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The Bonabeau model of self-organized hierarchy formation is studied by using a piecewise linear approxima-
tion to the sigmoid function. Simulations of the piecewise-linear agent model show that there exist two-level and
three-level hierarchical solutions and that each agent exhibits a transition from nonergodic to ergodic behaviors.
Furthermore, by using a mean-field approximation to the agent model, it is analytically shown that there are
asymmetric two-level solutions, even though the model equation is symmetric (asymmetry is introduced only
through the initial conditions) and that linearly stable and unstable three-level solutions coexist. It is also shown
that some of these solutions emerge through supercritical-pitchfork-like bifurcations in invariant subspaces.
Existence and stability of the linear hierarchy solution in the mean-field model are also elucidated.
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I. INTRODUCTION

Hierarchy formation has been intensively studied in a wide
range of animal species: insects [1], fish [2—4], birds [5],
and mammals [6], including even humans [7,8]. It has been
considered that not only differences in the prior attributes
of individuals such as weight and aggressiveness but also
social interactions between individuals are important in the
hierarchy formation [3,9]. In fact, it is known that an indi-
vidual who won an earlier contest has a higher probability
of winning later contests than an individual who lost the
earlier contest (winner-loser effects) [10]. Positive feedback
generated through such effects might enhance the formation
of hierarchies in animal groups.

To elucidate such a feedback mechanism in hierarchy for-
mations, a mathematical model is proposed by Bonabeau et al.
[11]. The Bonabeau model consists of N agents, and each
agent i (i=1,...,N) is characterized by a variable F;(¢),
where ¢ is time. F;(¢), which is called strength or fitness in
the literature, is referred to as a dominance score (DS) in
this paper [5]. After a contest between two agents i and j,
F;(¢) increases if the agent i wins and decreases if i loses [the
same rule is applied to F;(¢)]. A greater value of F;(t) means
a higher probability to win a contest. In addition, the agents
are assumed to perform random walks on a two-dimensional
square lattice L x L, and a contest occurs when two agents
meet; thus, the density of the agents p = N/L? is a parameter,
which controls the frequency of contests. In addition to these
pairwise interactions, F;(t) is assumed to show a relaxation ac-
cording to a differential equation dF;(t)/dt = —u tanh(F;(¢)).

It is found that, as the density p increases, the Bonabeau
model shows a transition from an egalitarian state in which all
F;(t) are equal to a hierarchical state in which F;(¢) # F;(t) for
some i # j. The Bonabeau model is one of the basic models
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of the hierarchy formation, and it is compared with experi-
mental observations of hierarchies in animal groups [5,12].
Hierarchical structures can be well described by the Bonabeau
model [12], but some discrepancies are also reported [5].

Since the Bonabeau model is a simple model, many
modified versions have been proposed to make it more real-
istic. In Refs. [13,14], another feedback mechanism and an
asymmetric rule are incorporated into the dynamics of F;(r).
This generalized model (a Stauffer version) is analyzed in
Ref. [15], and it was found that the egalitarian solution is
always stable, while a two-level stable solution (a hierarchi-
cal solution) appears at a critical parameter value through a
saddle-node bifurcation. In addition, a model with a simpler
relaxation dynamics dFi(t)/dt = —uF;(t) is also analyzed
in Ref. [15], and it was found that a similar transition oc-
curs but in this case the bifurcation is supercritical-pitchfork
type. Recently, an asymmetric model is intensively studied
in Ref. [16]. In this asymmetric model, each agent has an
intrinsic parameter called a talent, which can be considered
as a prior attribute of that agent. Moreover, two modified
models are proposed in Refs. [17-19]: a timid-society model
and a challenging-society model. In the timid-society model,
an agent can choose a vacant site when it moves and thereby
it can avoid a contest; in the challenging-society model, the
agent chooses the strongest neighbor as an opponent.

In contrast to these modifications trying to incorporate re-
alistic features, there are also works intending to simplify the
Bonabeau model [20-22]. In these studies, the DSs of agents
are assumed to attain only integer values, and the DS of the
winner increases by one and that of the loser does not change.
The dynamics can be described by a partial differential equa-
tion in a continuum limit. This model also shows a transition
from the egalitarian solution to a hierarchical solution.

In spite of this diversity of models of the hierarchy for-
mation, understanding of the original Bonabeau model is still
limited. For example, in the Bonabeau model with relaxation
dynamics dF;(t)/dt = —uF;i(t), it is found that the egalitarian
solution is stable at low densities (at small values of p). This
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egalitarian solution becomes unstable at p = p., and two-level
stable solutions appear through a supercritical-pitchfork bifur-
cation [15]. But it seems impossible to rigorously derive the
stable range of this two-level solution (some approximation is
necessary). This difficulty stems mainly from nonlinearity of
the sigmoid function employed in the Bonabeau model (see
Sec. II).

In this paper, we propose another simplified version of the
Bonabeau model by introducing a piecewise linear function
in place of the sigmoid function. Piecewise linear approxi-
mations are often used in the studies of nonlinear dynamical
systems. In fact, even for systems in which rigorous ap-
proaches are difficult, more detailed analysis is possible for
piecewise linear versions [23-26]. Here we derive the sta-
ble ranges of two-level and three-level solutions for the
piecewise-linear model. Moreover, we found that asymmetric
two-level solutions exist even though the system is symmetric
(asymmetry is introduced only through the initial conditions).
It is also shown that various stable and unstable solutions
coexist.

