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The quantum localization is one of the remarkable phenomena in the studies of quantum chaos and plays an
important role in various contexts. Thus, an understanding of the properties of quantum localization is essential.
In spite of much effort dedicated to investigating the manifestations of localization in the time-dependent
systems, the features of localization in time-independent systems are still less explored, particularly in quantum
systems which correspond to the classical systems with smooth Hamiltonian. In this work, we present such a
study for a quantum many-body system, namely, the Dicke model. The classical counterpart of the Dicke model
is given by a smooth Hamiltonian with two degrees of freedom. We examine the signatures of localization in its
chaotic eigenstates. We show that the entropy localization measure, which is defined in terms of the information
entropy of Husimi distribution, behaves linearly with the participation number, a measure of the degree of
localization of a quantum state. We further demonstrate that the localization measure probability distribution
is well described by the β distribution. We also find that the averaged localization measure is linearly related
to the level repulsion exponent, a widely used quantity to characterize the localization in chaotic eigenstates.
Our findings extend the previous results in billiards to the quantum many-body system with classical counterpart
described by a smooth Hamiltonian, and they indicate that the properties of localized chaotic eigenstates are
universal.
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I. INTRODUCTION

Quantum chaos studies the features of quantum systems
with a classical chaotic counterpart. Several remarkable fea-
tures of chaos in a wide variety of quantum systems have been
revealed, including the level statistics of energy spectra [1–6],
hypersensitivity to perturbation [7–9], and the exponential
increase of the out-of-time-order correlator [10,11]. As an
important concept in quantum physics, quantum chaos is a
very active research field during the last and present century.
In particular, in the past few decades, both the experimental
and theoretical progresses (see Ref. [12] for review) in the
study of quantum many-body systems have triggered a great
deal of efforts upon understanding chaos in quantum open
systems [13–16] and quantum many-body systems [17–20], as
well as its impacts on the non-equilibrium processes, such as
quantum thermalization and equilibration (see, for example,
the reviews [21,22]).

One of the major progresses in the studies of quan-
tum chaos is the discovery of the quantum localization (or
dynamical localization) in the dynamics of systems with
time-periodic perturbations [23–26]. This effect is a quan-
tum suppression of classical chaotic diffusion due to the
destruction of quantum interference, and closely related to the
well-known Anderson localization in one-dimensional dis-
ordered systems [27]. It was first unveiled in the quantum
kicked-rotator [26,28], and later studied in many other sys-
tems [29–31], particularly in quantum many-body systems in
recent years [32–34].

At the same time, investigating the characterization of
quantum localization in conservative systems has also at-
tracted some attention [35–37]. Based on the Wigner band
random matrix model [38], the features of quantum local-
ization in conservative systems have been studied through
the global structure of eigenstates and an explicit connec-
tion between localization and level repulsion exponent was
established [36]. However, as details of real quantum systems
cannot be captured by the standard random matrix theory, the
features of quantum localization in time-independent systems,
therefore, still require more explorations. It is worth pointing
out that the quantum localization of the conservative systems
is related to the dynamical localization in the kicked-rotator
and therefore to the Anderson localization, but is nevertheless
quite different [26,28,37].

Recently, an analysis of quantum localizations in different
billiards by means of Husimi function has been done in several
works [39–44]. One remarkable property of quantum localiza-
tion that has been revealed in these studies is the probability
distribution of the localization measure has a universal form,
which is in good agreement with the so called β distribution.
Furthermore, it has been found that the level repulsion expo-
nent shows a linear dependence on the averaged localization
measure. In the present work, we continue and extend these
works to a quantum many-body system. In contrast to bil-
liards, the classical counterpart of the system studied in this
work is given by a smooth Hamiltonian with two degrees of
freedom. Specifically, we explore the properties of quantum
localization in the Dicke model.
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Dicke model describes the interaction between a set of
identical two-level atoms and a single electromagnetic mode
within a cavity [45]. As a prototypical spin-boson model, the
Dicke model has been widely employed in different contexts,
such as quantum phase transitions [46–51], nonequlibrium
dynamics [52–54], thermalization [55,56], the scrambling
process [57,58], quantum batteries [59], and quantum chaos
[60–65]. The recent experimental realizations of the Dicke
model in ultracold atoms [66–68] and ion traps [69] have
renewed further interest in studying the Dicke model.

In this work, we present a detailed investigation of the
localization of chaotic eigenstates of the model. Following the
method outlined in Refs. [43,44], we will consider the statis-
tical properties of the entropy localization measure defined
in terms of the information entropy of Husimi distribution
for chaotic eigenstates. We show that the localization mea-
sure and the normalized participation number are linearly
related and, therefore, equivalent. Moreover, we also find that
the localization measure probability distribution can be well
described by the so called β distribution, as in the results
observed in billiards. As shown in the different billiards, the
dependence between the level repulsion exponent and the
averaged localization measure in our study is still given by
a linear function. Therefore, we believe that all statistical
properties of the localized chaotic eigenstates revealed in
our work are universal, independent of the specific studied
system.

The rest of the article is organized as follows. In Sec. II, we
introduce the Dicke model together with its classical coun-
terpart and discuss the known transition from integrability
to chaos using the level statistics and Poincaré sections in
quantum and classical cases, respectively. We also identify the
parameter and energy regimes considered in this work via the
chaotic fraction in this section. In Sec. III we show how to
calculate the Husimi function of individual eigenstates, ana-
lyze the localization condition in chaotic eigenstates, explain
how to separate the regular and chaotic eigenstates, define
the entropy localization measure, and demonstrate that it is

equivalent to the participation number. We then provide the
detailed numerical studies of the distribution of localization
measures in different parameter regimes and discuss the con-
nection between the level repulsion exponent and the averaged
localization measure in Sec. IV. Finally, we summarize our re-
sults and give an outlook on the future perspectives in Sec. V.

