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Eckhaus selection: The mechanism of pattern persistence in a reaction-diffusion system
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In this work, we show theoretically and numerically that a one-dimensional reaction-diffusion system, near
the Turing bifurcation, produces different number of stripes when, in addition to random noise, the Fourier
mode of a prepattern used to initialize the system changes. We also show that the Fourier modes that persist are
inside the Eckhaus stability regions, while those outside this region follow a wave number selection process not
predicted by the linear analysis. To test our results, we use the Brusselator reaction-diffusion system obtaining
an excellent agreement between the weakly nonlinear predictions of the real Ginzburg-Landau equations and
the numerical solutions near the bifurcation. Although the persistence of patterns is not relevant as a simple
generating mechanism of self-organization, it is crucial to understand the formation of patterns that occurs in
multiple stages. In this work, we discuss the relevance of our results on the robustness and diversity of solutions
in multiple-steps mechanisms of biological pattern formation and auto-organization in growing domains.
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I. INTRODUCTION

Reaction-diffusion (RD) equations provide a standard
model for many biological, chemical, and social dynamical
systems since, near the Turing bifurcation, an essential ingre-
dient in modeling auto-organization processes takes place: the
emergence of steady spatial patterns.

A key feature of this process is determined by the initial
conditions, which provide the available Fourier modes of the
RD equations that grow or decay according to the dynam-
ics. Since the RD equations usually involve nonlinear terms,
tracking the dynamics of each mode for predicting the steady
solution is a difficult task. Most of the models using RD
equations are initialized with a small random spatial pertur-
bation around the equilibrium concentrations. In this case, the
steady spatial pattern is given by the fastest growing mode
predicted by the linear analysis. This constitutes the approach
for models of spatial pattern formation where it is thought that
all initial non zero Fourier modes are, in principle, equally
probable when the spatial auto-organization is mainly initiated
by the inherent spatial fluctuations and not by a prior configu-
ration or prepattern.

In their pioneering work on the sensitivity to initial con-
ditions on Turing patterns, Arcuri and Murray [1] showed
that random initial conditions around the equilibrium points
lead the emerging pattern to the expected wave number in a
robust way. This is the faster growing wave number of the
dispersion relation obtained from the linear analysis. But they
also noticed that if the steady spatial pattern solution of a RD
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mechanism with different dynamics (and consequently with
a different final wave number) is used as initial condition or
prepattern, some initial configurations can persist. We say that
a pattern persists when the steady pattern has the same wave
number that the initial pattern.

In this work we study RD systems where, in addition to the
small random noise due to fluctuations, there is a preponderant
Fourier mode in the initial conditions. To focus on the role
of these initial conditions, we show that the possible stable
configurations (i.e., those that can persist) are obtained by
fixing factors, such as the parameter values, domain size, and
boundary conditions. We show that this persistence occurs in
systems near the Turing bifurcation provided that the wave
number of the prepattern is inside the Eckhaus region. Initial
spatial configurations with wave numbers outside this region
break into a spatial pattern with stable wave number by form-
ing dislocations or defects.

Here the Brusselator RD system is used, in particular we
study its amplitude Ginzburg-Landau (GL) equation, which
predicts the evolution of the envelope, the number of stable
configurations and the free energy of the systems in a weakly
nonlinear approach [2]. Our predictions are corroborated
by numerical solutions of the one-dimensional Brusselator.
Within the same approach it will be also studied how the
amplitude and wave number of the spatial configuration, as
function of time, are related with changes in the free energy
of the system thus allowing to understand the stability and
robustness of the solutions on a thermodynamical basis.

An exciting application of these results to biology is related
with the fact that a multistep mechanism of spatial organiza-
tion occurs in subsequent stages. When the last stage is of
RD kind, with a different wave number than the predicted by
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the linear analysis, then the pattern persistence mechanism
that we discuss in this work is of high relevance. Examples
of multistep mechanisms of pattern formation are ubiquitous
in developmental Biology [3]. The most important example
occurs in morphogenesis where the formation of structures
obtained by a RD mechanism depends on the properties and
geometries of previous ones. Also in a growth process where
the pattern which corresponds to an organized physiological
structure at a specific time does not start randomly at each
stage but depends on the spatial pattern achieved at some pre-
vious time. These biological implications are also discussed
and exemplified.