This paper is organized as follows. In Sec. II, we define two
piecewise-linear models of the hierarchy formation: an agent
model and a mean-field model. In Sec. III, linear stability
analysis for steady-state solutions (i.e., fixed points [27]) of
the mean-field model is presented. In Sec. IV, a transition
from ergodic to nonergodic behaviors in the agent model is
numerically studied. Finally, Sec. V is devoted to a discussion,
in which we suggest possible generalizations of the agent
model.

II. MODELS

In this section, we introduce two models of the self-
organized hierarchy formation. The first model is referred to
as an agent model and the second as a mean-field model. It is
shown that the mean-field model is a good approximation of
the agent model in a weak interaction limit.

A. Agent model

Let us suppose that there are N agents, and each agent
i(i=1,...,N) is characterized by a real number Fi(¢),
which is referred to as the DS at time 7 [11]. F;(¢) is a measure
of strength or fitness of the agent i [9,15], and changes through
interactions with other agents. Hereafter, the interaction be-
tween two agents is referred to as a contest. First, we define
the dynamics just at the contest; second, we define intercontest
dynamics by using a Poisson process.

1. Contest dynamics

Let us define the dynamics of F;(¢) at the contests. At
random time ¢ = t,,, two agents i and j contest with each other,
where i and j are randomly chosen from the N agents. In this
contest, the values of F;(z) and F;(t) change as

F(t,") = F@,) +nflEt, ) — Fia )1+ &), (1)

Fi(6,)) = Fj6;) + nf [Fit,) = EGO1+ &), (2)
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FIG. 1. Probabilities of the gain F;(¢,;}) — Fi(¢, ) (a) for the model
defined in Eq. (1) and (b) for the Bonabeau model. Here x stands
for the difference of the DSs of two contestants, e.g., x = Fi(t, ) —
F;(t,7). Then g(x)[g(—x)] is the probability that the agent i wins
(loses) the contest with j. The mean gain u is expressed as u =
nlg(x) — qg(—=x)1 = nf(x) [Eq. (8)].

where 7, and ¢ are the times just before and after the contest,
respectively. A gain from winning or losing the contest is de-
fined by the difference of the DSs before and after the contest,
Fi(t;F) — Fi(t;), which is equivalent to the sum of the second
and the third terms in the right-hand side of Eq. (1). Therefore,
the parameter n controls the amount of the gain, thereby char-
acterizing the impact of the contest result. Moreover, &;(¢) is a
random variable following the normal distribution with mean
0 and variance o and satisfies an independence property
(&it)Ei(tn)) = 6 jénmaz. The gain is thus a random variable,
and its probability density is illustrated in Fig. 1(a).

In Egs. (1) and (2), f(x) is a nonlinear function similar
to the sigmoid function. In this paper, we assume it has the
following piecewise linear form:

-1 (< -2F)
fo) =135 (2R <x<2k), A3)
1 (x =2 2k)

where F characterizes the scale of F;(¢), and it can be re-
moved by rescaling [see Appendix A]. Note also that x stands
for the DS difference of two contestants, e.g., x = F(t, ) —
F;(t,;) [see Eq. (1)]. This function f(x) is a piecewise-linear
approximation to the function
1 1

L+e/h  14e/h
This function f,(x) is employed in the original Bonabeau
model [11]. Due to the nonlinearity in f;(x), theoretical anal-
ysis of the Bonabeau model is difficult except for a few simple
steady-state solutions. For the piecewise linear approximation
given by Eq. (3); however, more detailed analysis of hierar-
chical solutions is possible due to its simplicity.

The first and the second terms on the right-hand side of
Eq. (4) have a simple probabilistic interpretation. Let us define
a function g(x) as q(x) := [fp(x) + 1]/2, and then Eq. (4)
can be expressed as f,(x) = g(x) — g(—x). If x is given by

fo(x) = “)
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x = Fi(t;) — Fj(t, ), then the first term g(x) is the winning
probability of i against j, and the second term g(—x) is the
losing probability of i against j. A similar interpretation is
possible also for our model [Eq. (3)]; if we rewrite f(x)
as f(x) = q(x) — q(—x) with g(x) = [f(x) + 11/2, then g(x)
[¢(—x)] is the probability of winning (losing). Thus, 1 f(x) in
the right-hand side of Eq. (1) is the mean gain of the agent i
through the contest with j.

Apart from this difference in f(x) and f,(x), Egs. (1) and
(2) are still slightly different from the Bonabeau model, for
which the dynamics is given by

F()) = Fy) £ 5)

with the plus sign if the agent i wins and the minus sign
if it loses (a similar equation holds for the opponent). The
probabilities of winning and losing are given by ¢(x) and
q(—x) defined above. Thus, the gain of the contest is a random
variable following a dichotomous distribution as shown in
Fig. 1(b).

The present model shown in Fig. 1(a) can be considered
a coarse-grained version of the Bonabeau model. This is be-
cause a sum of several gains, each following the dichotomous
distribution in Fig. 1(b), should follow a continuous distribu-
tion similar to the one in Fig. 1(a) by virtue of the central limit
theorem [28]. Therefore, our model might well be plausible
for some species for which the same pair of individuals contest
in succession [5].