II. DICKE MODEL AND ITS CLASSICAL LIMIT

A. Dicke model

In this work, we consider the Dicke model [45], which
describes an ensemble of N two-level atoms with level spacing
ω0 coupled with a single cavity mode with frequency ω and
has been studied in many different fields of physics. By set-
ting h̄ = 1 (throughout this work), the Hamiltonian of Dicke
model reads

H = ωa†a + ω0Jz + 2κ√
N

Jx(a† + a), (1)

where a† (a) is the bosonic creation (annihilation) operator,
κ is the atom-field coupling strength, and Jx, Jy, Jz are the
collective pseudospin operators and satisfy the SU(2) algebra.

The Hamiltonian in Eq. (1) commutes with the total spin
operator [H, J2] = 0 with J2 = J2

x + J2
y + J2

z . Therefore, one
can divide the Hamiltonian matrix into totally independent
diagonal blocks in J2. In our study, we restrict ourselves to
the maximum spin sector j = N/2, which includes the ground
state. Moreover, as the parity operator � = eiπ (a†a+Jz+ j) also
commutes with H , the Hamiltonian matrix can be further
separated into even- and odd-parity blocks. In the following,
only the even-parity spectrum of the model will be considered.

We consider the basis set {|n; j, mz〉 = |n〉 ⊗ | j, mz〉} of the
Hilbert space. Here, |n〉 with n = 0, 1, . . . ,∞ being the eigen-
states of bosonic mode, while | j, mz〉 with mz = − j, . . . , j are
the so-called Dicke states of atomic sector. Then, the elements
of the Hamiltonian matrix in this basis are given by

〈n′; j, m′
z|H |n; j, mz〉 = (nω + mzω0)δn′,nδm′

z,mz + κ√
N

[
√

nδn′,n−1 + √
n + 1δn′,n+1]

× [
√

j( j + 1) − mz(mz − 1)δm′
z,mz−1 +

√
j( j + 1) − mz(mz + 1)δm′

z,mz+1]. (2)

Note that the system has infinite number of bosons, the di-
mension of the Hamiltonian matrix is therefore infinite. To
numerically diagonalize its Hamiltonian, we must truncate
the bosonic Hilbert space at a larger but finite dimension
Nc, which guarantees the convergence of the solution. In
our study, the bosonic basis was truncated at Nc = 320, the
stability of the obtained results against the variation of Nc has
been carefully checked.

It is well known that the Dicke model shows very rich
interesting features, such as the transition from the normal
phase to superradiant phase in both thermal and quantum
cases [46,47], and the excited-state quantum phase tran-
sitions in its energy spectra [48–52]. In particular, it has
been found that for finite but sufficiently large N the Dicke

model exhibits a crossover from integrability to quantum
chaos as the coupling strength passes through the criti-
cal value κc = √

ω0ω/2, where the dramatic changes in
the nearest-neighbor-level spacing distribution P(s) occur,
where s denotes the level spacing between two consecu-
tive unfolded energy levels [46,47,57]. Specifically, when
κ < κc, P(s) is approximately given by the Poisson dis-
tribution, i.e., P(s) = e−s. For κ > κc, however, the level
repulsion in the energy spectrum leads to P(s) following
the Wigner-Dyson distribution, P(s) = (π/2)s exp(−πs2/4).
The behaviors of P(s) for different values of κ are shown
in panels (a)-(d) of Fig. 1. Clearly, P(s) exhibits a transition
from Poisson distribution to Wigner-Dyson distribution as κ

increases.
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FIG. 1. (a–d) Distribution of neighbor-level spacing P(s) in
Dicke model for several control parameters κ with N = 60. The red
dotted-dashed and blue solid curves in each panel show the Wigner-
Dyson and Poisson distributions. (e) Averaged 〈r̃〉 as a function of
κ for different system sizes. The two dashed lines denote 〈r̃〉W =
4 − 2

√
3 ≈ 0.536 (upper) and 〈r̃〉P = 2 ln 2 − 1 ≈ 0.386 (bottom),

respectively. The other parmeters are: ω = ω0 = 1. All quantities are
dimensionless.

To further illustrate the transition from regularity to chaos
in Dicke model, we consider the ratio of consecutive level
spacing r̃ defined as [70]

r̃n = min

(
δn,

1

δn

)
, (3)

where δn = sn/sn−1 with sn = En − En−1 is the nearest-
neighbor spacing for a set of energy levels {En}N

n=1 in
ascending order. Because the distribution of r̃ is independent
of the local density of states, it has attracted lots of attention
in recent years in the studies of quantum many-body chaos
[71–76]. In particular, the average of r̃n over energy levels,
denoted by 〈r̃〉, has been used as a useful discriminator for
different statistics of the energy-level-spacing distributions.
It is known that 〈r̃〉P = 2 ln 2 − 1 ≈ 0.386 for the Poisson-
level spacing, while 〈r̃〉W = 4 − 2

√
3 ≈ 0.536 for Gaussian

orthogonal ensemble (GOE) [70,71].
Figure 1(e) plots 〈r̃〉 as a function of κ for several system

sizes. We can see that 〈r̃〉 shows a transition from close to
Poisson value 〈r̃〉P to the finally GOE value 〈r̃〉W with an
increase in κ . We can further identify that the departures
from the Poisson and GOE values of 〈r̃〉 at small and greater
κ are only the finite size effect. By increasing the system
size, we observe that 〈r̃〉 tends to the expected Poisson and
GOE values at low and high values of κ , respectively. The
value of 〈r̃〉 changing from Poisson value to GOE value is
in agreement with the behaviors of the nearest-level spacing
distribution P(s) [cf. Fig. 1(a)–1(d)]. We finally notice that
the abrupt change in 〈r̃〉 is approximately located in the region
κ ∈ [0.3, 0.6], which includes the critical value κc = 0.5.

