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Forced harmonic oscillator interpreted as diffraction of light
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We investigate a simple forced harmonic oscillator with a natural frequency varying with time. It is shown
that the time evolution of such a system can be written in a simplified form with Fresnel integrals, as long as
the variation of the natural frequency is sufficiently slow compared to the time period of oscillation. Thanks to
such a simple formulation, we found that a forced harmonic oscillator with a slowly varying natural frequency
is essentially equivalent to diffraction of light.
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I. INTRODUCTION

Resonance phenomena, in conjunction with forced har-
monic oscillators (FHOs), are observed in a lot of dynamical
systems, and are discussed as a fundamental problem in stan-
dard textbooks on classical mechanics [1,2]. The concept of
resonances is present in many branches of science, and there-
fore has a wide variety of applications. About three hundred
years after the discovery of a resonancelike phenomenon, the-
oretical models for FHOs with characteristic resonances have
been well established (see Refs. [3,4] for a recent historical
review of FHOs). In many cases, FHOs have been discussed in
the context of resonance phenomena. Here, we present a sim-
ple formulation of an FHO with a natural frequency varying
with time using Fresnel integrals [5]. Thanks to such a sim-
ple formulation, we found that an FHO with a time-varying
natural frequency is essentially equivalent to diffraction of
light from a single slit, i.e., so-called Fraunhofer or Fresnel
diffraction [6–9].

II. FORMULATION

In this article, we investigate a simple FHO with a time-
varying natural frequency. We suppose that the driving force
is activated at t = 0 and is then deactivated at t = � (>0),
and that the frequency of the driving force (ω f ≡ 2πν f ) is
kept constant while the natural frequency of the oscillator
(ω ≡ 2πν) varies with time as ω(t = 0) < ω f < ω(t = �).
In addition, it is assumed that ω(t ) varies very slowly com-
pared to the time period of oscillation, namely

|ω̇(t )| � ω2(t ), |ω̈(t )| � ω3(t ), (1)

where ω̇(t ) and ω̈(t ) represent the first and second derivatives
of ω(t ), respectively.

The basic equation of motion for the above system is writ-
ten in the form

ẍ + ω2(t )x = F (t ), (2)
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with the driving force

F (t ) =

⎧⎪⎨
⎪⎩

0 (t < 0),

F0 cos(ω f t + φ0) (0 � t � �),

0 (t > �),

(3)

where x denotes displacement from the equilibrium position
as a function of t , F0 is the amplitude of the sinusoidal force,
and φ0 is a constant phase. Here, we neglect a damping term
for simplicity.1

Now, the frequency ω (=2πν) of the oscillator is a function
of t , and can be expanded in a Taylor series:

ω(t ) = ω(0) + ω(1)t + ω(2)

2
t2 + · · ·

= 2π

(
ν (0) + ν (1)t + ν (2)

2
t2 + · · ·

)
. (4)

Here we adopt a linear approximation for Eq. (4), namely

ω(t ) = ω(0) + ω(1)t

= 2π (ν (0) + ν (1)t ). (5)

It should be noted that this can be made without loss of gen-
erality because a linear approximation holds for an arbitrary
function ω(t ) as long as the time window � is taken to be
sufficiently short, i.e., � < 1/ω(0) [see Eq. (1)]. For simplic-
ity, we hereafter assume ω(1) > 0. Then the assumption (1)
becomes

ε2 ≡ ω(1)/(ω(0) )2 � 1. (6)

Equation (2) can be approximately solved with the aid of
the well-known Green’s Function method. Under the assump-
tion (1) [or (6)], the Green’s function of Eq. (2) is given by
(see Appendix A for details)

G(t, t ′) = −i

2
√

ω(t )ω(t ′)
exp

[
i
∫ t

t ′
ω(τ )dτ

]
+ c.c. (7)