More precisely, if we assume that the same pair contests 7
times in succession in the Bonabeau model, the noise terms
in Egs. (1) and (2) can be considered as small. In fact, the
mean and the variance of the sum of the dichotomous gains
approximately become

n ~ Tnlg(x) — qg(—x)], (6)
o ~ 4T’ q(x)g(—x). @)

Let us rescale n by replacing it with /T, we obtain
w = nlq(x) — g(=x)], ®)

2

o’ ~ 4%q(x)q(—x). ©)
This is the situation shown in Fig. 1(a). From Egs. (8) and (9),
it is found that if the timescale T is large, then the standard
deviation o can be considered as small compared with the
mean value w. Therefore, in the following, we study the sim-
plest case 02 =0 and neglect the noise terms &;(¢) and &;(¢)
in Eqgs. (1) and (2). Note also that this noiseless model can
be considered a simplification of the Bonabeau model in that
the random dichotomous gains %7 in the Bonabeau model are
replaced by its mean value p given in Eq. (8) [see Fig. 1(b)].

2. Intercontest dynamics

In addition to the dynamics just at the contests, we should
define the intercontest dynamics. We assume that the contests
occur at random times t =ty --- , t,,--- (we set tp = 0 for
convenience). In the Bonabeau model, the agents are assumed
to perform random walks, and the times #, are determined by

T T
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FIG. 2. Left: Two-level hierarchy formation in the agent model
with N = 32. Time evolution of the DS profile F;_ (¢) is displayed as
a function of the rank « and time ¢. Here i, (¢) is the agent index of
which rank is « at time 7. The parameters n and y are set as n =
1073Fy and yn = 1.3p. with p. given by Eq. (19). Right: The initial
and final DS profiles are shown in (a) and (b), respectively.

random encounters of the agents [11]. However, the random-
walk model introduces nontrivial correlations in the sequence
of the intervals 7, :=t, —t,_ 1 (n=1,2,...).

Here, however, we assume that these intervals 7,, are mutu-
ally independent random variables and follow the exponential
distribution:

w(T) = yae 7, (10)

where y, is the interaction rate and its inverse 1/y, is the
mean of r. Thus, the intercontest dynamics is the Poisson
process [28] and simplifies the model dynamics thanks to the
independence of the intervals t,. In the original Bonabeau
model, the contest is considered a diffusion-limited reaction,
while the Poisson process might arise from a reaction-limited
random walk.

Note that y,dt is the mean number of contests in the
time interval d¢. Then the mean number of contests in which
the agent i involves is y,dt x 2/N. Therefore, let us define
y = 2y,/N, which is an interaction rate for a single agent.
In Appendix A, we show that n and y, (or y) completely
characterize the agent model.

Relaxation of the dominance relationship is observed in ex-
periments of animal groups. For example, in Ref. [3], a group
of fish is assembled to form a hierarchy, then each individual
in the group is separated for long time, and, finally, they are
assembled to form a hierarchy again. This second hierarchy
is often different from the first, and thus it is considered that
individual fish forgets the earlier dominance relationship.

Therefore, in the meantime of the contests in our model,
F;(t) is assumed to decay. As a relaxation dynamics, we em-
ploy the following differential equation:

dE()  F®
dr To ’

(1)

Here Ty > 0 is a characteristic timescale of the relaxation, and
it can be removed by rescaling (see Appendix A).

In Figs. 2 and 3, results of numerical simulations for the
agent model are presented. In these simulations, we neglect
the noise terms &;(¢) (i.e., we set 2 = 0). The initial condition
F;(0) is weakly stratified into two and three groups as shown
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FIG. 3. Left: Three-level hierarchy formation in the agent model
with N = 32. Time evolution of the DS profile F; (¢) is displayed as
a function of the rank « and time 7. The parameters 1 and y are set
asn = 1073F, and yn = 1.5p. with p, given by Eq. (19). Right: The
initial and final DS profiles are shown in (a) and (b), respectively.

in Figs. 2(a) and 3(a), respectively. At long times, the DS
profile F;(z) converges to stratified profiles slightly different
from the initial profiles (but there are some fluctuations at
the final states due to stochastic dynamics, i.e., the random
sampling of the contestants, and the random intervals 7). As
shown in Fig. 2(b), the final state is an asymmetric two-level
profile, whereas in Fig. 3(b), the final state is a symmetric
three-level profile. In addition, even if the parameters are the
same, there are several final profiles depending only on the
initial conditions and realizations of the stochastic dynamics.
Therefore, it is conjectured that several stable profiles coexist
at the same parameter values.

B. Mean-field model

To analyze the stable profiles in the agent model, the mean-
field model has been employed in previous works [11]. In
contrast to the agent model, which is a stochastic model, the
mean field model is deterministic and thus described by ordi-
nary differential equations. Here let us apply the mean-field
approximation to the agent model introduced in the previous
subsection.

If 1/y < Ty, then there are many contests between the
agent i and the other agents in the timescale 7p. In addition,
if n < Fp [29], then F;(t) does not change greatly (compared
with Fj) in each contest. Under these assumptions, changes
of Fi(t), denoted as 8F;(t), due to contests in the interval
(t,t+6t)(1/y < &t K Tp) can be approximated as

yot N
n Y fIF(@) — F (O] ~ ysrl% > fIE@ - Fi0)l, (12)
k=1 ji=1

J#FI
where N’ is defined as N’ := N — 1 and J is the index of the
kth contestant of i in the interval ¢.
By incorporating the relaxation term [Eq. (11)], the dy-

namics of F;(¢) can be described by the ordinary differential
equations

dE()  FO _yn s, |
= ~—T0+ﬁ2f[Fz(t)—F;(f)]~ (13)

j=1
JFi

Equation (13) is the same form as the Bonabeau’s mean-field
model [11], in which the function f(x) is given by Eq. (4).
Here, however, we employ the piecewise linear function given
in Eq. (3).

