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Volterra-series approach to stochastic nonlinear dynamics: Linear response of the Van der Pol
oscillator driven by white noise
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The Van der Pol equation is a paradigmatic model of relaxation oscillations. This remarkable nonlinear
phenomenon of self-sustained oscillatory motion underlies important rhythmic processes in nature and electrical
engineering. Relaxation oscillations in a real system are usually coupled to environmental noise, which further
enriches their dynamics, but makes theoretical analysis of such systems and determination of the equation
parameter values a difficult task. In a companion paper we have proposed an analytic approach to a similar
problem for another classical nonlinear model—the bistable Duffing oscillator. Here we extend our techniques
to the case of the Van der Pol equation driven by white noise. We analyze the statistics of solutions and propose
a method to estimate parameter values from the oscillator’s time series. We use experimental data of active
oscillations in a biophysical system to demonstrate how our method applies to real observations and can be
generalized for more complex models.
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I. INTRODUCTION

Balthazar van der Pol introduced the concept of relaxation
oscillations together with his eponymous equation for a sim-
plified dynamics of a triode electric circuit [1,2]. Regarded
as a power-series approximation for a more general class of
Lienard systems [3, Secs. 7.4 and 7.5], this model became
a paradigm of self-sustained oscillatory motion [2]. Besides
its applications in engineering, the Van der Pol equation and
its generalizations are used to describe various rhythmic pro-
cesses in biology [4–21].

Self-sustained oscillations are ubiquitous in living sys-
tems on different length and time scales. Examples include
intracellular oscillations of molecular concentrations [4], pat-
tern formation and dynamics of tissues [5], neuronal activity
[6,7], circadian clocks [8], otoacoustic emissions from the
ear [9–11], the beating of a heart [12,13], the synchronized
flashing of fireflies [14], and hemodynamics [15,16]. Much
theoretical work has been devoted to developing mathematical
descriptions for such systems [22]. Often the existing models
rely on parameters that are difficult to determine from exper-
imental data. The mathematical description is then limited to
qualitative or conceptual studies.

To facilitate quantitative research we develop a method
of analysis for self-sustained oscillations of the Van der Pol
type with a moderate level of noise. In particular, we derive
approximate expressions for the linear response of the Van der
Pol oscillator. In our approach the nonlinear problem of self-
sustained oscillations can thus be mapped onto an effective
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linear model that reproduces the main features of the original
system.

Furthermore, we propose a method to estimate parameter
values of the Van der Pol equation directly from time series
typically observed in experiments. By fitting empirical ob-
servations to the analytical expressions that we derive, it is
straightforward to determine the parameters of the underlying
model. To demonstrate this approach we use stochastic simu-
lations (Sec. III) and experimental data for active oscillations
of the bullfrog’s hair bundles (Sec. IV).

A general form of the Van der Pol equation that we
consider in this paper extends the harmonic oscillator by in-
troducing a nonlinear dissipative term in the equation

ẍ + aẋ + bx + cẋx2 = f (1)

for an unknown function of time x(t ) and an external force
f (t ); the constants a, b, and c are, respectively, the friction
coefficient, the stiffness, and the Van der Pol damping parame-
ter. Because the above equation is of second order in time, the
phase of this system is specified by two degrees of freedom
(x, ẋ).

The self-sustained oscillations of the Van der Pol equation
correspond to its limit-cycle solution. In the absence of the
external force f (t ), all trajectories of this system relax to a pe-
riodic orbit in the phase space. Self-sustained oscillations exist
if the friction constant in Eq. (1) is negative (a < 0). The Van
der Pol system is stable when the parameters b and c are both
positive. The amplitude of the limit cycle, which encircles
an unstable equilibrium point in the phase space, shrinks to
zero when a = 0 and disappears for a > 0. Therefore the Van
der Pol oscillator with a � 0 behaves as a monostable system.
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This dynamical regime is not studied in the present paper and
should be treated by a different approach [23, Appendix A].

Environmental noise, which intertwines with relaxation
oscillations of real systems, is often modeled by a stochastic
force f (t ) = Aẇ(t ), with a constant amplitude A > 0 and a
Gaussian white noise ẇ(t ) of zero mean and unit intensity.
One must usually resort to complex measures to determine the
model’s parameter values for this class of stochastic nonlinear
problems [15,16,20,21].