B. Classical limit of the Dicke model

The classical counterpart of Eq. (1) can be obtained by
using the normalized coherent states representation for the
bosonic and pseudospin sectors, respectively [60]. The def-
inition of the bosonic and pseudospin coherent states are

given by [77]

|α〉 = e−αα∗/2eαa† |0〉,
|μ〉 = (1 + μμ∗)− jeμJ+| j,− j〉. (4)

Here, α,μ ∈ C, |0〉 is the bosonic field vacuum state, and
| j,− j〉 being the ground state of the atoms. By employing
the relations

〈α|a|α〉 = α, 〈α|a†|α〉 = α∗,

〈μ|Jz|μ〉 = − j

(
1 − |μ|2
1 + |μ|2

)
,

〈μ|Jx|μ〉 = j

(
μ + μ∗

1 + |μ|2
)

, (5)

one can find the expectation value of Hamiltonian Eq. (1) in
the coherent state, given as

H(α,μ) = ω|α|2 − ω0 j

(
1 − |μ|2
1 + |μ|2

)

+ κ
√

2 j

1 + |μ|2 (μ + μ∗)(α + α∗). (6)

To express H in terms of the classical canonical vari-
ables, as was done in Refs. [60,61], we transform the original
coherent parameters (μ∗, μ) and (α∗, α) to the canonical
coordinates (q1, p1) and (q2, p2) according to the following
transformation:

μ = p1 + iq1√
1 − (p2

1 + q2
1 )

, α =
√

4 j

2
(p2 + iq2). (7)

Here, (q1, p1) are the canonical variables in the atomic sector
and related to the angular momentum Jx, Jy by q1/p1 = Jy/Jx,
while (q2, p2) are the usual coordinates in the classical phase
space of the field sector. Substituting Eq. (7) into Eq. (6), after
some algebra, one can find the rescaled classical Hamiltonian
in the following form [60,61]:

Hcl(q1, p1, q2, p2) = H
4 j

= ω0

2
(p2

1 + q2
1 ) + ω

2

(
p2

2 + q2
2

)
+ 2κ p1 p2

√
1 − (

p2
1 + q2

1

) − ω0

4
. (8)

The classical equations of motion are, therefore, given by

q̇1 = ω0 p1 + 2κ p2

√
1 − (

p2
1 + q2

1

) − 2κ p2 p2
1√

1 − (
p2

1 + q2
1

) ,

ṗ1 = −ω0q1 + 2κ p1 p2q1√
1 − (

p2
1 + q2

1

) ,

q̇2 = ωp2 + 2κ p1

√
1 − (

p2
1 + q2

1

)
, ṗ2 = −ωq2. (9)

The above discussed quantum chaotic behavior is as-
sociated with the classical chaos in Eq. (9). To visualize
the classical regular and chaotic behavior as a function of
the coupling parameter in the classical system, we investigate
the dynamics of the classical system as a function of the
coupling parameter κ , employing the Poincaré sections, to
get a qualitative insight of the crossover between regularity
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FIG. 2. Classical Poincaré section for (a) κ = 0.1, (b) κ = 0.4,
(c) κ = 0.46, (d) κ = 0.5, (e) κ = 0.54, and (f) κ = 0.7, with fixed
rescaled energy ε = E/ j = 0.8 and ω = ω0 = 1. All quantities are
dimensionless.

and chaos. In our study, for a fixed energy E , the Poincaré
section is defined by the intersection of the classical trajec-
tories with the surface q2 = 0, with p2 being fixed by the
energy conservation for a given rescaled energy ε = E/ j,
Hcl(q1, p1, q2 = 0, p2) = ε/4, which results in two values of
p2:

p±
2 = −2κ

ω
p1

√
1 − p2

1 − q2
1

±
√

4κ2

ω2
p2

1

(
1 − p2

1 − q2
1

) +
[ω0 + ε

2ω
− ω0

ω

(
p2

1 + q2
1

)]
.

Moreover, only the traversals with p2 > 0 are recorded.
Poincaré sections for several values of κ with ω0 = ω = 1 and
ε = 0.8, are shown in Fig. 2.

We observe that at small κ [Fig. 2(a)], the Poincaré section
consists of the regular orbits. Increasing the value of κ , a
number of chaotic orbits emerge and the Poincaré sections
exhibit the mixed feature with the regular regions coexisting
with the chaotic regions [see Figs. 2(b)–2(e)]. When the value
of κ is further increased, the whole phase space is covered by
the chaotic orbits, as is evident from Fig. 2(f).

C. Chaotic fraction in classical phase space

To quantify the mixed structure of Poincaré sections ex-
emplified in Fig. 2, we divide the whole phase space into the
regular parts which are occupied by the regular trajectories,
and the chaotic parts which are filled with chaotic trajectories.
Then, for the phase space with fixed energy E , we define the
chaotic fraction fc as [39]

fc = 
c


t
=

∫
dqdpχcδ[H (q, p) − E ]∫
dqdpδ[H (q, p) − E ]

. (10)

Here, 
t is the volume of the energy surface H (q, p) = E in
the entire phase space, 
c is the volume of the chaotic compo-
nents, and χc denotes the characteristic function with χc = 1
for chaotic components and χc = 0 for other components. The

FIG. 3. Chaotic fraction fc of the classical phase space as a func-
tion of κ with ω = ω0 = 1 for different rescaled energies ε = E/ j.
All quantities are dimensionless.

chaotic fraction fc measures the overall degree of chaos and,
therefore, takes values between 0 for fully regular dynamics
and 1 when the system is dominated by the completely chaotic
dynamics.

By employing the method outlined in Ref. [39], we have
numerically investigated the chaotic fraction fc as a function
of κ with ε is fixed. The dependence of the chaotic fraction fc

on the coupling strength κ is shown in Fig. 3 for two values of
the rescaled energy in resonant ω = ω0 = 1 case. The chaotic
fraction fc exhibits a similar behavior as a function of κ for
different energies. Namely, for small κ the regularity (almost
integrability) of the system implies that the chaotic fraction
is zero and keeps zero value up to a certain coupling strength
κu, from which it increases with κ , approaching the saturation
value fc = 1 at κ ∼ 0.6. A remarkable feature in Fig. 3 is
that fc shows a strongly energy-dependent property when
0 < fc < 1. This means that the degree of chaos in Dicke
model also depends on the energy of the system. Indeed,
as shown in Refs. [57,62–65], the chaotic degree of Dicke
model depends not only on the coupling parameter κ but also
on the energy of the system, unlike the billiard systems where
the chaotic fraction fc is independent of the energy. Note that
the behavior of fc is in agreement with the behavior of the
Poincaré sections shown in Fig. 2.