1The same discussion can be made even when a damping term is
included, as long as its effect is sufficiently weak.
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By using the Green’s function of Eq. (7) together with the
assumption (6), a particular solution of Eq. (2) for t > � can
be written in the form2

x(t ) =
∫ �

0
G(t, t ′)F (t ′)dt ′

= iF0

4ω(0)
e−iϕ(t ) × h(t ; ω f ) + c.c. (8)

with a function

ϕ(t ) =
∫ t

0
ω(τ )dτ. (9)

Here we define an envelope function h(t ; ω f ),

h(t ; ω f ) = A(t ) × h̃(ω f ), (10)

a damping factor A(t ),

A(t ) =
√

ω(0)/ω(t ) =
√

ω(0)

ω(0) + ω(1)t
, (11)

and a response function h̃(ω f ),

h̃(ω f ) =
∫ �

0
A(τ )eiϕ(τ ) f (τ ; ω f )dτ, (12)

where f (t ; ω f ) is defined by F (t ) = (F0/2) f (t ; ω f ) with ω f

being a parameter. Note that a damping factor A(t ) originates
from the natural frequency varying with time, not from the
presence of the driving force [10].

The response function of Eq. (12) can be approximately
written in a simplified form: given a sufficiently small ε

(�1), the damping factor in Eq. (12) can be approximated
as A(τ ) ∼ 1. Neglecting a rapidly oscillating term in the inte-
grand, we have (see Appendix B for details)

h̃(r) �
∫ �

0
exp

[
i

{
ω(0)(1 − r)τ + ω(1)

2
τ 2 − φ0

}]
dτ

= 1√
2ν (1)

exp

(
−i

[
π{ν (0)(1 − r)}2

ν (1)
+ φ0

])

× [{C(u2) − C(u1)} + i{S(u2) − S(u1)}], (13)

where we introduce a new variable r ≡ ω f /ω
(0) (= ν f /ν

(0)),
replacing ω f in h̃ with r, u1 and u2 are given by

u1 =
√

2ν (0)(1 − r)√
ν (1)

,

u2 = u1 +
√

2ν (1)�, (14)

and two functions C(u) and S(u) are so-called Fresnel inte-
grals, defined as

C(u) =
∫ u

0
cos

(
π

2
v2

)
dv,

S(u) =
∫ u

0
sin

(
π

2
v2

)
dv. (15)

2Here, we are interested in a particular solution because it contains
all the effects of the driving force.

FIG. 1. Diffraction of light from a single slit. Each solid line
represents an undiffracted wavefront, while a solid curve repre-
sents a diffracted wavefront determined from Huygens’ wavelets at
the aperture (dashed-line circles). Here, we define the wavelength
λ, the aperture size D = 2a, and the distance r0 between the slit
and the screen.

As we see from Eq. (8), the particular solution obtained
here is of a characteristic form; that is, the first part of the
right-hand side of Eq. (8) represents a propagating wave with
frequency modulation, whereas the last one represents a re-
sponse of the oscillation amplitude to the frequency ω f of the
driving force. Furthermore, as we see in the response function
of Eq. (13), the imaginary argument of the exponent in the
integrand is a quadratic function of an integration variable τ ,
thus yielding Fresnel integrals.

Our formulation can be also extended to the other case
where the frequency ω of the oscillator is kept constant
while the frequency ω f of the driving force varies slowly
with time as ω f (t = 0) < ω < ω f (t = �), as discussed in
Refs. [11–13]. In this case, we have no damping factors, and
a response function is a bit modified:

h̃(r̃) =
∫ �

0
exp

[
−i

{
ω

(0)
f (1 − r̃)τ + ω

(1)
f

2
τ 2 + φ0

}]
dτ,

(16)

which yields Fresnel integrals as well. Here, we write the
frequency ω f as

ω f (t ) = ω
(0)
f + ω

(1)
f t + ω

(2)
f

2
t2 + · · · , (17)

define r̃ ≡ ω/ω
(0)
f , and neglect rapidly oscillating terms in the

integrand. Note that, strictly speaking, the assumption of the
“slow change” of ω f (t ) is not necessary for the derivation of
Eq. (16) because a Green’s function can be obtained just by
solving the equation of motion for a free HO with a constant
natural frequency ω [cf., Eq. (A2)].