In the companion paper [23] we demonstrated that time
series of a second-order dynamical system—the stochastic
Duffing oscillator—contain enough information to infer the
parameter values of the underlying nonlinear model. Here we
extend our analysis to the case of Van der Pol relaxation oscil-
lations driven by white noise. We derive analytical expressions
for approximate solutions and time-series statistics of Eq. (1).
These formulas are then used to devise a parametric method
of inference.

Our approach is based on the functional series of Volterra
[24,25], which we expand up to the linear-response term. The
analytical results and the inference method that we propose
are therefore applicable to relatively small noise amplitudes
A; more details on the system’s physical scales are given in
Sec. III. Even in the absence of external driving, the statistical
properties of the relaxation oscillations are far from trivial.
This feature of the Van der Pol equation renders the time-
series analysis more difficult than in the case of the Duffing
oscillator [23]. Because we must also approximate the limit-
cycle solution of Eq. (1), for which no closed-form expression
is known, our development is restricted to moderate regimes
of driving noise and nonlinear behavior.

II. THEORY

A. Linear response of the Van der Pol oscillator

A Volterra series is a polynomial functional expansion of
the form

x(t | f ) = x0(t ) +
∫ t

0
dt1 g1(t − t1) f (t1)

+
∫∫ t

0
dt1dt2 g2(t − t1, t − t2) f (t1) f (t2) + ..., (2)

in which g1(t ) and g2(t ) are the Volterra kernels of the linear
and quadratic terms in the argument function f (t ). Provided
that the above series exists, a truncated expansion Eq. (2)
approximates solutions of Eq. (1) driven by a small external
force:

x(t ) � x0(t ) +
∫ t

0
dt1 g1(t − t1) f (t1) = x0(t ) + γ1(t ), (3)

in which we neglect terms of the second and higher orders in
f (t ). The functions x0(t ) and γ1(t ) can be found by using the
variational approach [23,25, Sec. 3.4], which yields a set of
equations

ẍ0 + aẋ0 + bx0 + cẋ0x2
0 = 0, (4)

γ̈1 + (
a + cx2

0

)
γ̇1 + (b + 2cẋ0x0)γ1 = f , (5)

· · ·

Equation (4), which uniquely defines x0(t ) for a given initial
condition [x(0), ẋ(0)], is equivalent to the autonomous Van
der Pol problem—Eq. (1) with f ≡ 0. The linear Eq. (5),
which determines the first-order Volterra term γ1(t ), in general
contains time-dependent coefficients.

Because the Volterra series generalizes the Taylor-
Maclaurin expansion of functions in calculus [25, Sec. 1.5],
Eq. (2) may be restricted by a radius of convergence or may
even fail to exist for some choices of x0(t ). The equilibrium
point x0(t ) ≡ 0, which is a convenient choice for the monos-
table case of Eq. (1), is unstable in the regime of relaxation
oscillations and yields a divergent kernel g1(t ). With x0(t ) ≡ 0
we therefore cannot construct an approximate representation
Eq. (3) that is valid for long time scales [23].

For the above reason we use the Volterra-series expansion
about x0(t ) that represents the stable limit-cycle solution of
Eq. (4). Because a closed-form expression of this solution
is unknown, as its approximation one may adopt a truncated
Fourier expansion x0(t ) ≈ ξ (t ) that can be obtained by various
methods [26, Sections 4.4 and 5.9]. Substituting ξ (t ) for x0(t )
in Eq. (5) we obtain then a linear problem

γ̈1 + aξ γ̇1 + bξ γ1 = f , (6)

with time-dependent periodic coefficients

aξ (t ) = a + cξ (t )2, (7)

bξ (t ) = b + 2cξ̇ (t )ξ (t ). (8)

Note that the time-dependent friction aξ (t ) and stiffness
bξ (t ) oscillate around positive average values that ensure the
stability of Eq. (6). These coefficients are statistically inde-
pendent from the driving white-noise force f (t ) at all times.
On average the response of the linear stochastic Eq. (6) can
therefore be described by effective friction and stiffness con-
stants. To implement this simplification for the quasiperiodic
term γ1(t ), in the spirit of time-averaging methods [Chap. 4 in
26,27, Sec. 9.2] we replace the periodic coefficients in Eq. (6)
by their mean values