II. THEORETICAL ANALYSIS

The one-dimensional RD Brusselator system is given by

∂u

∂t
= σ

∂2u

∂x2
+ A − (B + 1)u + u2v, (1)

∂v

∂t
= ∂2u

∂x2
+ Bu − u2v, (2)

where u = (u, v) are the two chemical concentrations. In
this work we keep A = 1, σ = 0.1, and the domain size
L = 15 · (2π/kc) fixed and periodic boundary conditions are
assumed. If B is used as bifurcation parameter, the Turing
bifurcation arises for solutions with critical wave number kc =√

A/
√

σ and B � BT ≡ (1 + A
√

σ )2, where BT is the bifurca-
tion value. The chosen domain size guarantees that there are
exactly nc = 15 stripes at the bifurcation. The expected wave
number is that of maximum growth in the linear dispersion
relation and is given by

k2
l = A

√
Bσ + σ (1 − A2 − B + A

√
Bσ )

(1 − σ )σ
, (3)

which predicts that the expected wave number increases as B
increases.

A system with initial conditions given by u(x, t = 0) =
u0 + ξ(x) is expected to produce a pattern with wave number
kl , where u0 = (A, B/A) are the equilibrium concentrations
and ξ(x) is white noise with a small amplitude compared with
|u0|. This essentially summarizes the linear analysis.

Near the bifurcation, a weakly nonlinear study can be
applied to obtain perturbative approximate solutions of the
Brusselator [4]. These solutions are proportional to the dis-
tance to the bifurcation ε2 = (B − BT )/BT and their dynamics
obey a real GL equation. This means that if we assume
an approximate solution of the RD of the form u ≈ u0 +
T (x, t )eikcxeT + c.c., with eT the linear eigenvector, the am-
plitude T (x, t ) fulfills:

∂T

∂t
= μt T − at |T |2 T + bt

∂2T

∂x2
, (4)

The GL approach to pattern formation has been widely used
and the main results related to persistency of patterns are
summarized here; for a more detailed account see for in-
stance Refs. [5,6]. The coefficients in Eq. (4) are given, for
instance in Refs. [7,8]. For the assumed values of A and σ ,
these coefficients are μT = 0.8441(B − BT ), at = 1.664 and
bt = 0.3376.

Equation (4) has a family of Turing solutions consist-
ing of steady patterns T (x, t ) = T (x) = TseiQx, where Ts =√

(μt − bt Q2)/at is a constant that corresponds to the am-
plitude of the main wave mode (excluding the zero mode),
and Q measures the deviation of the wave number respect to
the critical value kc, that is Q = k − kc. The solution exists
provided that the term in the square root of Ts is positive.

The solutions of the RD system initialized with

u(x, t = 0) = u0 + [Tse
i(kc+Q)xeT + c.c.] + ξ(x), (5)

are Eckhaus stable (preserve their wave number) as long as
the Eckhaus criterion is fulfilled [9,10]:

Q2 < Q2
Eck =

(1

3

)μt

bt
. (6)

Otherwise, the solution is Eckhaus unstable and the spatial
pattern initialized with wave number k = kc + Q changes its
initial wave number, producing defects/dislocations in the
horizontal alignment of the stripes as viewed in the space-time
map solutions of the one-dimensional RD system [11].

The time evolution of the amplitude T (x, t ) in Eq. (4)
has the gradient form ∂T/∂t = −δV/δT with the potential
functional given by

V (t ) = 1

2

∫ L

0
dx

{
−μt |T |2 + at

2
|T |4 + bt

∣∣∣∣∂T

∂x

∣∣∣∣
2}

. (7)

The GL equation of motion then implies that

∂V/∂t = −
∫ L

0
|∂T/∂t |2dx, (8)

hence the value of V decreases and, since it is bounded from
below, it plays the role of a Lyapunov functional or general-
ized free energy [12,13]. This means that the evolution of the
system tends to minimize the free energy of the system [5,6].
It should be stressed that Eq. (7) is a Lyapunov functional
for the amplitude T satisfying the GL Eq. (4). Therefore, the
stability of the equilibrium point u0 of the RD system Eqs. (1)
and (2), as deduced from this Lyapunov functional, is only
valid near the bifurcation where the GL approach provides a
good approximation of the solution [14,15].