III. ANALOGY TO DIFFRACTION OF LIGHT

One may encounter a quite similar form as in Eqs. (8),
(13), and (16) in a description of diffraction of light from a
single slit (Fig. 1) based on the so-called Fresnel-Kirchhoff
diffraction integral with the Fresnel approximation (see, e.g.,
Ref. [9]). Fresnel’s formulation of single-slit diffraction ap-
proximates the imaginary argument of the exponent in the
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integrand, which represents a phase difference between sec-
ondary spherical waves from the wavefront at the aperture, to
be a quadratic phase variation. Thus, the electric field on the
screen, Es(x), can be written as

Es(x) = E0eikr0

∫ 2a

0
exp

[
ik

2r0
(ξ − x)2

]
dξ, (18)

where E0 is a constant field strength, and k is a wave number
(=2π/λ). In this case, we can also define a function analogous
to Eq. (13):

h̃E (x) =
∫ 2a

0
exp

[
iπ

λr0
(ξ − x)2

]
dξ . (19)

By comparing two functions h̃ [Eq. (13)] and h̃E [Eq. (19)],
we can obtain exact relations that connect the two phenomena;
to do so, we introduce dimensionless integration variables,
τ̂ ≡ τ/� and ξ̂ ≡ ξ/(2a). Then we have the phase function
of the integrand for Eq. (13),

�(τ̂ ) = 2πν (0)�(1 − r)τ̂ + 2πν (1)�2 τ̂ 2

2
− φ0, (20)

and that for Eq. (19),

�E (ξ̂ ) = −4πNF
x

a
ξ̂ + 8πNF

ξ̂ 2

2
+ πNF

(
x

a

)2

, (21)

where NF is a so-called Fresnel number:

NF = a2

λr0
. (22)

Since Eqs. (20) and (21) are both functions of a dimensionless
variable, one immediately obtains the following relations:

ν (0)�(r − 1) ⇐⇒ 2NF
x

a
, (23)

ν (1)�2 ⇐⇒ 4NF . (24)

In the theory of single-slit diffraction, a Fresnel number
NF is often defined to characterize diffraction patterns with
different configurations; for NF � 1, where the screen is far
from the slit, or where the slit aperture is narrow, a quadratic
term in the phase �E is negligible so that Fresnel’s formula
is reduced to a Fourier transform of the shape of the aperture
(i.e., Fraunhofer diffraction). On the other hand, for NF � 1,
Fresnel’s formula is called a Fresnel transformation, and a
resulting diffraction pattern is a perfect shadow of the aper-
ture (i.e., Fresnel diffraction). By using the relation (24), a
corresponding quantity is also defined in the FHO case as

N (FHO)
F ≡ ν (1)�2

4
, (25)

and the relation (23) is rewritten as

4N (FHO)
F

ν (1)�
(ν f − ν (0) ) ⇐⇒ 4NF

2a
x. (26)

As is the case of the single-slit diffraction, systems with the
same value of N (FHO)

F will have a response function h̃(r) of
equivalent properties.

Figure 2(a) show the frequency responses h̃(r) with differ-
ent values of N (FHO)

F (i.e., different values of �). For reference,
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FIG. 2. (a) Frequency responses h̃(r) for (i) N (FHO)
F = 0.3, (ii)

N (FHO)
F = 1, and (iii) N (FHO)

F = 10, with ν (0) = 10 Hz and ν (1) =
0.0003 s−2. The ranges of resonant frequencies evaluated by Eq. (27)
are marked by dashed lines. (b) Diffraction patterns from a single slit
for (i) NF = 0.3, (ii) NF = 1, and (iii) NF = 10 with λ = 1 μm and
r0 = 1 m. Dashed lines represent the positions of x = ±δx̄. For the
definition of δx̄, see the text.

the intensity patterns of single-slit diffraction with the same
values of NF (i.e., corresponding values of a) are plotted in
Fig. 2(b). For both the phenomena, a dramatic change of the
frequency responses h̃(r) (or the diffraction patterns) takes
place around N (FHO)

F (NF ) ≈ 1. Furthermore, the behavior of
h̃(r) on N (FHO)

F is in excellent agreement with that of the
diffraction patterns on NF .