II1. LINEAR STABILITY ANALYSIS
OF MEAN-FIELD MODEL

In this section, we study steady-state solutions of the mean-
field model with T = 1:

dF (1) _ Py

= RO+ Zlf[Fi(t) ~FOlL (14
e
J#i

where p > 0is defined as p = yn. Moreover, f(x) in Eq. (14)
is assumed to be given by Eq. (3) with Fy = 1 [i.e., Eq. (A4)
in Appendix A]. In Appendix A, it is shown that such simpli-
fications do not lead to loss of generality and that p is the only
parameter of the mean-field model. In the figures, however,
we give the units explicitly.

It can be shown that the total DS defined by S(¢) =
Zf’zl F;(t) follows the equation dS/dt = —S§, and thus S(t)
decays to zero as t — oo. Therefore, any stable steady-state
solution F;(r) = F* satisfies vazl Fr=0.

A. Single-level solution (egalitarian solution)

It is easy to see that F;(¢) =0 (i=1,...,N) is a steady
solution of Eq. (14) for any values of p > 0. The Jacobian of
the right-hand side of Eq. (14) at this solution is given by a
circulant matrix

a b b b
b a b b
Sin@=1\: -~ .. .. | (15)
b b a b
b b b a

where a := p/2 — 1 and b := —p/(2N’). For later use, the
Jacobian is denoted as Jjy(a) to indicate that it is a
(matrix-valued) function of a. The eigenvalues of J; y(a) are
given by

A=a+ N —-1)b, a—0>, (16)

=1, —1. (17)

'’
The multiplicity of the first eigenvalue a + (N — 1)bis 1 and
that of the seconda — bis N — 1.

A steady-state solution is linearly stable if all the eigen-
values of the Jacobian are negative [27]. Thus, according to
Eq. (17), the solution F;(t) = 0 is linearly stable if p satisfies

2N’
N

o < =: p, (18)
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where we define the critical value p.. Note that, for the general
case with Fy £ 1 and Ty # 1, this definition becomes

V'R
=N 1

19)

For p > p,, the single-level solution is unstable. This is con-
sistent with the corresponding result in Ref. [11]. Note that
N — 1 eigenvectors associated with the second eigenvalue
A = p/p. — 1 become unstable simultaneously at p = p..

B. Two-level solution

Two-level asymmetric solutions have been studied in pre-
vious works [15,16], but in these studies, asymmetry is
incorporated directly into the model equations. Here, however,
we show that there exist stable asymmetric solutions even
in the symmetric model given by Eq. (14) (asymmetry is
incorporated through the initial condition). Moreover, linearly
stable ranges in terms of p are derived for these asymmetric
solutions.

Let us study steady-state two-level solutions with asymme-

try:

| F" (i<m)
where the constants F*, F! are positive F*, F! > 0 and m =
1, ..., N/2. This parameter m is the number of the upper-level

agents [F;(t) = F"]; m = N/2 corresponds to a symmetric
two-level solution. For m > N/2, asymmetric solutions sim-
ilar to those for m < N/2 exist, because of the symmetry in
Eq. (14) with respect to F;(t) — —F;(t). However, we omit
these cases m > N/2 for brevity of presentation.

The values of F* and F' can be determined by setting the
right-hand side of Eq. (14) zero. Thus, we obtain

N —
P~ FY — F =0
@1

M rF +Fy—F' =0
Py =0.

If F*“ 4+ F! <2, then f(F*+ F') = (F* + F'")/2, and there-
fore we have F* = F! = 0 from Eq. (21). Thus, F* + F! > 2
is necessary for the existence of the two-level solutions. Under
this condition, Eq. (21) can be solved as

N —m ;

Fl= o2 (22)
N _'ON/’

F'=p

Since F* 4+ F! = 2p/p. > 2, the two-level solution exists for
P > Pe-

Linear stability analysis can be carried out in the same
way as the previous subsection. The Jacobian at the two-level
steady-state solutions is given by

_ Jl,m(a) o
hm—[ 0 LW%wﬂ’ @9

where Jj ,,(a) is an m x m matrix of the form of Eq. (15)
but with a = p(m — 1)/(2N’) — 1 [b is the same as that in
Eq. (15)], Jin—m(a’) is an (N —m) x (N — m) matrix with
a =pN—m—1)/2N’) — 1, and O is a zero matrix. By

m
™ . . © 2 =12
16 —_— ~
I e e < of -
1 4 |— : -~ esececcsecscscscsese
Bl — S ol(a) i
12 ﬁ | | |
11 — (a) : 0 10 . 20 ‘30
10 'ﬁ agent index ¢
9 —
8 AN \ \ \
7 I_/ (b) LS 2 [eeecscee m = 8 —
g —7: ~
T = 0k _
4 |—/ E seccccccccecce eoccccccce
) H o p —21(b) .
. - | | |
1 |;7 . p( 0 10 20 30
T 13 B) 7 agent index 1