〈aξ (t )〉 =
∫ 2π/

√
b

0

√
bdt

2π
aξ (t ), (9)

〈bξ (t )〉 =
∫ 2π/

√
b

0

√
bdt

2π
bξ (t ), (10)

in which the ensemble average of a periodic function is related
to the time average over one period 2π/

√
b. In this approxi-

mation Eq. (6) describes a harmonic oscillator γ̃ (t ) ≈ γ1(t ):

¨̃γ − 〈aξ 〉 ˙̃γ + 〈bξ 〉γ̃ = f , (11)

with the linear response function

gξ (t ) = �−1e− 〈aξ 〉t
2 sin(�t ) ≈ g1(t ), (12)

in which � = √〈bξ 〉 − 〈aξ 〉2/4. If �2 < 0, then one should
use

√〈aξ 〉2/4 − 〈bξ 〉 instead of � and replace the trigonomet-
ric sine in Eq. (12) by the hyperbolic one [28,29, Sec. II 3].
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FIG. 1. Comparison of the noisy Van der Pol oscillator x(t ) with the limit-cycle solution x0(t ) and an approximate expression ξ0(t ). The
system parameters are μ = 1 and A = 0.6 in the reduced units (Sec. III), whereas the initial conditions are set to (x, ẋ) = (α, 0). (a) Phases of
the noisy oscillations’ peaks fluctuate around the maxima of x0(t ); the theoretical expression ξ0(t ) [Eq. (A3)] captures the overall trend of the
time series x(t ). (b) Comparison of the phase-space orbits [x(t ), ẋ(t )], [x0(t ), ẋ0(t )], and [ξ0(t ), ξ̇0(t )]; the deviation of the Van der Pol limit
cycle x0(t ) from the single-mode harmonic approximation ξ0(t ) is less or comparable to the uncertainty of the trajectory x(t ).

The approximate solution of the stochastic Van der Pol
Eq. (1) is thus expressed by a sum of two independent con-
tributions ξ (t ) and γ̃ (t ),

x(t ) ≈ xξ (t ) = ξ (t ) + γ̃ (t ) = ξ (t ) +
∫ t

0
dsgξ (t − s) f (s).

(13)
The linear-response term γ̃ (t ) in the above equation has a
Gaussian probability density, with a zero mean 〈γ̃ 〉 = 0 and
an autocovariance function [28]

〈γ̃ (0)γ̃ (t )〉 = A2

2〈aξ 〉〈bξ 〉 exp

(
−〈aξ 〉t

2

)

×
[

cos(�t ) + 〈aξ 〉
2�

sin(�t )

]
. (14)

In Appendix A we derive two levels of approximations for
the autonomous term x0(t ), viz. ξ0(t ) and ξ1(t ) [Eqs. (A3)
and (A4)]. A comparison of the noisy Van der Pol oscillator
x(t ) with the limit-cycle solution x0(t ) and a single-mode
Fourier expansion ξ0(t ) is shown in Fig. 1. The trajectory
ξ0(t ) approximates well the period of oscillations and the
overall trend of the time series x(t ). For moderate values of
the noise amplitude A and the parameter μ = −a/

√
b that

controls the nonlinear character of oscillations (Sec. III), the
error of the single-mode approximation x0(t ) ≈ ξ0(t ) is less
than or comparable to the uncertainty of the trajectory x(t ).

The approximate solution xξ (t ) is limited to small noise
amplitudes not only due to the truncation error in Eq. (2). The
external stochastic force induces variations of the oscillator’s
phase φ = √

bt0 in the periodic term ξ (t ) → ξ (t − t0). This

effect of noise is especially large when the system’s trajectory
is driven close to the point (x, ẋ) = (0, 0). Crossing this point
may cause a shift through a phase angle as large as φ = π ,
which requires in general a large force f (t ).