The chaotic fraction fc as a function of κ and energy ε =
E/ j is plotted in Fig. 4(a). A very complex nonmonotonous
behavior of fc can be clearly observed. The system is regular
for small κ and ε, while the regularity of the system is de-
creased with increasing κ and/or ε. To study the localization
properties of energy eigenstates, we will focus on the energy
region with fc fixed at f s

c that fulfill 0 < f s
c < 1 for several

values of control parameter κ . The horizontal and vertical
cuts in Fig. 4(a) with different ε and κ , respectively, are
plotted in Figs. 4(b) and 4(c). We find that the chaotic fraction
fc is fixed at f s

c = 0.965 ± 0.003 for κ ∈ (0.44, 0.53) and
ε ∈ (0.44, 0.95) [see the gray regions in Figs. 4(b) and 4(c)].
In the following of our study, we will reveal the localization
properties of the chaotic eigenstates with energy located in the
above mentioned regions with the control parameter κ varying
between 0.44 and 0.53.
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(a)

FIG. 4. (a) Heat map plotting the chaotic fraction fc of the clas-
sical phase space as a function of κ and ε = E/ j. (b) fc as a function
of κ for different energies ε = E/ j The gray region corresponds
to the control parameters satisfy κ ∈ (0.43, 0.53). (c) fc as a func-
tion of ε = E/ j for several values of κ . The gray region denotes
ε ∈ (0.44, 0.95). The other parameters are: ω = ω0 = 1. The axes in
all figures are dimensionless.

III. HUSIMI FUNCTION AND THE LOCALIZATION OF
CHAOTIC EIGENSTATES

While the above utilized quantities, i.e., P(s) and 〈r̃〉, are
useful to explore the quantum chaos, they can only be used
for energy intervals. In the present work, we aim to iden-
tify the localization features in individual energy eigenstates,
by employing the Husimi function which allows us to mea-
sure the degree of chaos for each energy eigenstate. We will
use the Husimi functions to reveal the localization properties
of the eigenstates that exhibit classically chaotic dynamics. It
is worth pointing out that studying the quasiprobability dis-
tribution of the quantum eigenstates in classical phase space
allows us to get more insights into the properties of the eigen-
states and the relations between the quantum system and its
classical correspondent [78].

A. Husimi function

As one of the simplest quasiprobability distributions in the
phase space, the Husimi function provides a powerful tool to
study the quantum-classical correspondence in quantum sys-
tems. The Husimi function can be considered as the Gaussian
smoothed Wigner function [79] and defined as the projection
of the wave function onto the minimal uncertainty (coherent)
state [80]. For the kth energy eigenstate |Ek〉 of the Dicke

model, the Husimi function is given by

Hk (α,μ) = |〈α,μ|Ek〉|2, (11)

where |α,μ〉 = |α〉 ⊗ |μ〉 is the product coherent state with
coherent states |α〉 and |μ〉 given in Eq. (4). The Dicke model
has two degrees of freedom, the Husimi function Hk (α,μ) is,
therefore, defined in the four-dimensional phase space and is
normalized as [81,82]∫

R4
Hk (α,μ)dz(α,μ) = 1. (12)

Here, the integration measure reads

dz(α,μ) = 2 j + 1

π2(1 + |μ|2)2
d2αd2μ, (13)

with d2v = dRe(v)dIm(v) (v = α,μ).
The Husimi function in Dicke model has been used to

explore the thermalization [55,56], quantum phase transition
[81,82], quantum-classical correspondence [83,84], as well as
the quantum chaos [62,63,85]. In addition, we note that the ze-
ros of the Husimi function for energy eigenstates can precisely
uncover the underlying classical dynamics [85]. Moreover,
we would like to point out that the participation number
calculated from the Husimi function has been established as
a useful tool to identify the quantum chaos in the Dicke
model [62,63].

To better visualize the Husimi function, and be able to
compare with the classical calculations, as was done in
Refs. [84,85], we study the spin Husimi function [83], which
is obtained by projecting the Husimi function Hk (α,μ) into
the phase space of the atomic sector [84,85]

Hk (μ) =
∫

d2α

π
Hk (α,μ). (14)

In our study, the Hamiltonian Eq. (1) is diagonalized in
the Dicke basis |nm〉 = |n〉 ⊗ |m〉 with |n〉 and |m〉 being the
eigenstates of a†a and Jz, respectively. Thus, the kth energy
eigenstate |Ek〉 of the system can be written as

|Ek〉 =
∞∑

n=0

j∑
m=− j

Ck
nm|nm〉, (15)

where Ck
nm are the expanding coefficients and satisfy the nor-

malization condition
∑

nm |Ck
nm|2 = 1. Then the spin Husimi

function in Eq. (14) can be explicitly computed as [84,85]

Hk (μ) =
∑
nml

Ck∗
nmCk

nl〈μ|l〉〈m|μ〉. (16)

Numerically, we calculate the above Husimi function on the
grid points (r, θ ) with 0 � r � 1,−π � θ < π in the phase
space of atomic sector. Here, the polar coordinates have
been employed to describe the phase space of atomic sector
according to

q1 = r cos θ, p1 = r sin θ.

Throughout this work, the grid of 250 × 250 points has been
utilized.

In Fig. 5, we plot the spin Husimi functions of the energy
eigenstates in an energy region around E0/ j = 0.8 for differ-
ent values of κ . We first observe the remarkable change in the
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FIG. 5. Spin Husimi function Hk (μ) for (a) κ = 0.1, k =
346, Ek/ j = 0.8031, (b) κ = 0.4, k = 388, Ek/ j = 0.8014, (c) κ =
0.46, k = 402, Ek/ j = 0.8004, (d) κ = 0.5, k = 414, Ek/ j =
0.8004, (e) κ = 0.54, k = 426, Ek/ j = 0.8008, and (f) κ = 0.7,

k = 482, Ek/ j = 0.8004. The other parameters are: N = 40 and
ω = ω0 = 1. The axes in all figures are dimensionless.

feature of spin Husimi functions when κ is varied. Specifi-
cally, the spin Husimi function concentrates in the phase space

when κ is small, while it extends over the whole phase space
for greater κ . By comparing to the classical Poincaré section
illustrated in Fig. 2, we find that the extension of the spin
Husimi function in classical phase space allows us to analyze
the degree of chaos in each energy eigenstate. In this work we
go further to explore the localization property in the chaotic
energy eigenstates by employing the spin Husimi function.