Equation (7) is difficult to corroborate numerically. How-
ever, a form of the energy can be obtained by considering that
all the solutions of Eq. (4) can be written as T = R(x, t )eiθ (x,t ),
being R and θ the modulus and the phase of the amplitude
T , respectively. By substituting this expression in Eq. (4),
differential equations for R and θ are obtained. From the
equation for θ we get that the stationary solutions satisfy
J = R2∂θ/∂x = const., and from the equation for R it follows
that the modulus obeys an equation analogous to Newton’s
equation of motion for a particle in a potential U (R) =
1/2(μt R2 − at R4/2 + bt J2/R2) [16]. By taking into account
the stationary solutions, a comparison with T = TseiQx yields
R = Ts and J = T 2

s Q. Substituting the value of Ts as function
of Q allows us to obtain a quartic potential for the wave
number deviation as

U (Q) = 3b2
t

4at

(
Q2 + Q2

Eck

)(
3Q2

Eck − Q2
)
. (9)

This kind of potential energy has a minimum in Q = 0 and
two maxima in Q = ±QEck, thus the Eckhaus instability
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FIG. 1. Stable (orange-shaded zone) and unstable modes (pink-
shaded zone) of the Brusselator, characterized by the bifurcation
parameter B, (a) as a function of the distance Q = k − kc to the
bifurcation and the wave number of the initial condition, and (b) as a
function of the number of rolls at the beginning of the process, n. The
existence curve (orange-dashed line) is obtained from the condition
Ts > 0, whereas the instability curve (red solid line) from Eq. (6).
The transition from unstable to stable zone is indicated by curved
arrows in panel (b).

Eq. (6) is confirmed from an energetic point of view. This
means that the prepatterns with wave numbers k such that
|k − kc| < QEck can persist under the dynamics of the RD
system, at least near the bifurcation. The available wave num-
ber must also satisfy the finite-length boundary condition,
k = 2nπ/L, with n an integer, consequently the persistence
o transition among states occurs in discrete steps.

In the next Section these predictions are numerically val-
idated. Therefore, it will be verified that the RD system can
produce different patterns under changes of the initial condi-
tions. The amplitudes of the Fourier modes of the solution, as
function of time, will be measured and we will try to link these
amplitude values with the free energy of the steady pattern and
the role of noise on the persistence of patterns.

III. NUMERICAL RESULTS

In this section the Brusselator system Eqs. (1) and (2)
will be numerically solved using the finite element software
COMSOL Multiphysics, with an adaptative one dimensional
mesh initialized with 100 evenly spaced nodes, with periodic
boundary conditions, and a time step which provides 10 000
steps of recurrence. The total time tmax = 100/μt used for the
simulations depends on the distance to the bifurcation and is
based on the characteristic time of each process.

In Fig. 1 the stable and unstable solutions of the Brusse-
lator are plotted. The existence curve (orange dashed line) is
obtained from the condition Ts > 0 and the instability curve
(red solid line) from (6), in terms of the bifurcation parameter
B and the wave number deviation, Q = k − kc (left), or the
number of rolls at the beginning of the process, n (right).
The blue line is the boundary with the Hopf bifurcation,
BH = 1 + A2 = 2. Therefore, the orange and red regions rep-
resent the initial configurations in Eq. (5) where the theoretical
formalism predicts stable and unstable solutions, respectively.

In Fig. 1(a), orange points represent the numerical so-
lutions that remain stable. Magenta points represent Mixed
mode solutions, which occurs due to the proximity to the Hopf
bifurcation. In Fig. 1(b) the unstable numerical solutions are
plotted. The red points represent the initial wave number and

FIG. 2. Evolution of the system initialized with a different num-
ber of rolls. (a) The amplitude of the main Fourier coefficient cM

versus time; each solution was initialized with initial Fourier mode
n (colored numbers), with B = 1.769. The joined curves indicate the
time evolution of each mode until it reaches a stationary state. Some
initial modes (17 and 13) reach stationarity after passing through
an intermediate Fourier mode. These features are illustrated in the
time-space maps displayed in panel (b).

the orange points, the final wave number of the numerical
pattern. The transition in each case is represented by an arrow.
As it can be seen, the comparison between theoretical and
numerical results is satisfactory, mainly for values of B near
the bifurcation. It is also observable the asymmetry towards
negative values of Q of the orange dots in Fig. 1. It is im-
portant to remark that this tendency toward patterns with less
rolls, as B increases, observed in Fig. 1(b) does not correspond
to the predictions of the linear analysis, depicted as a purple
line in Fig. 1(a), where the most rapid growing mode kl in
Eq. (3) is plotted.