At moderate noise amplitudes the above phase variations
average to zero [Fig. 1(a)]. Consequently, the time-invariant
statistics of xξ (t ), which is analyzed in Appendix B, agrees
with that of the noisy Van der Pol oscillator x(t ). Their time
autocorrelation functions coincide however only at small time
t (Appendix B, Fig. 6).

Finally, we remark that the approximate solution Eq. (13)
can be generated by a forced harmonic oscillator. Such a
representation provides a way to emulate self-sustained os-
cillations of the Van der Pol type by using a linear system
with a periodic driving, which is much simpler to analyze
quantitatively. This idea is demonstrated in Sec. IV.

B. Parametric inference

Equation (13), together with the analysis presented in Ap-
pendices A and B, encompasses a simple inference technique
that can be used to extract the parameter values a, b, c, and
A for Eq. (1) directly from time series of the Van der Pol
oscillator. The procedure consists of two curve-fitting steps.
First we determine the parameters a and b from the empirical
autocorrelation function of the time series x(t ). Then we ex-
tract the parameters c and A from the oscillatory trend of the
trajectory and the variance 〈x2〉, respectively.

To fit the empirical autocorrelation function χ (t ) we adopt
a theoretical Eq. (B8) from Appendix B in the form

χ (t ) � λ2
1 cos(ωt )(

λ2
1 + λ2

2

)
(1 + 5μ2/32)

{
1 + μ2

32
[4 + cos(2ωt )]

}
+ λ2

2

λ2
1 + λ2

2

e
−
(

1+ 5μ2

16

)
μωt

2

⎧⎨
⎩cos

⎡
⎣ωt

2

√
4 −

(
1 + 5μ2

16

)2

μ2

⎤
⎦

+μ

(
1 + 5μ2

16

)[
4 −

(
1 + 5μ2

16

)2

μ2

]−1/2

sin

⎡
⎣
√

4 −
(

1 + 5μ2

16

)2

μ2
ωt

2

⎤
⎦
⎫⎬
⎭. (15)
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Because the fitting constants λ2
1 ∝ 〈ξ 2〉 and λ2

2 ∝ 〈γ̃ 2〉 are de-
termined up to an arbitrary factor, they are treated as nuisance
parameters in the above expression.

Equation (15) approaches its first zero as t → τ ≈
π/(2

√
b)—approximately a quarter period of the trigonomet-

ric factors in this theoretical expression. We may then apply
the criterion of Lagarkov and Sergeev [28,30] to select the
interval 0 � t � τ over which Eq. (15) is expected to be
accurate, that is the initial decay of the empirical time autocor-
relations (Appendix B). Because this theoretical expression is
very flexible, the initial guess of the fitting constants must
be chosen with care. For the best performance we suggest
using μ � 1, ω ∼ π/(2τ ), λ1,2 ∼

√
〈x2〉/2. The parameters

of interest a = −μω and b = ω2 are then found from the
optimized values of the constants μ and ω. To estimate the
uncertainties of μ and ω we repeated the fitting procedure over
a few slightly longer intervals with τ < max t < 2τ .

In the next step of the inference method we estimate the
amplitude of the Van der Pol limit-cycle oscillations. Equa-
tion (13) decomposes the trajectory x(t ) into a sum of the
oscillatory term ξ0(t ) ≈ ξ (t ), which determines the average
trend, and the Gaussian random-error term γ̃ (t ). As discussed
in Sec. II A, the limit-cycle solution x0(t ) does not account
for the slowly fluctuating phase of the noisy Van der Pol
oscillations. As in the case of the stochastic Duffing oscillator
[23], we circumvent this issue by applying Eq. (13) locally:
the time series of x(t ) can be split into pieces x+(t ) and x−(t )
for, respectively, x(t ) > 0 and x(t ) < 0. The duration of each
component corresponds approximately to a half period π/

√
b

of ξ (t ). Then, assuming that the phase shift is constant over
one period of oscillations, we fit these pieces of the whole
trajectory to the following formula:

x0(t ) � ξ0(t − t0) = αc cos(
√

bt ) + αs sin(
√

bt ), (16)

in which

αc = α cos(
√

bt0), αs = α sin(
√

bt0), (17)

cf. Eq. (A3) in Appendix A. Note that the constant b in
Eq. (16) is fixed to the value estimated from the first step of the
method. We also ensure that fitted trajectories have a minimal
duration of πb−1/2/2.

