: The maximum distance corresponds to
the minimum angular velocity at t = 242ω−1

0 , and the mini-
mum distance corresponds to the maximum angular velocity
at t = 251ω−1

0 . This is in accordance with the theoretical
formula ω̃ = 2h̄/(md̃2) which says angular velocity ω̃ is in-
versely proportional to the square of distance d̃ . The black
dotted line in Fig. 4(c) shows the distance d̃ at κ = 0 and it
keeps nearly constant. Previous studies by Sasaki et al. also
showed that ω̃ and d̃ keep nearly constant in the scalar BEC
[9].

The oscillation of the angular velocity ω̃ and the distance
d̃ between two point vortices is a specific feature of the
BvK vortex streets formed in SOC BECs. Figure 5 shows
the time evolution of angular velocity ω̃ and the distance d̃
of the vortex pairs formed at different SOC strengths. The
obstacle radius d and its moving velocity υ are fixed to 1.2a0

and 0.66
√

h̄ω0/m. For κ = 0.01, 0.03, and 0.06, the aver-
age distances d̃ and their rms deviations are 2.98 ± 0.08a0,
3.90 ± 0.11a0, and 4.17 ± 0.16a0, respectively. The corre-
sponding angular velocity ω̃ and their RMS deviations are
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t
FIG. 5. Time evolution of the angular velocity and distance be-

tween two point vortices at different SOC strengths κ in the BvK
vortex street. g↑↑ = 1, g↑↓ = 0.9.

0.192 ± 0.012ω0, 0.120 ± 0.014ω0, and 0.108 ± 0.017ω0. It
can be concluded that with increasing the SOC strength κ ,
the distances between two point vortices in a pair increase,
and their oscillations intensify significantly. With larger κ , the
rotation of the vortex pairs becomes slower, however, the fluc-
tuations of the angular velocities get larger. Combined with
the wake patterns described in Fig. 3, we can draw a picture
about how the spin-orbital coupling affects the stability of the
BvK vortex streets. The two point vortices in a pair vibrate,
which enhances with increasing coupling strengths. The vi-
bration makes some of the vortex pairs dissociate into separate
vortices and some of them merge into single point vortices,
and the BvK vortex streets are broken down in the end.

The emission of the vortices will cause a drag force �f =
( fx, fy) = ∂t

∫
dxdy ��†(ih̄∇ ) ��. Figure 6 shows the time evo-

lution of the drag forces at SOC strength κ = 0.01. The
potential starts to move with velocity υ at t = 0. Figure 6(a)
corresponds to the dynamical behavior of V-shaped wake in
Fig. 1(b). The fx fluctuates irregularly at t < 110ω−1

0 and then
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FIG. 6. Time evolution of the normalized drag force acted on the
moving obstacle potential. The blue dashed and red solid lines show
fx and fy, respectively. The parameters used in panels (a)–(c) are the
same as those in Figs. 1(b)–1(d).

periodically. Each peak of fx corresponds to the shedding of
one vortex pair. When t < 110ω−1

0 , fy is nearly zero, indi-
cating that the two vortices in a pair are shed simultaneously
and keep perpendicular to the x axis and form a row. When
t > 110ω−1

0 , fy begins oscillating, demonstrating that the vor-
tex pairs start to incline after they are shed. Because of the
asymmetry of the wakes, the vortices generated from the two
sides of the obstacle emit at different time, and the V-shaped
wake is formed at t > 220ω−1

0 . The peaks and troughs of
fy represent the shedding of upper and lower vortex pairs,
respectively, so the period of fy is twice that of fx. The above
description shows that the periodic vortex generation can be
understood as a process where the moving obstacle exerts
a drag force and the accumulated energy is released as a
vortex pair at a certain threshold condition. Figure 6(b) corre-
sponds to the BvK vortex street in Fig. 1(c). At the beginning
(t < 85ω−1