B. Localization in the chaotic eigenstates

As shown in Refs. [40–42], the localization phenomenon
in the eigenstates is determined by the ratio, denoted by α,
between the Heisenberg time tH and the classical diffusion
time tD,

α = tH
tD

. (17)

It is known that α � 1 corresponds to the semiclassical con-
dition, for which the chaotic eigenstates are delocalized for
the systems that have the classical chaotic counterpart. The
localization in the eigenstates occurs when α � 1, which can
appear also in the chaotic states in the mixed-type systems
with 0 < fc < 1.

The Heisenberg time tH is calculated as tH = 2πρ(E ),
where the density of states of the Dicke model ρ(E ) is
given by [49]

ω

2 j
ρ(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

π

∫ η+

η−
arccos

√
2κ2

c (η − ε)

κ2(1 − η2)
dη, εm � ε < −1,

ε + 1

2
+ 1

π

∫ η+

ε

arccos

√
2κ2

c (η − ε)

κ2(1 − η2)
dη, −1 � ε � 1,

1, ε > 1.

(18)

Here, η± = −κ2
c /κ2 ± κc

√
2(ε − εm)/κ and 2εm = −(κ2

c /

κ2 + κ2/κ2
c ). In Fig. 6(a), we plot tH as a function of κ for

several values of the system size N . For the parameter region
studied in this work one can see that the Heisenberg time tH
grows linearly with κ , and it also increases with the rescaled
energy ε, as shown in Fig. 6(b). Since the density of states
in Eq. (18) depends linearly on the system size, the larger
is the system size N , the greater is the Heisenberg time, as
expected.

For the classical diffusion time tD, as was done in
Refs. [41,42], we identify tD as the time at which an ensem-
ble of initial conditions that are uniformly distributed in the
momentum space at p = 0 with zero variance attains a certain
fraction of the saturation value. The degree of chaos has strong
impacts on the diffusion process in the classical systems, thus,
the dependence of fc on ε and κ indicates that the value of tD
will strongly depend on the coupling strength and the energy
of the system. We illustrate the dependence of the classical
diffusion time tD on the coupling strength κ for different
rescaled energies in Fig. 6(c). In our numerical calculation, tD
is defined by the time at which the variance of the momen-
tum distribution reaches its asymptotic value, see the inset
in Fig. 6(c) for the case with κ = 0.4733, ε = 0.8. Clearly,

the classical diffusion time tD decreases with κ and converges
toward a constant at larger values of κ . This is consistent with
the fact that the degree of chaos increases with increasing the
coupling strength κ . Moreover, because the larger rescaled en-
ergy ε means the higher degree of chaos, we would expect that
tD decreases with ε for fixed κ . In particular, tD will approach a
constant value at higher values of ε, regardless of the coupling
strength. The numerical results in Fig. 6(d) fully confirm these
predictions.

Let us turn our attention to the behavior of α. The Heisen-
berg time tH scales linearly with κ , while the classical
diffusion time tD decreases with increasing coupling strength
κ . One, therefore, can expect that the time ratio α will increase
with κ . In Fig. 7(a), we plot α as a function of the coupling
strength κ for system sizes ranging from N = 40 to N = 56
with ε = 0.5. It can be seen that α increases with increasing κ

and it becomes greater than 1 when κ � 0.5, regardless of the
system size. For different system sizes, since tH is sensitive
to N , we find that the value of α is strongly dependent on
the system size N , the larger is N , the greater is the value of
α. The variations of α with rescaled energy ε for different
system sizes with fixed κ behave in a similar way, as seen
in Fig. 7(b).
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FIG. 6. (a) Heisenberg time tH versus the coupling strength κ in
the Dicke model for several system sizes with ε = 0.5 and ω = ω0 =
1. (b) tH as a function of ε for different system sizes with κ = 0.48
and ω = ω0 = 1. (c) Classical diffusion time tD against the coupling
strength κ for different rescaled energies ε with ω = ω0 = 1. The
inset shows the variance of momentum σ 2

p = 〈p2〉 − 〈p〉2 vs. t for
κ = 0.4733 with ε = 0.8. Here, σ 2

p is calculated with 4000 initial
conditions that are uniformly distributed in the chaotic region with
q0 ∈ [−0.8, 0.8] and p0 = 0. The green dashed horizontal line indi-
cates the long time averaged value of σ 2

p , while the orange dashed
vertical line denotes the time tD at which σ 2

p reaches its long time
averaged value. (d) tD as a function of ε for different coupling
strengths with ω = ω0 = 1. The axes in all figures are dimensionless.

C. Separation of chaotic and regular eigenstates

For the purpose to analyze the properties of the localized
chaotic eigenstates, it is necessary to separate the chaotic
eigenstates from the regular ones. To this end, as was done
in Refs. [6,41,43], we label each point on the grid by an index
ϒr,θ . We set ϒr,θ = +1 when the grid point belongs to the
classical chaotic regions and ϒr,θ = −1 if the grid point lies in
the classical regular regions. Then, we take an initial condition
in the chaotic region and evolve it according to the classical
equations of motion in Eq. (9) until τ f = 105, which is enough
for convergence. The value of ϒr,θ for each visited cell (r, θ )

FIG. 7. (a) α = tH/tD as a function of κ for several system sizes
N with ε = 0.5. (b) α as a function of the rescaled energy ε = E/ j
for different system sizes N with κ = 0.5. The dashed horizontal
lines in both panels indicate α = 1. The other parameters are: ω =
ω0 = 1. All quantities are dimensionless.

on the grid is, therefore, given by +1, while ϒr,θ = −1 for
the remaining cells. The overlap between Husimi function
Hk (r, θ ) and indexes ϒr,θ on the grid is quantified by Mk

defined as

Mk =
∫

dSϒr,θ Hk (r, θ ), (19)

where dS is the normalized area form in the phase space of
atomic sector.