From the optimized values of the fitting constants αc and
αs, we obtain the amplitude of limit-cycle oscillations and the
remaining parameters of interest:

α =
√

α2
c + α2

s , c = −4a

α2
, A =

√
ab(2〈x2〉 − α2), (18)

in which 〈x2〉 is the sample variance of the empirical time
series x(t ). The parameter α and its uncertainty are determined
by averaging over all trajectory pieces x±(t ).

The numerical error of fitting the approximate Eq. (16) to
trajectory pieces x±(t ) eventually may exceed the uncertainty
of the driving noise f (t ). Therefore, when the autonomous
term ξ0(t ) ∝ α dominates the statistical variability of the data,
a small noise amplitude A → 0 cannot be inferred accurately.
Unfortunately, a more elaborate approximation ξ (t ) � ξ1(t −
t0) [Appendix A, Eq. (A4)] cannot address this issue. Because

TABLE I. Inference of the Van der Pol oscillator’s parameter
values from time series of Eq. (1) that was simulated with a = −1,
b = 1, and c = 1 fixed and A varied in the range [0,1.2]. The esti-
mated parameter values are denoted by â, b̂, ĉ, and Â, respectively.

Â â b̂ ĉ Â

0.0 −0.97 ± 0.01 0.891 ± 0.003 0.94 ± 0.01 0.218 ± 0.002
0.2 −0.97 ± 0.02 0.890 ± 0.004 0.95 ± 0.02 0.26 ± 0.04
0.4 −0.98 ± 0.02 0.899 ± 0.004 0.97 ± 0.02 0.36 ± 0.05
0.6 −1.01 ± 0.02 0.912 ± 0.004 1.02 ± 0.03 0.55 ± 0.06
0.8 −1.02 ± 0.03 0.929 ± 0.005 1.07 ± 0.04 0.76 ± 0.06
1.0 −1.04 ± 0.03 0.941 ± 0.007 1.12 ± 0.05 0.97 ± 0.06
1.2 −1.06 ± 0.03 0.96 ± 0.01 1.17 ± 0.04 1.16 ± 0.06

Fourier series are able to match almost any curve arbitrar-
ily closely with a sufficient number of terms, the truncated
higher-order expansion ξ1(t ) overfits noisy trajectories of x(t ).

III. NUMERICAL EXAMPLE

In the system of units reduced by a time constant b−1/2 and
a length constant

√−a/c, Eq. (1) takes a canonical form [3,
Secs. 7.4 and 7.5],

ẍ − μ(1 − x2)ẋ + x = A

b
√−a/c

ẇ, (19)

in which the parameter μ = −a/
√

b controls the nonlinear
character of the dynamics. The greater its value, the larger
is the amplitude of the relaxation oscillations. This parameter
represents the ratio of two time scales b−1/2 and −a = μb−1/2.

Two control parameters of Eq. (19) that are not fixed in the
system of reduced units are μ and A. Without external driving,
the Van der Pol oscillator, which orbits around the origin of the
phase space with the amplitude α = 2

√−a/c in the harmonic
potential U (x) = bx2/2 [Fig. 1], has an energy scale

U (α) = bα2/2 = 2μb3/2/c.

The energy scale of the external force f (t ) = Aẇ(t ) is A2/
√

b.
One might therefore expect the small-force expansion Eq. (3)
to hold for

A <

√√
bU (α) = b

√
2μ/c,

which relates the two control parameters of Eq. (19) A and μ.
To test the theory presented in the previous section, we

simulated Eq. (1) for selected values of noise amplitudes A.
The computational details are summarized in Appendix C.
As a typical value we choose to fix the parameter μ = 1. For
increasingly large values of μ Eq. (16) becomes progressively
less accurate. The techniques that we propose in the present
paper should work also for μ > 1, but their precision dete-
riorates for larger values of this parameter. In full detail we
discuss the accuracy of the derived theoretical expression in
Appendices A and B.