The observed correspondence between the FHO and the
single-slit diffraction can be interpreted as follows: it is
obvious from Eq. (13) that the FHO with slowly varying
frequencies can be viewed as diffraction of waves in the
frequency domain with time t to be an independent variable,
whereas the single-slit diffraction is discussed in the space
domain. Thus, the frequency ω(t ), moving in the frequency
domain during a time window �, is interpreted, in the case
of single-slit diffraction, as the incremental space coordinate
ξ on the slit from 0 to 2a, and the constant frequency ω f as
an observation point, i.e., the space coordinate x on the screen
[see the relation (26)].

A key feature common to both phenomena is a quadratic
term in the phase functions of Eqs. (20) and (21), which
yields Fresnel integrals. In the FHO case, such a phase term
comes from the difference of phase advance, i.e., the phase
slippage between the oscillator and the driving force. In the
single-slit diffraction case, on the other hand, such a phase
term comes from Fresnel’s approximation of the optical path
lengths of accumulated spherical waves. We summarize the
correspondence relations between the FHO and the single-slit
diffraction in Table I.

For quantitative discussion, we evaluate the range of res-
onant frequencies for the driving force, 2δω̄ f , using the
analogies between the FHO and the single-slit diffraction. To
clarify the situation, we start with the light diffraction case:
for the Fraunhofer regime (NF � 1), it is well known that the
width 2δx̄ of a principal peak is obtained from the slit-screen
distance r0 and the angle θ , which defines a destructive phase
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TABLE I. Correspondence relations between the FHO and the
single-slit diffraction.

FHO Single-slit diffraction

ω f (driving force) Position on screen
ω (oscillator) Position on slit
Variation of ω in �, 2πν (1)� Aperture size D = 2a
Phase slippage between Variation of optical

oscillator and force path length
A quantity N (FHO)

F ≡ν (1)�2/4 Fresnel number NF =a2/(λr0)

relation between the wavelets from the both edges of the aper-
ture, and is given by 2δx̄ ≈ 2r0θ ≈ λr0/(2a). For the Fresnel
regime (NF � 1), the width of a rectangular pattern is almost
the same as that of the aperture, namely, 2δx̄ ≈ 2a. Now, the
derivation of δω̄ f is straightforward: with the correspondence
relations (25) and (26), we obtain

2δω̄ f =
{

2π/� (for the Fraunhofer regime),

2πν (1)� (for the Fresnel regime).
(27)

The evaluated ranges for different values of N (FHO)
F are

indicated by dashed lines in Fig. 2(a). As we see from
the figures, our evaluation is valid both for the Fraun-
hofer and Fresnel regimes. We notice that, for the FHO
case, the center of resonant frequencies is given by
ω̄ f = 2πν (0) + πν (1)�.

As another example of the analogies between FHOs with
time-varying frequencies and light diffraction, let us consider
an HO with a time-varying natural frequency exposed contin-
uously to a sinusoidal force with a constant frequency. Here,
we suppose that the frequency ω(t ) of the oscillator varies
linearly and coincides with the frequency ω f of the driving
force at t = 0. In this case, a particular solution is obtained
just by setting r = 1 and replacing � with t in the response
function of Eq. (13), namely

h̃(t ) � e−iφ0

√
2ν (1)

∫ √
2ν (1)t

0
exp

(
i
π

2
t̃2

)
dt̃

= e−iφ0

√
2ν (1)