In principle, Mk should be either +1 or −1; however, due
to the reasons pointed out in Refs. [41,43], the actual value of
Mk varies from −1 to +1. Hence, we need to find the threshold
value Mt , such that all chaotic states are identified by Mk � Mt

and those associated with Mk < Mt are regular. Two natural
criteria have been used to decide the value of Mt , quantum
and classical criterions [6,41]. In our study, as we want to
ensure that only the chaotic eigenstates have been used, we
have taken Mt = 0.5.

D. Localization measure of the chaotic eigenstates

The degree of localization of the chaotic eigenstates is
quantified by the entropy localization measure A, defined in
terms of the normalized information entropy of the Husimi
distribution. For the kth eigenstate, the localization measure
Ak is, in general [42,43],

Ak = exp(Ik )

Npc
, (20)

where for f degrees of freedom we have Ik = − ∫
dV

Hk (p, q) ln[(2π h̄) f Hk (p, q)] with dV being the volume form
in the classical phase space. Here, Npc = 
c/(2π h̄) f is the
number of the Planck cells in the chaotic region with 
c being
the the volume of the classically chaotic region. Clearly, if the
normalized Husimi function is supported by a single Planck
cell, i.e., Hk = 1/(2π h̄) f , then Ik ≡ 0 and Ak = 1/Npc ≈ 0,
which means the strongest localization. However, if Hk is
uniform over the entire region 
c, then we have Ik = 1/
c,
and therefore Ak ≡ 1, which is the complete extendedness
(delocalization).

In our specific case, the considered atomic sector phase
space with f = 1, by using the dimensionless quantities and
performing the normalization, the localization measure can be
rewritten as

Ak = exp(Ik )

�c
, (21)

where �c is the the phase space area of the chaotic compo-
nent and Ik = − ∫

dSHk (r, θ ) ln[Hk (r, θ )] with dS being the
normalized area form in the atomic sector phase space. Ak

in Eq. (21) is defined in the interval Ak ∈ [0, 1] with Ak = 0
corresponding to the maximally localized states and Ak = 1
for the fully delocalized states.

As is well known, to measure the degree of localization
in a quantum state, the most widely used quantity is the
participation number PR [62,63,86–90]. By expanding a pure
quantum state |�〉 in a basis |νk〉 with dimension Nd , PR is
defined as

PR = 1∑Nd
k=1 |〈νk|�〉|4 . (22)
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FIG. 8. Normalized participation number NP, defined in
Eq. (23), as a function of A for several coupling strengths and
system sizes with ω = ω0 = 1. There are fitted by a linear function
y = 1.24x − 0.42 (indicated by the red solid line), thus equivalent.
The chaotic states that we have used in our calculation are the states
with Mk � Mt = 0.5. The axes in the figure are dimensionless.

In the case of the maximum localization PR = 1, while the
strongest delocalization corresponds to PR = Nd [62]. Par-
ticipation number has been employed to characterize the
localization-delocalization transitions in various studies. In
particular, for the Dicke model, it has been used to study
the regularity-chaos transition [62,63] and the equilibration
process [91,92].

Therefore, one can pose the question as to whether there
exists connection between Ak studied in this work and the
participation number. To address this question, for the kth
eigenstate, we consider the normalized participation number
NP with the following expression:

NP = 1

�c

1∫
dSH2

k (r, θ )
. (23)

In Fig. 8, we plot NP as a function of A for different
values of system size and coupling strength. Note that due to
the fluctuation in localization measures, the results have been
averaged over 20 eigenstates. As we can see, numerical data
for different N and κ exhibit a good collapse and are fitted by
a linear function NP ∝ A, which means that A is equivalent to
NP. We should mention that the equivalence between A and
NP has also been verified in quantum billiard systems [43].
Hence, our result further confirms that the linear dependence
between A and NP is a general conclusion, independent of
the specific system. In our study, we take A as the measure of
localization and focus on the statistical properties of A.

IV. STATISTICAL PROPERTIES OF THE ENTROPY
LOCALIZATION MEASURE

Below we explore the properties of localization measure in
terms of its probability distribution P(A) and the relationship
between the localization measure and the level repulsion ex-
ponent. Recent works for different billiards have revealed that
the localization measure probability distribution is described
by the β distribution and the level repulsion exponent is a lin-
ear function of the averaged localization measure [42,43]. We

expect that these results still hold in our study, even if we are
dealing with a more complicated quantum many-body system
with classical counterpart given by the smooth Hamiltonian.

We evaluate A for the chaotic eigenstates with energy in
the range ε ∈ (0.44, 0.95) (see Sec. II C) for several coupling
strengths κ . For each case, the chaotic states are identified
according to the method given in Sec. III C with Mt = 0.5.

A. Localization measure probability distribution

We consider the localization measure operator defined as

ˆA = exp(Î )

�c
, (24)

where Î = − ∫
dSP̂r,θ ln P̂r,θ , with P̂r,θ = |μ〉〈μ| =

|r, θ〉〈r, θ |. Then, we construct the projector onto the subspace
with a given value of A and write it as

δ( ˆA − A) = 1

2π

∫ ∞

−∞
dξeiξ ( ˆA −A), (25)

where the integral representation of the delta function has
been employed. The localization measure probability distri-
bution is, therefore, given by the expectation value of this
projector,

P(A) = 〈δ( ˆA − A)〉, (26)

where 〈·〉 denotes the expectation value with respect to the
chaotic eigenstates of the system. Its Fourier transform repre-
sentation (characteristic function) can be written as

P(A) = 1

2π

∫ ∞

−∞
dξX (ξ )e−iξA, (27)

where X (ξ ) = Tr(ρa
k eiξ ˆA ) is the characteristic function of

P(A) with ρa
k being the reduced density matrix of the atomic

sector. The fully localized state gives X (ξ ) = 1 and, therefore,
P(A) = δ(A). The other extreme of the maximally delocalized
state implies XP(ξ ) = eiξ and we would have P(A) = δ(A −
1), as expected.