FIG. 4. Left: Phase diagram (p vs m) of two-level stable solu-
tions. The total number of the agents is N = 32. On the horizontal
solid lines, the two-level solutions are stable. Dashed lines are the-
oretical prediction Eq. (25). Arrows indicate the parameter values
used in the right figures. Right: Examples of asymmetric two-level
solutions obtained by numerical simulations. The density p is set as
p/p. = 1.3. The number of the upper-level agents m is (a) m = 12,
and (b) m = 8. A weakly hierarchical state F;(0), similar to the one
shown in Fig. 2(a), is used as the initial condition, which is sorted as
F;(0) > F;(0) fori < j. Note that this order of Fj(z) does not change
with 7 in the mean-field model [i.e., i, () = «], thus the agent index
i is used as the horizontal axis.

using Eq. (16), it is easy to find the eigenvalues of J, ,, as

m N—m
- 15 1Y
2N’ 2N’

A=-1, p -1, (24)
with multiplicities 2,m — 1, and N —m — 1, respectively.
Therefore, the two-level stable solution with m exists for p
satisfying

P N

l<—< .
Pc N—m

(25)

Thus, at p = p,, the steady-state solution of Eq. (14) changes
abruptly from F;(r) =0 to the above values in Eq. (22).
This discontinuity originates from the fact that f(x) is not
differentiable. Even for p/p. > N/(N — m), the two-level
solutions with m exist, but they are unstable because the third
eigenvalue in Eq. (24) becomes positive.

In Fig. 4, the ranges of p where a stable two-level solution
exists are displayed by horizontal lines. The symmetric solu-
tion (m = N/2) has the widest stable range; the stable range
is shorter for stronger asymmetry (i.e., for smaller values of
m). Asymmetric solutions shown in Figs. 4(a) and 4(b) are
obtained by numerical simulations; these solutions resemble
the result for the agent model shown in Fig. 2(b).

As shown in Fig. 4 (left), the two-level solutions (m =
1,..., N — 1) appear simultaneously at p = p, through bifur-
cations of the pitchfork type (though there is a discontinuity).
This can be easily checked by setting F;(t) = F“(¢) for (i <
m), and Fi(t) = —F!(¢) for (i > m); this form of the trajectory
F;(t) is a solution in an invariant two-dimensional subspace.
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If we define AF(t) = F“(t) + F'(t), it is easy to show that

dAF(t)
dt

2p
=—AF(t)+ p—f(AF(t)). (26)

Examining the functional form of the right-hand side [as
a function of AF(¢)] for p < p. and p > p., it is found
that the bifurcation at p = p, is the superciritical pitchfork
type [27]. Note, however, that this analysis in invariant sub-
spaces is insufficient for a proof of the linear stability. See
Appendix B for a similar argument on three-level solutions,
for which two stable solutions appear also through the super-
ciritical pitchfork bifurcations, but they are unstable in some
directions perpendicular to the invariant subspaces.

C. Three-level solution

There are also many three-level steady-state solutions, and
thus here we focus only on symmetric three-level solutions. In
this subsection, steady-state solutions of the following form
are shown to be stable:

F  (1<i<f-m)
Ft) =140 <% +m). (27)
-F (§+m<i<N)

Here 2m is the number of the middle-level agents, for which
F;(t) = 0; therefore m should satisfy 0 < m < N/2. More-
over, the constant F is assumed to satisfy F > 2 (even if
F < 2, there exist some steady-state solutions, but they are
linearly unstable. See Appendix B). Substituting Eq. (27) into
the right-hand side of Eq. (14), we found that
p  pm

F = p + N (28)
Since we assume F > 2, the steady-state solution [Eq. (28)]
exists for p > 4N’ /(N + 2m).

The Jacobian of these steady-state solutions is given by

Jinp—m(a) 0 0
I’ = 0 Jiom(@) o | @9
o o Ji.n2-m(a)

where Ji y/2—n(a)isan (N/2 — m) x (N/2 — m) matrix of the
form of Eq. (15) with a = p(N' — 1 —2m)/(4N’) — 1, and
Jim(d') is an 2m x 2m matrix with a = p(2m — 1)/(2N’) —
1. By using Eq. (16), we obtain the eigenvalues of J§ >2 as

N —2m | m | (30)
AN PN TR

with multiplicities 3, N — 2m — 2, and 2m — 1, respectively.
Therefore, the three-level stable solution with m [Eq. (27)]
exists for p satisfying

2N 0 2N N
< — < max , — ). 3D
N+2m  p, N —2m 2m

A=—1,

Even for p/p. larger than this upper bound, the three-level
solutions exist, but they are unstable because the second or
the third eigenvalues in Eq. (30) become positive.

In Fig. 5, the ranges of p where the stable three-level
solutions exist are displayed by horizontal lines. The widest
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FIG. 5. Left: Phase diagram (p vs m) of three-level stable solu-
tions. The total number of the agents is N = 32. On the horizontal
solid lines, the three-level solutions are stable. Dashed lines are
theoretical prediction Eq. (31). Arrows indicate the parameter values
used in the right figures. Right: Examples of three-level solutions ob-
tained by numerical simulations. The density p is setas p/p. = 1.5.
Half the number of the middle-level agents m is (a) m = 10, and
(b) m = 6. Weakly hierarchical states, similar to the one shown in
Fig. 3(a), are used as initial conditions.

stable range is at m = N/6, at which the three levels have the
equal numbers of agents (the example shown in the figure is
for N = 32, and thus N/6 is not an integer. If N is a multiple
of 3, then there is a steady-state solution for which each level
has N/3 agents). In Figs. 5(a) and 5(b), solutions obtained by
numerical simulations are displayed. These solutions resem-
ble the result for the agent model shown in Fig. 3(b).