[C(
√

2ν (1)t ) + iS(
√

2ν (1)t )], (28)

which is in turn a function of t , and thus describes the time
evolution of the oscillation amplitude, together with the damp-
ing factor A(t ) [see Eq. (10)]. The expression of Eq. (28) is
quite similar to a diffraction formula for so-called knife-edge
diffraction. In what follows, we neglect the damping factor
A(t ), which does not stem from the presence of the driving
force, in order to highlight the response of the oscillator and to
compare it to knife-edge diffraction. It should be again noted
that, as mentioned before, the damping factor in the response
function h̃ has been dropped because the impact is on the
order of ε and is negligible [ε ∼ O(10−3) for this case; see
also Appendix B].
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FIG. 3. (a) Time evolution of the squared amplitude |h̃(r)|2 with
ν (0) = 10 Hz and ν (1) = 0.0003 s−2. An arrow indicates the time t =
δt corresponding to N (FHO)

F = 1. For the definition of δt , see the text.
(b) Intensity pattern for light diffraction from a knife-edge obstacle
with λ = 1 μm and r0 = 1 m. The obstacle is placed at x � 0. An
arrow indicates the screen position x corresponding to NF = 1.

Taking the limit 2a → +∞ in Eq. (19) gives the expres-
sion of h̃E for knife-edge diffraction:

h̃E (x) =
∫ +∞

0
exp

[
iπ

λr0
(ξ − x)2

]
dξ

=
√

λr0

2

[{
C

(√
2

λr0
x

)
+ 1

2

}

+ i

{
S

(√
2

λr0
x

)
+ 1

2

}]
. (29)

Note that, by comparing the arguments of the Fresnel inte-
grals in Eqs. (28) and (29), we can obtain a similar relation to
Eq. (24), namely

ν (1)t2
obs ⇐⇒ x2

obs

λr0
, (30)

where tobs and xobs are the observation time and position for
the FHO and knife-edge diffraction cases, respectively.

Figure 3(a) illustrates the time evolution of the squared
oscillation amplitude (or, equivalently, the energy of the os-
cillator), together with an intensity pattern for light diffraction
from a knife-edge obstacle [Fig. 3(b)]. We see that the time
evolution of the oscillation energy behaves like a knife-edge
diffraction pattern; that is, the energy increases monotonically
until t � 60 s and then exhibits small beating (in other word,
we could say that the oscillator is in a quasistationary state).
Asymptotically, it approaches [see Eq. (28)]

|h̃(t )|2 t→+∞−−−−→ 1

2ν (1)
[C2(+∞) + S2(+∞)] = 1

4ν (1)
. (31)

The time duration δt in which the driving force efficiently
supplies kinetic energy to the oscillator is estimated by using
the analogies: in knife-edge diffraction, a “good measure”
of the fringe width of diffraction patterns, δx, is given by
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the condition that the corresponding Fresnel number, NF =
δx2/(λr0), becomes unity [see Fig. 3(b)]. Similarly, from
Eq. (30), we have the time duration δt :

δt = 1√
ν (1)

≈ 60 s, (32)

with ν (1) = 0.0003 s−2.

IV. SUMMARY

In summary, we investigated a simple FHO with slowly
varying frequencies. We demonstrated that the time evolu-
tion of such a system can be written in a simplified form
using Fresnel integrals. As a result, we found that FHOs with
slowly varying frequencies can be viewed as diffraction of
waves in the frequency domain, and therefore are equivalent to
diffraction of light. Also we showed two examples to see the
similarities between the two phenomena, and derived simple
formulas for the quantities which characterize the systems. We
expect that our formulation as well as such simple formulas
can be applied to, e.g., accelerator physics and provide a
simple and intuitive approach to the phenomenon of “reso-
nance crossing,” which is a central issue in a ring-type particle
accelerator design [14,15]. As a matter of fact, we applied
our formulation to the design of an aborted-beam-handling
system for a new synchrotron light source accelerator [16].
In this system, a sinusoidal force is applied to aborted beams,
whose betatron frequency varies with time due to energy loss
by synchrotron radiation. A proper choice of frequency of the
sinusoidal force is essential to enlarge the amplitude of beta-
tron oscillation and to reduce the beam density. Our findings
will be also applicable to plasma physics, where the problem
of passage through resonance with slowly varying parameters
is of great importance [17].