In our numerical simulation, the spin Husimi function in
Eq. (14) of the kth chaotic eigenstate is calculated on the
grid in the phase space of atomic sector which is described
by the polar coordinates (r, θ ). The total number of points
on the grids is 250 × 250 points, as mentioned in Sec. III A.
Therefore, for the jth grid (r j, θ j ), the Husimi function is
given by H j

k = Hk (r j, θ j ). Then, the information entropy can
be numerically evaluated as

Ik =
∑

j

I j
k = −

∑
j

S jH
j

k ln
(
H j

k

)
,

where S j = r j�r�θ is the area of the jth grid. Here, �r =
r j+1 − r j and �θ = θ j+1 − θ j . Also, H j

k are normalized such
that

∑
j S jH

j
k = 1. Finally, we numerically compute the lo-

calization measure as follows:

Ak = exp(Ik )∑
j S j

.

In what follows, we will show that the localization measure
probability distribution P(A) is in good agreement with the
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FIG. 9. First row [panels (a–d)]: Distribution P(A) of the localization measure A for different values of κ with N = 40. The values of shape
parameters (a, b) of the fitted β distribution from panel (a) to panel (d) are given by (58.18, 24.18), (26.51, 4.47), (35.45, 5.09), (50.21, 6.17).
Second row [panels (e–h)]: Distribution P(A) for several κ with N = 48. The inset in each panel corresponding to
the cumulative distribution. The shape parameters (a, b) of the fitted β distribution are given by [panels (e) and (f)]:
(38.25, 17.25), (26.09, 4.54), (34.84, 4.84), (49.71, 5.69). The red solid line in the main panels and insets are the β distribution and
its cumulative distribution, respectively. The chaotic eigenstates that used in our calculation are identified by Mk � Mt = 0.5. The other
parameters are: ω = ω0 = 1. All quantities are dimensionless.

so-called β distribution,

P(A) = CAAa−1(1 − A)b−1, (28)

where a and b are the two positive shape parameters, CA is
the normalization constant, which can be obtained from the
normalization condition

∫ 1
0 dAP(A) ≡ 1, i.e., CA = B−1(a, b)

with B(a, b) = ∫ 1
0 ua−1(1 − u)b−1du is the β function. To

further demonstrate the agreement between the probability
distribution of A and the β distribution, we also consider the
cumulative distribution defined as

F (A) =
∫ A

0
P(y)dy, (29)

where P(y) is the probability density function of A.
Figure 9 plots the localization measure probability distri-

bution P(A) for different coupling parameters κ with N = 40
(first row) and N = 48 (second row). The distributions P(A)
and F (A) can be compared with the β distribution indicated
by the red solid lines. From these results we make several
observations: (i) Irrespective of the the system size, since the
degree of chaos of the system increases with an increase in
κ , the larger is the value of κ , the better is the agreement
between the β distribution and P(A). (ii) For the cases which
are well fitted by the β distribution, increasing κ leads to the
decrease in the width of P(A) and the peak value of P(A) tends
to 1, regardless of the system size. This reflects the fact that
the degree of the delocalization of the chaotic eigenstates is
increased as κ increases. (iii) The agreement between P(A)
and β distribution can be improved by increasing the system
size. (iv) Because the regularity of the system increases with
decreasing κ , there is an obvious deviation between P(A) and
β distribution at smaller κ , irrespective of the system size.

These features of P(A) are qualitatively similar to the
ones in billiards [43,44]. However, different from the billiards
where the maximum value of A is given by 0.7, in our system
we have Amax = 0.96. The underlying reason of this deviation
in the maximum value of localization measure calls for fur-
ther investigation. Nevertheless, we believe that, in general,
the localization measure probability distribution P(A) is well
described by the β distribution. A very interesting topic for
further study concerns the theoretical understanding of the
probability distribution P(A).

To better understand the properties of localization in
chaotic eigenstates, in the following, we focus on the rela-
tionship between the averaged localization measure, denoted
by 〈A〉, and the level repulsion exponent.

B. The level repulsion exponent and 〈A〉 of the
chaotic eigenstates

As one of the remarkable features of quantum chaos, level
repulsion is usually used to define the quantum chaos. It is
known that there is no level repulsion in integrable systems
and the energy levels of them are uncorrelated, so the distri-
bution P(s) of the spacings, s, between neighboring energy
levels is given by the Poissonian distribution [1],

PP(s) = e−s. (30)

In contrast, in the fully chaotic systems the eigenvalues are
correlated and exhibit a strong level repulsion. According to
the random matrix theory, the level spacing distribution in
those systems is given by the Wigner-Dyson distribution [1,2].
Depending on the symmetries in the system, the Wigner-
Dyson distribution can be expressed in different forms. For the
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systems with time reversal symmetry, which are represented
by a Gaussian orthogonal ensemble, the Wigner-Dyson distri-
bution is given as

PW (s) = πs

2
exp

(
−πs2

4

)
. (31)

Full chaos is an exception, a generic system usually ex-
hibits a structured phase space which has both regular and
chaotic regions. The level spacing distribution in those mixed-
type Hamiltonian systems was explored in several works and
has been found that it can be very well described by the
so-call Berry-Robnik-Brody (BRB) distribution [39,93–95]. It
has also been found that the level spacing distribution of the
localized chaotic eigenlevels follows the well-known Brody
distribution defined as [96,97]

PB(s) = (β + 1)ζβsβ exp(−ζβsβ+1), (32)

where by using the required normalization and unfolding con-
ditions,

∫ ∞
0 PB(s) ≡ 1 and

∫ ∞
0 sPB(s) = 1, one can find the

factor ζβ in the following form:

ζβ =
[
�

(
β + 2

β + 1

)]β+1

, (33)

with �(x) being the γ function. The parameter β, which
characterizes the signatures of the level spacing distribution as
s → 0, namely, PB(s → 0) ∝ sβ , is the level repulsion expo-
nent and varies from 0 to 1. For β = 0, we have PB(s) = PP(s),
indicating the maximal localization in chaotic eigenstates,
while β = 1 leads to PB(s) = PW (s), meaning the maximal
extendedness in chaotic eigenstates. Therefore, a value of
β ∈ [0, 1] obtained from a concerted level spacing distribution
tells us what the degree of localization as reflected in chaotic
eigenlevels is. In our study, to get the level repulsion exponent
β, we employ the following identity [94]:

LB
c (s) = (β + 1) ln s + ln ζβ,

LB
c (s) = ln{ln[1 − G(s)]−1}. (34)

Here, G(s) = ∫ s
0 PB(s′)ds′ is the cumulative distribution of the

Brody distribution. Hence, the level repulsion exponent β can
be easily obtained through a simple linear fit of the left-hand
side of Eq. (34) in the logarithmic scale of the level spacings s.