D. N-level solution (linear hierarchy)

Linear hierarchies are frequently observed in animal soci-
eties. In a linear hierarchy, if an individual A dominates B
and B dominates C, then A dominates C [3] (i.e., a transitive
relationship). At high values of p, there exists a steady-state
N-level solution, in which each agent has a different values of
F;(t). This completely stratified solution is reminiscent of the
linear hierarchy.

Here, let us assume the following solution:

2F )
F}(I)EF—V(l—l), (i=1,...,N), (32)
where F' is a constant to be determined, and we also assume

F > N’.In order that the above F;(¢) is a steady-state solution,
ie., dF;(t)/dt = 01in Eq. (14), F should satisfy

F =p. (33)

In the derivation, we used the assumption F > N’ as F;(t) —
Fi(t)=2F(j —i)/N' > 2F /N’ > 2, where i < j. From F >
N’ and Eq. (33), p should also satisfy p > N’, or
N
L (34)
P 2
Thus, the N-level solution exists only at large p.
The stability of the N-level solution is easy to prove. The
Jacobian of this steady-state solution is simply given by Jy =

032213-6



PIECEWISE LINEAR MODEL OF SELF-ORGANIZED ...

PHYSICAL REVIEW E 102, 032213 (2020)

T
2
=14 7 Wm (a)
=12 3 1o
~ 1. [
: 0 b
=] [ 1] _2F 7
Los gy || ] el Ay i)
g b_ol S = ot |
| | | | ~
< 0.61 0 10 20 307 LJ,Q,W " |
- rank «
Z04F 2F i T )
E
So02l of i
5]
0 L —2F L L
0 0.02 0.04 0.06 0 20000 40000
n/Fo time t/Tp

FIG. 6. Left: Standard deviation o(p/n,n) vs n in the agent
model with N = 32. The value of p is fixed as p = 1.5p., for
which the egalitarian solution F;(¢) = 0 is unstable in the mean-field
approximation. Arrows indicate the parameter values used in the
right figures. The time average in Eq. (37) is taken over a time
interval during which 10° contests occur. The inset is a snapshot of
F,, (t) vs rank o for n = 0.02F, (circle), n = 0.03F; (triangle), and
n = 0.04F, (square). Right: Typical trajectories of F;(¢) for (a) n =
0.02F, (b) n = 0.03F, and (c) n = 0.04F. In (a), two trajectories
are displayed, whereas a single trajectory is displayed in (b) and (c).

—I, where [ is the N x N identity matrix. Therefore, the N-
level solution [Eq. (32)] is stable.

IV. ERGODICITY IN AGENT MODEL

As shown in Figs. 2 and 3, the agent model behaves simi-
larly to the mean-field model for 1/y <« Tp and n < Fy. But
if these conditions are not fulfilled, then the agent model
behaves differently from the mean-field model. In this section,
the dependence of the agent model on these parameters y and
n is numerically studied.

As a quantity characterizing the dynamics of the agent
model, we use the standard deviation o (y, n) of the time-
averaged DS, F,, defined as

1 &
ply,m = ;F (35)

N

1 —
Xy, = 5 Y IF =ty . (36)

i=1

The time-averaged DS, F,, is defined as

— 17
F;:= Ffo Fi(t)dt, 37

where the dynamics of F;(¢) is given by Eq. (1) with the
parameters n and y. Thus, the standard deviation o (y, 1) also
depends on these parameters.

If the system is ergodic, then a time average tends to a
single value, which is equal to the ensemble average, in a long-
time limit (7 — o0). In the agent model [Egs. (1) and (2)], all
the agents are equivalent, and therefore the limiting value is
the same for all the agents, and thus it follows that o (y, 1)
vanishes at T — oo. Accordingly, o(y, 1) can be used as a
parameter of ergodicity breaking [30,31]. In Fig. 6, we set yn

is constant (i.e., p = y7 is constant) to fix the corresponding
mean-field model [see Eq. (13)], and numerically obtain the
variance o%(p/n, 1) as a function of 7.

As shown in Fig. 6 (left), the standard deviation o (p/n, 1)
is far away from zero for small values of 7. In fact, the agents
are separated into two groups as shown in the inset of Fig. 6
(left); these two groups correspond to the two-level solution in
the mean-field model with m = N/2 [Eq. (20)]. For small n,
the members of these two groups rarely change in the course
of time evolution, as shown in Fig. 6(a), where two typical
trajectories F;(¢) are displayed.

For large values of 7, the agents are still separated into two
groups again [see the inset of Fig. 6 (left)], but the agents
frequently move from one group to the other as shown in
Figs. 6(b) and 6(c). Accordingly, all the time averages F;
(i=1,...,N) tend to zero as T increases, and therefore
the standard deviation o (p/n, n) also vanishes as shown in
Fig. 6 (left). The transitions of the agents from one group to
the other occur, because the impact of each contest becomes
significant for large n [though a time average of this effect,
given by yn, is the same in all the numerical simulations in
Figs. 6(a)-6(c)]. It should be also noted that, even though
the time average F; vanishes at large 7, a hierarchy exists in
snapshots F;(¢) as shown in the inset of Fig. 6 (left), where the
agents are separated into two groups, and thus the system is
not egalitarian.

At small n, the ergodicity seems to be violated as shown
in Fig. 6(a). However, it is probable that it just takes too long
time to observe transitions of the agents from one group to
the other, and thus the ergodicity might not be violated. This
is because a sequence of contests at large n which causes a
transition of an agent can be possible, in principle, to occur
even at small n (though the probability of occurrence of such
sequence of contests is quite small). Therefore, the observed
violation of the ergodicity might well be just apparent.