These results show that, as predicted by the amplitude
formalism, the central zone of Fig. 1 (near k = kc) is occupied
by stable pattern solutions, which preserve the information
of the prepattern. In contrast, when the solutions were ini-
tialized with wave numbers outside this region, the system
tends to change its spatial configuration to solutions with wave
numbers in the stable region. We conclude that there is a
limited range of different possible outputs (steady patterns
with different number of stripes) that increases quadratically
with the distance to the bifurcation.

In Fig. 2 we plot the value of the main Fourier coefficient
cM of each solution initialized with initial Fourier mode n as
a function of time, for B = 1.769. In Fig. 2(a), the curves
that correspond to stable solutions (solid lines) grow mono-
tonically up to their asymptotic value for the corresponding
Fourier mode. In contrast, for unstable initial conditions
(dashed lines), the initial Fourier mode loses amplitude until
a new mode enters, with an amplitude that grows up to its
final value. This can be followed in the spatiotemporal maps
of the solutions plotted in Fig. 2(b), where changes in the
amplitude of the initially stable solutions, as well as changes
due to dislocations and defects of the unstable solutions, are
illustrated by means of the contrast in the gray scale.

The transition from instability to stability can occur in
multiple stages as illustrated in Fig. 3(a), where several tran-
sitions are tracked. The initial Fourier mode of the solution is
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FIG. 3. Temporal evolution of the main Fourier coefficient cM

for systems initialized in the unstable region [pink zone in Fig. 1(b)].
(a) The colored numbers indicate the number of initial roles. The
lines show that multiple transitions may occur before reaching
the preponderant stationary mode. (b) An illustration of the fate
of the unstable modes and the transition mechanism towards mode
stability. See the main text for more details.

indicated at the beginning of each curve; each Fourier spec-
trum can be followed and during the evolution some others
Fourier modes appear and dominate until stability is reached.
For example, the mode with 19 rolls, as time goes shows
an initial increasing of its amplitude, followed by a decrease
until the mode with 12 rolls enters; this mode also grows its
amplitude which again decreases just before the mode with
14 rolls appears; finally, the 13 rolls mode dominates, which
grows until stability is reached. The multiple transition occurs
more frequently for values of B far from the bifurcation, as it
occurs in Fig. 3(a), where B = 1.903. Notice that in several
cases the transition among different patterns occurs through a
slow decrease in the amplitude of the outgoing mode followed
by a rapid outburst of the new mode. The process for each
Fourier mode is exemplified in Fig. 3(b), where the observable
wave number of the pattern corresponding to cM (plotted in
blue) is decomposed in the amplitudes of the different modes
c j (black lines) entering in the solution.

To relate the persistence of patterns with the energy of
the system and the initial conditions in the stable region, and
their rearrangements, when they are in the unstable region,
in Fig. 4(a) the amplitude of the steady pattern cM (t → ∞)
for different initial configurations is measured. This is done
for three different values of B, namely, 1.769 (circles), 1.822

FIG. 4. Relation between the amplitude of the observable pattern
and the energy of the system. (a) Amplitude of the maximum Fourier
coefficient in the steady state as a function of the number of rolls in
the initial condition. (b, c) Analogy of the persistence and unstabi-
lization of pattern in terms of the energy landscape of the system.

(squares), and 1.903 (triangles). As it can be seen, the persis-
tent prepatterns (joined by solid lines) have a kind of parabolic
profile. Near the unstabilization, the amplitude reaches a lo-
cal minimum from where the adjacent unstable prepatterns
(joined by dashed lines) increase their amplitude. This re-
minds the energy profile described by Eq. (9) and plotted as
a blue line in Fig. 4(c). The energy profile U (Q) establishes
that prepatterns in the stable region are localized inside a
basin of energy with minimum value at k = kc; outside this
basin (|Q| � QEck), prepatterns should rearrange to decrease
the energy of the system.