0 ), two point vortices with opposite circulations
are shed from two sides of the obstacle. Then two vortices
with same circulation are emitted from the same side of the
obstacle, and clockwise and counterclockwise vortex pairs are
shed alternately. The peaks of fy corresponds to the shedding
of clockwise pairs, and the troughs corresponds to the shed-
ding of counterclockwise pairs. Figure 6(c) corresponds to
irregular turbulence in Fig. 1(d). Although the wake patterns
are not arranged regularly, fy still oscillates periodically after
the initial stage (t > 160ω−1

0 ). It suggests that clockwise and
counterclockwise vortices are shed alternately. The oscillation
period of fy equals to the alternative shedding of the vortices
from two sides of the obstacle. We also calculate the drag
force at κ = 0, 0.03, 0.09. Compared with scalar BECs, SOC
does not change the frequency and magnitude of the drag
forces, and no essential differences are found.

Based on our simulations, we propose a scheme to
realize the von Kármán vortex street in an experiment.
The experiment can be performed with the apparatus de-
scribed in Ref. [36]. We consider a 87Rb SOC BEC in
the pseudo-spin-up and -down states: |↑〉 = |F = 1, mF = 0〉

and |↓〉 = |F = 1, mF = −1〉. The number of atoms in the
condensate is N ≈ 1.63×106. The condensate is confined
in a harmonic trapping potential which is generated by
combining a pancake-shaped optical dipole trap and a mag-
netic quadruple trap. The trapping frequencies (ωx, ωy, ωz ) ≈
2π×(50, 50, 140) Hz [14], so the healing length a0 =√

h̄/mωx ≈ 3.81 μm and lz = √
h̄/mωz ≈ 2.27 μm. The ob-

stacle potential is formed by a repulsive Gaussian laser
beam [12,35] moving at velocity υ = 0.14 mm/s. Its peak
strength V0 = 5.25×10−31 J and the waist of beam d =
4.57 μm. The intra- and intercomponent interactions gjl =
4π h̄2a jl/m( j, l = ↑,↓) can be tuned by the s-wave scat-
tering length a jl . Giving a↑↑ = a↓↓ ≈ 86aB ≈ 4.54 nm and
a↑↓ = a↓↑ ≈ 77aB ≈ 4.08 nm (aB is the Bohr radius), it leads
to the values g↑↑ = g↓↓ ≈ 4.33×10−51 J and g↑↓ = g↓↑ ≈
3.90×10−51 J. Under these conditions, the dimensionless
intra- and intercomponent strengths are g↑↑ ≈ 1 and g↑↓ ≈
0.9, so the parameters are close to Fig. 1(c) and von Kármán
vortex street will be realized.

IV. CONCLUSION

In summary, we numerically simulate the dynamics of
SOC BEC through a moving potential. Four kinds of wakes,
namely, the stable laminar flow, vortex pairs, BvK vortex
street, and irregular turbulence, are observed. The phase
diagrams are determined for different SOC strengths κ . Com-
pared with other phases, the conditions to form BvK vortex
street are rather restricted, and the areas for the stable vortex
streets reduce when the κ increases. We focus our attention
on the dynamic characteristics of the vortex street. Increasing
κ affects not only the distributions of vortex pairs, but also
the stability of the point vortices. The values of the stability
condition b/l range from 0.19 to 0.27 for the vortex streets in
SOC BECs. It is a little smaller than that of the classical fluids.
Suitable b/l ratio is a necessary condition to form the BvK
vortex street, but it cannot guarantee the stability of the vortex
street. The stability conditions are not only related to the b/l
ratios but also to the SOC strengths. The two point vortices in
a pair rotate around their center, and their distances and the an-
gular velocities change periodically in the BvK vortex street.
By increasing the SOC strength κ , the distances between two
point vortices in a pair increase, and their oscillations intensify
significantly. The vibration makes some of the vortex pairs
dissociate into separate vortices, some of them merge into
single point vortices, and the BvK vortex streets are broken
down in the end. We calculate the drag forces and analyze
the formation mechanism of different wake types. Compared
with scalar BECs, SOC does not change the frequency and
magnitude of the drag forces obviously. Finally, we propose a
scheme to realize the vortex street in experiment.
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