V. DISCUSSION

Since the appearance of the seminal paper [11], the
Bonabeau model has been employed to explain experimen-
tal data of animal hierarchy formations, and many modified
versions have been proposed [13,14,17-19]. But understand-
ing of the original Bonabeau model has not been far from
satisfactory due to difficulty in treating its nonlinearity. In
this paper, a piecewise linear version of the Bonabeau model
was introduced. By using the mean-field approximation, it
was shown that there are many asymmetric solutions and that
coexistence of the stable solutions takes place. In addition, an
apparent transition in ergodic behaviors is found in the agent
model.

Our model assumed that encounters of the agents are com-
pletely random. Namely, at each contest time #,, the agents
i and j are randomly chosen from the N agents. But, it is
known that if the agents i and j contest, then these agents
i and j are more likely to contest in the next contest event
than other agents [5]. Remarkably, it is also shown in Ref. [5]
that the persistent time during which the same individuals
successively contest follows a power-law distribution. Such a
non-Markovian memory effect can be easily implemented in
the agent model, by introducing a persistent-time distribution
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[31,32],

wy(T) =

Tra (t — 00), (38)
where a and « are positive constants. We choose a sequences
of persistent times %, T2, - - -, each following w,(%), and de-
fine renewal times as 7, :== Y ;_, %, at which the contestants
change. In each interval [f,_1, 7,], the same agents i and j
contest. This generalized model should be studied in future
works.

The linear hierarchy, frequently observed in animal so-
cieties, is characterized by the transitive relationship (see
Sec. IIID); however, intransitive relationships are also ob-
served by suppressing group processes [3]. Such intransitive
relationships cannot be described by the Bonabeau model, be-
cause it is always transitive from its definition; i.e., if F;(t) >
Fj(t) and Fj(t) > F(t), then Fi(t) > Fi(¢). To describe the
intransitive relationships, it is necessary to introduce an an-
tisymmetric matrix F;;(f) which describes the dominance
relationship between i and j. In the Bonabeau model, F;;(r)
could be defined by Fj;(¢) := F;(t) — Fj(¢), but the matrix
F;j(t) cannot be described by a single vector in general.

Therefore, future work is needed to develop a generalized
model for F;;(¢), and to elucidate how the transitive rela-
tionship [i.e., if F;;j(t) > 0 and Fj(t) > 0, then Fy(t) > 0]
emerges (or self-organizes). In such a generalized model, a
bystander effect should be incorporated, in addition to the
winner-loser effects [3,4]. The bystander effect is a mech-
anism that an individual who witnesses a contest between
other individuals is influenced by the result of that contest; the
witness might learn its status vicariously by observing con-
tests between other individuals [4]. Without such a bystander
effect, intransitive relationships should be frequently observed
[3].

Finally, we neglect the noise terms in Egs. (1) and (2) in
this paper, and thus contest dynamics is purely deterministic
except the random choice of two contestants. In real societies,
however, contestants have some random factors such as their
physical conditions. Therefore, the noise terms might be im-
portant and should be studied in future works.

APPENDIX A: RESCALING

In this Appendix, the agent model and the mean-field
model are transformed into simpler forms by introducing
rescaled variables. Let us define the rescaled (nondimen-
sional) variables as

P /1)

=R
Then, Eqgs. (1) and (2) can be rewritten as (we omit the noise
terms)

(AL)

Fi(@)) = FG) +aflRG) - FE)L (A2
Fi@)) = Fi@,) + nflF;@,) — FE@)), (A3)
where 7 and f(x) are defined respectively as i = n/F, and
-1 (x<-=2)
fy=13 (=2<x<2). (A4)
1 x>2)

The exponential distribution of the intervals 7 [Eq. (10)] is
also rescaled as

W(T) = Jae ", (A5)
where y, = y,Tp. The relaxation dynamics [Eq. (11)] is sim-
ply given by

dF(t) _

—— = —F(7). A6

r () (A6)

Therefore, the two parameters 7 and j, completely character-
ize the agent model.

Similarly, by using the transformations in Eq. (Al), the
mean-field model in Eq. (13) becomes

dED) _ P N~ rep - F i B
Et)zﬁzf[ (7)) — F;(D)] — E@). (A7)

~

where p is defined as p = pTy/Fy. Thus, p is the only pa-
rameter of the mean-field model. Note that, even if p is
constant, corresponding parameter values in the agent model
(77 and j,) are not uniquely determined, because p = y7 with

Y = 2¥a/N.

APPENDIX B: UNSTABLE THREE-LEVEL SOLUTION

In Sec. IIIC, we study stable three-level solutions
[Eq. (27)], but there also exist unstable three-level solutions.
In this Appendix, we show that the three-level unstable so-
lutions emerge simultaneously at p = p., and these unstable
solutions become stable at some values of p > p..