The efficiency of the parametric-inference method that we
described in Sec. II B is demonstrated by Table I. Our ap-
proach renders best estimates of the model parameters at a
moderate level of noise 0.2 < A < 1.2. On one side, as the
truncation error of Eq. (2) grows with the amplitude A, the
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FIG. 2. Qualitative comparision of three models for hair-cell bundle oscillations with the experimental data. (a) The simple Van der Pol
Eq. (1) does not reproduce oscillatory features of the experimental measurements. (b) The hidden Van der Pol Eqs. (20)–(21) capture the
general character of the hair bundle’s oscillations. (c) The effective linear Eqs. (20) and (D19) generally agree with the experimental data, but
overestimate slightly the peak values of hair bundle’s noisy oscillations.

nonlinear effects become increasingly important. On the other
side, because relaxation oscillations have nontrivial statistics
even in the absence of external forces, it is difficult to dis-
criminate between the numerical errors of fitting approximate
expressions and the stochastic uncertainty of the driving noise.

Except for the marginal cases of small and large noise am-
plitudes A, the values of all parameters in Table I are accurate
within 15%. The constant b is determined with the largest
bias, because our theoretical expressions overestimate the fre-
quency of the Van der Pol limit-cycle oscillations [Figs. 1(a)
and 4(a)]. We remark that the value of the parameter μ con-
trolling the nonlinear character of the dynamics is estimated
within a ten-percent error.

IV. EXPERIMENTAL APPLICATION

This section demonstrates how the theory of Sec. II can be
applied to analyze an actual physical system and experimen-
tal data. We consider an example from biophysics: various
models with a limit-cycle behavior have been proposed
to describe self-sustained oscillations of a hair bundle—a
mechanosensitive organelle of the receptor cells in the in-
ner ear of vertebrates. The spontaneous oscillatory motion
of the hair bundle’s position has been related to an active
process in the ear that amplifies acoustic signals, sharpens
frequency selectivity, and broadens the operational dynamic
range [31]. Theoretical and experimental investigations have
demonstrated that these active oscillations emerge from the
nonlinearity of the hair bundle’s stiffness and an adaptation
process powered by molecular motors [31–38]. The oscilla-
tory frequency is set by a nontrivial combination of different
system parameters describing the nonlinearity and the adap-
tation mechanism [37]. Essentially, the hair bundle performs
work to overcome the drag force of the surrounding fluid and
oscillates at a natural frequency that is characteristic for its
sharp tuning, compressive nonlinearity, and amplification of a
mechanical stimulus [39].

To apply our theory to time series of a hair bundle’s oscilla-
tion, we recorded the movement of a bundle as described pre-
viously in Refs. [32,40,41]. In brief, a dissected mechanosen-
sitive epithelium of a bullfrog’s sacculus was mounted be-
tween two chambers, each filled with a different ionic solution
to mimic the physiological condition of the inner ear. Under
these conditions, the hair bundles of healthy cells display
spontaneous, robust oscillations with a broad frequency distri-
bution up to 100 Hz [42]. We observed oscillating hair bundles
under an upright microscope with differential-interference-
contrast optics. Because slowly oscillating bundles are easy to
identify visually, we directly projected a high-contrast image
of such a hair bundle onto a dual photodiode. After low-pass
filtering at 4 kHz, the calibrated signal of the photodiode
reported the bundle’s position in time [43]. Recently proposed
models of these oscillations [34–37] can be explicitly related
to the class of Lienard systems. Among others, the simple Van
der Pol Eq. (1) has also been considered to describe the active
process in the hearing organs [44].

Using our theoretical approach, we address two problems
of modeling active oscillations of a hair cell’s bundle: (i) Can
the simple Van der Pol Eq. (1) explain experimental time
series of these oscillations? And, if not, (ii) is it possible
to relate the hair-cell bundle oscillations to the Van der Pol
equation in a more general setting?

Our answer to the first of the two above questions is neg-
ative. If we suppose that our experimental observations of
x(t ) come from the Van der Pol oscillator, then the method
of Sec. II B is applicable to our data directly, as presented. A
simulation of Eq. (1) with thus obtained parameter values is
compared with our experimental data in Fig. 2(a). Evidently
the time series of a simple Van der Pol model does not resem-
ble the oscillations of a hair-cell bundle.