This analogy between the amplitudes of the steady pattern
and the initial energy of the dynamical system, together with
the minimization of the functional Eq. (9), suggests that the
persistence of multiple patterns and the unstabilization of
others can be understood as marbles rolling in a bowl, as
described in Fig. 4(b). A marble thrown near the base (initial
conditions with nc stripes) will remain in the base of the bowl
(the critical number of stripes). If the marble is placed in the
bowl with an adequate initial energy (initial conditions with
n in the stable region), the marble can continue rolling with a
certain height inside the bowl (a number of stripes different
to nc). The final height of the marble (the final number of
stripes) depends on the balance between the initial position
(potential energy) and the initial kinetic energy; in the case of
the prepatterns, the amplitude and wave number of the steady
pattern depends on the amount of energy necessary to form
the initial prepattern (free energy), as illustrated in Fig. 4(c).
In this case, the intensity of the initial random noise can act
as thermal energy at the beginning of the process, which can
take the system from one local minimum to another (i.e., from
a given number of stripes to another). In the case studied here,
the spatial fluctuations appear just at the beginning of the
process, however, in RD systems with additive noise, the ran-
dom contribution occurs during the entire process and plays
the role of a thermal bath [17–19]. The magnitude of those
fluctuations coupled with the energy landscape determine the
wave number of the steady solution. This energy landscape
schematically sketched in the red curve of Fig. 4(c) results
from Eq. (9) and the fact that patterns in RD system have only
an integer number of lines.

The destabilizing role of the initial noise as a function
of the initial number of stripes is depicted in Fig. 5. The
amplitude of the initial spatial noise, as a function of the
initial number of stripes, is measured as the maximum value
of |ξ(x)|. Each color line corresponds to the noise intensity,
where each Eckhaus stable mode loses stability. The values
of B coincide with those of Fig. 4 and the same color code
is used. Clearly, for B values far from the bifurcation (green
case), the magnitude of the noise unstabilizing the solution is
broader and tends to the left side, in contrast to closer values
(blue case). Symbols represent the numerical solutions where
the initial preponderant mode persists in the range studied,
showing a similar distribution as the one of the continuous
line.

IV. BIOLOGICAL IMPLICATIONS

In the previous section we shown that a RD system with
the same set of parameters (in the case of the Brusselator, A,
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FIG. 5. Intensity of the noise that unstabilize a pattern initiated
with n stripes. Color values are the same as in Fig. 4(a). Lines
indicate the first occasion that the pattern loses stability and symbols
reflected the cases when the initial solution persists in our numerical
exploration of the region.

B, and σ ) and fixed domain size (L) can produce multiple
steady pattern solutions depending on the initial conditions.
As long as a single mechanism of pattern formation is con-
sidered, these predictions seem to have not many applications
since, to set up the different stable spatial configurations, the
multiplicity should be established from the very beginning.
However, a multiple-steps mechanism of pattern generation
can produce solutions with: (1) a variety of spatial patterns
and (2) a limited number of possible solutions. This may
be an attractive idea for the problem of biological variation,
where the variation of traits related to phenotypic characters
(coat color, teeth number, feather buds, hair follicles, etc.) in
individuals of the same specie or genus (or even in the same
individual in different stages of its development) are related
to multiple mechanisms of phenotypic trait differentiation (as
genetic differences, epigenetic factors and phenotypic plastic-
ity) [20,21].

The Turing mechanism of pattern formation has the ad-
vantage of producing a steady spatial pattern from practically
homogeneously distributed systems [22]. The effective wave
number can be determined from the linear analysis as the
most rapid growing mode kl and, in a finite one dimen-
sional domain, the pattern has always n ≈ klL/(2π ) stripes
[23]. Therefore, in the context of one-stage mechanism of
Turing pattern formation, the trait variation of some fea-
ture labeled by n has at least four possible candidates: (1)
variation of physicochemical parameters; (2) variation of the
domain length; (3) variation in the initial intensity and ran-
domness of the initial conditions; and (4) different boundary
conditions and domain shapes [24]. If a Turing solution
in our models is interpreted as the average trait exhibited
by different individuals, then the phenotypic variations can
be understood as random substitutions in some of these
factors.

From our results, the possibility of a less obvious mech-
anism arises, where the phenotypic variability of traits are
not only attributed to perturbations of the physicochemical
aspects of a Turing RD mechanism, which gives place to
the spatial organization of morphogens, but to the sequence
of previous stages during the development process [25–28].

In a two-stages mechanism of pattern organization, for ex-
ample, there could be a finite number of possible previous
prepatterns generated by a nonrobust mechanism of pattern
formation, and then, in a second stage, the information of
the first prepattern is encoded into a initial genetic expres-
sion which determines how the morphogens are initially
distributed as input for the second stage, where a RD mecha-
nism can preserve the spatial stable pattern or lead unstable
configurations to stable ones. In this way, the first nonro-
bust mechanism produces multiple and variable patterns and
the second one takes this information to produce a limited
variability.

For illustrative purposes only, let us consider these two
oversimplified development models related with the variation
in the number of stripes in the skin of some individuals of the
same species.