First, it is easy to show that a steady-state three-level so-
lution of the form of Eq. (27) does not exist for 0 < F < 1,
and we already study the three-level solutions for F > 2 in
Sec. III C. Thus, here we assume 1 < FF < 2. Forl < F < 2,
the three-level solution is given by

p N—2m
=2 (B1)
2N —pm
withm =0, ..., N/2 — 1 (m = 0 corresponds to the symmet-

ric two-level solution). Accordingly, the range of p satisfying
1 < F < 2is given by
0 2N

1< —«< .
pe N+2m

(B2)

Note that the upper bound is equivalent to the lower bound of
the stable three-level solution [Eq. (31)]. In fact, the stability
of the three-level solutions for each value of m changes at
p/pc = 2N/(N + 2m) as shown below. The bifurcation at this
point might be subcritical-pitchfork type (however, we should
note that details of this bifurcation remain still unclear).
Next, the stability of the three-level solutions [Eq. (B1)] is
elucidated. In this case, the Jacobian matrix is given by

Ji.nj2—-m(@) B 0
It = B Ji2m(@) B , (B3)
18] B Jinj2—m(a)

where Ji nj—p is an (N/2 —m) x (N/2 —m) matrix of
the form of Eq. (15) with a = p(N' +2m — 1)/(4N’) — 1,
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FIG. 7. Dominance score F for two-level and three-level sym-
metric solutions as functions of p. The number of agents are set as
N = 32. The numbers in the figure are the corresponding values of
m. The dashed curves are unstable solutions given by Eq. (B1), and
the solid curves are stable two-level and three-level solutions given
by Eq. (22) with m = N/2 and Eq. (28), respectively. Beyond these
stable ranges, all the solutions with m still exist, but they are unstable
(see Secs. III B and III C). These unstable ranges are not shown for
brevity.

Jiom(@') is a 2m x 2m matrix with @’ = p/2 — 1, and B is
an (N/2 — m) x 2m matrix, all the elements of which are the
same and given by —p/(2N"). B' is the transpose of B.

After a somewhat lengthy but elementary calculation, we
obtain four eigenvalues of the Jacobian in Eq. (B3). Two of
the four eigenvalues are given by

N+2
A:ﬁ—l, pﬂ_l’
Pe 4N’

(B4)
with multiplicities 2m and N — 2(m + 1), respectively. The
first eigenvalue in Eq. (B4) is positive because of Eq. (B2).
Therefore, the three-level solutions in Eq. (B1) are unstable.
Note however that the first eigenvalue does not exist for m = 0
(i.e., for the two-level symmetric solution), because the multi-
plicity becomes zero, and therefore it is not contradicting with
the fact that the two-level solution is stable (see Sec. III B).
Note also that the second eigenvalue is negative, and it does
not exist, if m = N/2 — 1. The remaining two eigenvalues are
given by

m
h==l =L

(B5)
These eigenvalues are simple and negative.

A phase diagram of the symmetric two- and three-level
solutions are displayed in Fig. 7. These steady-state solutions
emerge at p = p,, but only two-level solution is stable, and all
the three-level solutions are unstable. For F' > 2, however, the
two-level solution becomes unstable (see Sec. III B), whereas
the three-level solutions, which are given by Eq. (28), become
stable.

Finally, let us consider how these solutions emerge. To
elucidate this, we study one-dimensional invariant subspaces

T T
p/pe =0.4

dF(t)/dt

£(t)

FIG. 8. dF(t)/dt in Eq. (B7) vs F(¢) for four different values of
p: p/p. = 0.4 (solid line), 0.8 (dotted line), 1.2 (dashed line), and 1.6
(long-dashed line). N and m are set as N = 32 and m = 6. For p <
pe, dF (t)/dt is monotonically decreasing, and thus the origin F (r) =
0 is the stable fixed point. For p > p., however, the origin is unstable,
and two stable fixed points, that correspond to Eq. (B1), appear. Note
that these stable fixed points are stable only in the invariant subspace,
and unstable in some directions perpendicular to this subspace.

described by the following solution

Fi)y (1<i<y—-m)

F(t)= 10 (5-m<i<5+m), (B6)
—F(@t) (54+m<i<N)

wherem =0, 1,...,N/2 — 1, and F (¢) can be either positive

or negative. The time evolution equation for F (¢) is obtained
by inserting Eq. (B6) into Eq. (14) as

dF (t) P N —2m
= —F(t) + ]7[2mf(F(t)) + Tf(ZF(t))}

(&2 =1)F@) [0<F@)<1]
=1 (o —DFO+pg" 1 <F@) <2,
—F (1) + pi2m 2 <F@®)]

(B7)

where the equation only for F'(t) > 0 is explicitly given; the
explicit expression for F'(1) < 0 is readily obtained from the
fact that f(x) given in Eq. (A4) is an odd function. Note also
that the slope pm/N’ — 1 in Eq. (B7), which is negative for
p > p., corresponds to the second eigenvalue in Eq. (BS).

From the first equation in the right-hand side of Eq. (B7),
the single-level solution F(¢) =0 is stable for p < p. and
unstable for p > p.. The two-level (m = 0) and three-level
(m > 0) solutions emerge at p = p, simultaneously, and they
are stable because of pm/N’ — 1 < 0 for p > p.. Due to the
symmetry, —F (¢) is also a solution in the invariant subspaces,
and thus there are two stable fixed points in each invariant
subspace with m.

This bifurcation is readily understood by a phase diagram
[27] shown in Fig. 8, in which dF (t)/dt in Eq. (B7) is dis-
played as a function of F (¢). It is clear that the bifurcation at
p = p. can be considered as a superciritical pitchfork type.
Although the bifurcations are pitchfork type and thus the two
emerged fixed points are stable, these fixed points except the
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two-level solutions (m = 0) are stable only in the invariant
subspaces; in fact, they are unstable in some directions per-

pendicular to the subspaces, because the first eigenvalue in
Eq. (B4) is positive.
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