APPENDIX A: DERIVATION OF GREEN’S FUNCTION

In this Appendix, we present the derivation of the Green’s
function of Eq. (7). With the aid of the method of “variation
of constants,” the Green’s function of an inhomogeneous dif-
ferential equation such as Eq. (2) is in general written in the
form

G(t, t ′) =

∣∣∣∣x1(t ′) x2(t ′)
x1(t ) x2(t )

∣∣∣∣
W (x1, x2)(t ′)

≡ x1(t ′)x2(t ) − x1(t )x2(t ′)
x1(t ′)ẋ2(t ′) − ẋ1(t ′)x2(t ′)

, (A1)

where x1 and x2 are independent solutions for the corre-
sponding homogeneous differential equation, and W is the
Wronskian. Thus, in our case, the problem comes down to
solving the following homogeneous equation:

ẍ + ω2(t )x = 0. (A2)

To solve the above equation, we use the so-called eikonal
approximation [18]; that is, it is assumed that a solution of
Eq. (A2) is of the form

x(t ) = a(t )eiϕ(t ), (A3)

where the envelope function a(t ) varies very slowly compared
to oscillation of x(t ), namely

ä(t )

a(t )
� ω2(t ). (A4)

Substituting Eq. (A3) in Eq. (A2) and using the condition
(A4), we obtain

[ϕ̇(t )]2 = ω(t )2, (A5)

2ȧ(t )ϕ̇(t ) + a(t )ϕ̈(t ) = 0. (A6)

It follows from Eq. (A5) that

ϕ(t ) = ±
[∫ t

0
ω(τ )dτ + ϕ0

]
, (A7)

where ϕ0 is an integration constant. The substitution of
Eq. (A7) into Eq. (A6) gives

d

dt

[
ln a(t ) + 1

2
ln ω(t )

]
= 0, (A8)

and we have

a(t ) = α√
ω(t )

, (A9)

where α is a constant.
Thus, two independent solution of Eq.(A3) are given by

x1,2(t ) = α√
ω(t )

exp

[
±i

(∫ t

0
ω(τ )dτ + ϕ0

)]
, (A10)

and the substitution of Eq. (A10) into Eq. (A1) yields the
Green’s function of Eq. (7). Note that the condition (A4) is
clearly fulfilled under the assumption (1).

APPENDIX B: A SIMPLIFIED FORM OF h̃

To begin with, we rewrite Eq. (12) as

h̃(ω f ) =
∫ �

0
A(τ )ei[ϕ(τ )−ω f τ−φ0]dτ

+
∫ �

0
A(τ )ei[ϕ(τ )+ω f τ+φ0]dτ. (B1)

For ω f close to ω(0), the second term of Eq. (B1) is neg-
ligible because of rapid oscillation of the integrand. Thus,
Eq. (B1) becomes

h̃(ω f ) �
∫ �

0
A(τ )ei[ϕ(τ )−ω f τ−φ0]dτ. (B2)

Since the exponent in the integrand oscillates rapidly for
large τ due to quadratic changes in the phase function on
τ , most contribution comes from the integration in a limited
range, 0 � τ � 1/

√
ν (1), given by Eq. (32). Thus, the damp-

ing factor in the integrand can be written approximately as
A(τ ) ∼ 1 + O(ε). Given a sufficiently small ε (� 1), which
is the case both for the two examples discussed in the present
paper, we have A(τ ) ∼ 1 and hence

h̃(ω f ) �
∫ �

0
ei[ϕ(τ )−ω f τ−φ0]dτ. (B3)

After simple transformations of Eq. (B3), one can obtain
a simplified form of the response function h̃, as given by
Eq. (13).
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