In the first model, illustrated in Fig. 6(a), a single-stage
mechanism of pattern formation is considered, where per-
turbations at the genetic/epigenetic level produce a disperse
distribution of the already mentioned factor(s) in the RD sys-
tem among different individuals. Let us denote this random
factor generically as β. The variation of this parameter in
turn produces different number of skin stripes, labeled by
n. Therefore, the distribution of individuals with a certain
number of stripes s(n) can be deduced from the distribution
curve of β, r(β ) as depicted in Fig. 6(a).

In the second model, illustrated in Fig. 6(b), a two-stages
mechanism of pattern formation is considered. The first or-
ganization mechanism produces several spatial configurations
among different individuals. These prepatterns p will be the
initial array of morphogens of the second RD mechanism
that will produce skin stripes. The first stage can be a RD
mechanism [29,30], a positional information (PI) gradient
[31,32], heterochrony (HC) [33,34], or any mechanism of
spatial pattern formation that produces a wide variety of
prepatterns distributed according to a certain distribution r(p).
The information of these prepatterns is encoded and serves as
input of the second stage in the development process, where a
RD mechanism can either preserve the spatial information of
the stable configurations (those with an adequate number of
stripes) or can stabilize unstable configurations (those result-
ing in too many or too few stripes). The range of the adequate
number of stripes is now directly dictated by physicochemical
parameters and the size of the skin and, in this way, even in the
case when these factors are practically the same among many
individuals, there is a restricted variability in the phenotypic
trait due to the interaction of the two stages of the process.
This can be identified as a distribution s(n) with very short
tails.

It could also be possible that the variability of some trait
in different individuals is due to a combination of characters
of both of models [35–37], but it is clear that a phenotypic
trait does not occur as an isolated process but it is usually
the result of a temporal succession of multiple stages [38–41].
The same applies for the process of growing where the ex-
hibited pattern depends not just in the current domain sizes
domain at time t , but also in terms of the stability of the
prepattern at time t − 	t . Persistence of patterns results a fun-
damental issue to include in processes where time plays a role
[42–45].
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FIG. 6. Two models to understanding biological variation of phenotypic trait formed by a RD mechanism, like the number of skin stripes.
One-stage process (left) or multiple stages process (right).

V. DISCUSSION AND CONCLUSIONS

In this work we shown that a RD system initialized with
a preponderant Fourier mode underlying the random spatial
initial conditions tends to preserve the spatial configuration
when it is near the bifurcation values. To show this, the
amplitude formalism near the Turing bifurcations was ap-
plied, which turned out to be successful for predicting how
many stable rolls can contain a system in terms of the Eck-
haus instability. Our results contribute to the understanding
of the role played by initial conditions in RD mechanisms,
which is a scarcely studied subject in the formation of orga-
nized structures like patterns, waves, and oscillatory patterns
[46,47].

We found that systems with the same parameters, size,
and boundaries can produce different configurations depend-
ing on the initial distribution of Fourier modes, and possibly
also on the different distributions of random perturbations.
Hence, care must be taken when modeling processes involving
growth, temporal development, or multiple stages since the
stability of solutions in previous steps plays an essential role to
define the solution at the next stage. This idea could be fruitful
to understand the intraspecific or interspecific variability of
phenotypic traits and the role of growth in the formation of
biological stripped patterns.

Although Eqs. (4)–(9) are not restricted to a particular RD
system, our numerical studies on persistency of modes has
been applied to the Brusselator system mainly because this
model has been extensively used in the field of wavelength

selection [4,7,48–50]. However, as there is experimental and
numerical evidence of Eckhaus wavelength selection in the
Lengyel-Epstein, Belouzov-Zhabotinsky, FitzHugh-Nagumo,
and BVAM reaction-diffusion models [51–57], our theoretical
analysis is also valid for these systems, but the numerical
studies should be done.

In this work, we use the GL approach to study the per-
sistency of patterns. The analysis presented here can be
generalized to study the role of nonlinearities and the non-
normality of the Laplacian in the pattern transition problem
[58].

A possible biological implication is the appealing possibil-
ity of using three different elements to control the number of
rolls that a pattern solutions can support without losing sta-
bility: the domain size, the proximity of the parameters to the
bifurcation value and the prepattern. The coupling between
multiple steps mechanisms of pattern formation enriches the
diversity of spatial information that complex systems form in
successive stages, occurring one after other (even at totally
different time scales), producing different degrees of variabil-
ity and robustness to the observable pattern.
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