By using few simplifying assumptions, the alternative
models mentioned above [34–37] can be reduced to a form
that is directly related to Eq. (1). A convenient scheme is a
linear coupling between the coordinate x(t ) and a hidden Van
der Pol oscillator z(t ). For a detailed demonstration of our
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FIG. 3. Comparison between the experimental data and simulations of the three theoretical models: the hidden Van der Pol Eqs. (20) and
(21), the effective linear Eqs. (20) and (D19), and the simple Van der Pol Eq. (1). (a) The empirical temporal autocorrelation function χ̃ (t ) of
the hidden Van der Pol model agrees with the experiments over one oscillatory period, whereas at longer time scales a relative phase difference
accumulates. By design the linear model reproduces only the initial decay of the temporal autocorrelation (shaded area) and the frequency,
whereas the Van der Pol oscillator fails to match any feature of the experimental curve. (b) The empirical power spectra of the time series
emphasize the quantitative agreement between the experiments and the hidden Van der Pol oscillator. We estimate the peak frequencies and the
quality factors of these spectra by fitting the Lorentzian curve to our data (see text). The peak frequencies of the experiment (6.16 ± 0.26 rad/s)
and of the hidden Van der Pol system (6.57 ± 0.16 rad/s) lie close to the limit-cycle frequency ν = ω = 6.98 rad/s, at which the linear effective
model displays a singularity and its quality factor diverges. In this latter case we therefore mark the Lorentzian-curve fit by dashing. Inset: the
quality factors of the experimental data (Q = 1.64 ± 0.22) and the simulations of the Van der Pol oscillator (Q = 1.84 ± 0.14) are similar. The
error bars represent three standard deviations.

approach we choose a simple scheme, which is based on a
parsimonious model of Ref. [37]:

ẋ = ż + cxz, (20)

z̈ + aż + bz + cżz2 = Aẅ, (21)

in which cx is the coupling constant, whereas a, b, and
c are analogous to Eq. (1). Note the double overdot on

the right-hand side of Eq. (21). We spare the mathe-
matical and numerical details of Eqs. (20) and (21) for
Appendix D.

Extension of the theory presented in Sec. II is quite
straightforward. Because our example regards a drastic ap-
proximation of the original system, for simplicity we provide
below only the formulas derived from the zeroth-order ap-
proximation of the Van der Pol limit cycle [Eq. (A3)]. For
the hair bundle’s position we obtain an equation analogous to

FIG. 4. Comparison of the approximate solution ξ0(t ) and ξ1(t ) given by Eqs. (A3) and (A4), respectively, with a simulation of the
autonomous Van der Pol Eq. (4): (a) time series of the limit-cycle solution, (b) orbit of the oscillator’s limit cycle in the phase space (x0, ẋ0).
The simulation parameters are μ = 1, A = 0, [x0(0), ẋ0(0)] = (2, 0) (Appendix C). The two approximate expressions match the simulated

trajectory in panel (a) over a time interval of one period t � 2π/
√

b ≈ 6.28. However, the asymmetric features of the oscillator’s limit cycle
are reproduced only by Eq. (A4).
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Eq. (13):

x(t ) � ζ (t ) + ζ̃ (t ), (22)

in which ζ (t ) and ζ̃ (t ) are the autonomous and the linear-
response terms analogous to ξ (t ) and γ̃ (t ). Instead of Eq. (16)
we obtain from Eqs. (20) and (A3),

ζ (t − t0) = α cos[
√

b(t − t0)] + αcx

∫ t−t0

0
ds cos(

√
bs)

= α̃c cos(
√

bt ) + α̃s sin(
√

bt ), (23)

in which α̃c = αc − καs, α̃s = αs + καc, κ = cx/
√

b; and in-
stead of Eq. (15) we get

χ̃ (t ) = λ2
1

λ2
1 + λ2

2

cos(ωt ) + λ2
2

λ2
1 + λ2

2

× exp

(
−μωt

2

)[
cos

(√
4 − μ2

ωt

2

)

+ μ(κ2 − 1)√
4 − μ2(κ2 + 1)

sin

(√
4 − μ2

ωt

2

)]
. (24)