An example is demonstrated in Fig. 10. We can see that the
numerical data are well fitted by Eq. (34), and the level spac-
ing distribution of the chaotic eigenstates is in good agreement
with the Brody distribution (see the inset of Fig. 10). We
would like to point out that there exist several different dis-
tributions that can be interpolated between the Poisson and
Wigner distributions, such as the Izrailev distribution [26].
The reasons we choose Brody distribution in our study are
two. First, the Brody distribution has a simpler formula than
the others, therefore it is easier to calculate the level repul-
sion exponent. Second and important, recent numerical results
have shown that the Brody distribution is better in describing
the real data [39,40,98].

By utilizing Eq. (34), the level repulsion exponent β of
chaotic eigenstates has been calculated for different system
sizes with κ ∈ (0.3, 0.55) and ε ∈ (0.44, 0.95). The variation
of β with the averaged localization measure 〈A〉 for different
system sizes are depicted in Fig. 11. We see an obvious linear

FIG. 10. LB
c in Eq. (34) as a function of ln s for unfolded eigen-

levels of the chaotic eigenstates with κ = 0.48 and N = 48. The
linear fit (blue solid line) of the numerical data determines the value
of the level repulsion exponent in Brody distribution β = 0.5936.
The level spacing distribution and its fitted Brody distribution are
plotted in the inset. The employed chaotic eigenstates are identified
by Mk � Mt = 0.5. The other parameters are: ω = ω0 = 1. All quan-
tities are dimensionless.

relationship between β and 〈A〉, regardless of the system size.
Our results show that for the quantum many-body system
with classical counterpart described by the smooth Hamil-
tonian, the proportionality between 〈A〉 and β still holds, as
observed and discussed in quantum kicked rotator [99] and
different billiards [42–44]. Therefore, we believe that this lin-
ear relationship is one of the universal features of the chaotic
eigenstates.

The linear behavior exhibited by β with respect to 〈A〉
can be intuitively explained as follows. One consequence of
the localization of chaotic eigenstates is the reduction of the
correlations between eigenlevels. Hence, the increase in the

FIG. 11. Level repulsion exponent β as a function of the av-
eraged localization measure 〈A〉 for different systems sizes with
κ ∈ [0.3, 0.55] and ε ∈ (0.44, 0.95). The linear fit line (solid line)
is given by y = 5.76x − 4.2. The chaotic eigenstates that are em-
ployed in our calculation are the states defined by Mk � Mt = 0.5.
The other parameters are: ω = ω0 = 1. The axes in the figure are
dimensionless.
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strength of localization (decreasing A) leads to the chaotic
eigenlevels from being fully correlated with avoided crossings
with β = 1, to a power-law-level repulsion with 0 < β < 1.
However, a better and deeper understanding of the relation
between the localization and level repulsion requires a more
general theoretical analysis. We leave this study as an open
question for future work. Finally, we should point out that
in contrast to the billiards, in which both 〈A〉 and β behave
as a rational function with respect to α [cf. Eq. (17)], our
numerical results (not shown here) indicate that 〈A〉 and β

are independent of the value of α (in a relatively small α

interval) in the Dicke model. However, to get deeper under-
standing of the relations between them, more works are still
required.

V. CONCLUSIONS

In conclusion, aimed to explore the localization proper-
ties of the chaotic eigenstates and their spectral statistics in
the smooth Hamiltonian, we have examined the properties
of the localized chaotic eigenstates in Dicke model, in cor-
respondence with its classical dynamics. As a paradigmatic
spin-boson model, the Dicke model has been studied in sev-
eral areas of physics. The classical counterpart of the Dicke
model is described by a smooth Hamiltonian with two degrees
of freedom.

The degree of localization in the chaotic eigenstates is
determined by the parameter α = tH/tD, defined as the ratio
between the Heisenberg time tH and the classical diffusion
time tD. After separating the chaotic eigenstates from the
regular ones, we have shown that the localization measure A,
which is defined in terms of the information entropy of the
Husimi function, is linearly dependent on the participation
number, indicating that they are equivalent, consistent with
the results obtained in billiards. This result further confirms

that this is a general feature of the localization measure. We
found that the localization measure probability distribution
P(A) is in good agreement with the so call β distribution
and approaches the delta distribution as α → ∞. The same
behaviors of P(A) were also observed in different billiards.
We also demonstrated that the level repulsion exponent of the
chaotic eigenlevels behaves as a linear function with respect
to the averaged localization measure 〈A〉 = ∫

dAAP(A), as
observed also in the studies of billiards.

The above facts lead us to believe that our results hold
also in other quantum systems, such as the hydrogen atom
in strong magnetic field [100–104]. It is an interesting topic
for future work to systematically explore the properties of
the localized chaotic eigenstates in various time-independent
quantum systems. Moreover, theoretically analyzing the na-
ture of localization properties of chaotic eigenstates remains
an open question, we will leave this study for future work.

We would also like to stress that, as an extension of the
previous works in different billiards, our results in the present
work help us to gain even more insights into the localiza-
tion features of the chaotic eigenstates. Finally, the current
progress in experimental technologies enables the realization
of the Dicke model considered in this work, and therefore
we expect that our studies can induce more experimental
explorations in the localization properties of time-independent
quantum systems.
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[40] B. Batistić and M. Robnik, Phys. Rev. E 88, 052913 (2013).
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