In addition we must replace the expressions for α and A in
Eq. (18) by

α =
√

α̃2
c + α̃2

s

(1 + κ2)
, (25)

A =
√

−a

(
2〈x2〉

1 + κ2
− α2

)
. (26)

By fitting the empirical autocorrelations and the oscillatory
trend of the experimental measurements with the above for-
mulas, we have inferred all the parameter values for Eqs. (20)
and (21). In contrast to the simple Van der Pol model, as
illustrated in Figs. 2(a) and 2(b), these dynamical equations
reproduce closely the character of the hair bundle’s oscilla-
tions and their frequency, despite the strong assumptions used
to simplify the original model of Ref. [37].

Finally, as anticipated in Sec. II A, we present below an
effective linear model that imitates the self-sustained oscilla-
tions generated by the nonlinear system of Eqs. (20) and (21).
One may recognize that the Gaussian term ζ̃ (t ) in Eq. (22)
[as well as γ̃ (t ) in Eq. (13)] represents a harmonic oscillator
driven by a white-noise signal. If we apply to this oscillator
a specifically designed deterministic force, then on top of the
stochastic fluctuations we can elicit a response composed of
the same Fourier modes that are present in the term ζ (t ) [or
ξ (t )].

The above program is implemented by coupling Eq. (20)
to Eq. (D19) that is derived in Appendix D. The exact
steady-state solution of this linear system, whose simulation is
compared with the experimental data in Fig. 2(c), is then given
by Eq. (22). The time series of the dynamical Eqs. (20) and
(D19) are nearly indistinguishable from the original system
Eqs. (20) and (21).

The empirical temporal autocorrelation functions of the
experimental system and the three models discussed above
are compared in Fig. 3(a). The Van der Pol oscillator does
not match the observations at all, whereas the system with

the hidden Van der Pol oscillator agrees with the experimental
data over one oscillatory period. As discussed above, the time
autocorrelations do not decay to zero in the linear imitation
model, which therefore reproduces only the initial decay of
the curve and the frequency of oscillations.

To quantify the agreement between the fitted models and
the experimental observations, we calculated the empirical
power spectra S(ν) of the respective time series [Fig. 3(b)]
using ten blocks of 2.5 s with an overlap of 1.7 s and a Ham-
ming smoothing window [45]. The results were then fitted to a
Lorentzian profile S(ν) ∝ [1 − (ν − ν̄)2/�ν2]−1 to estimate
the peak frequency ν̄ and the quality factor Q = ν̄/(2�ν)
[36]. By virtue of the Wiener-Khinchin theorem, the power
spectra are Fourier images of the temporal autocorrelation
functions, and therefore provide an equivalent quantitative
representation of the temporal statistics for our data.

The time series of the hidden Van der Pol model and the
experimental observations have similar peak frequencies and
quality factors [Fig. 3(b)]. Due to the decay of the temporal
autocorrelation function, the maximal values of these power
spectra are slightly smaller than the frequency of the limit cy-
cle ν = ω. The power spectrum of the linear imitation model
tends to infinity exactly at the limit-cycle frequency, because
this oscillatory mode of the respective temporal autocorrela-
tion function never decays. Consequently, the quality factor of
the effective linear system diverges as well.

More advanced models of the hair-cell bundle oscillations
can also be analyzed with help of the methods proposed
in this paper. These developments, which require additional
mathematical details, will be a subject of our future commu-
nications.

V. CONCLUSION

Using the Volterra series we have analyzed statistical fea-
tures of a noisy Van der Pol equation. Perhaps surprisingly,
its solution can be decomposed within the linear order of
the driving force into two independent contributions: a de-
terministic part that describes relaxation oscillations, and a
stochastic linear-response term. With help of simple approxi-
mation schemes we showed that the deterministic contribution
has a singular probability density, whereas the stochastic part
can be described by a Gaussian process with a second-order
autocorrelation function.

Volterra series provide a representation of solutions for
nonlinear stochastic equations. Other theoretical approaches,
such as the Fokker-Planck equation and path integrals, focus
instead on statistical properties of an ensemble of systems’
realizations and offer less information about their dynam-
ics. The theoretical tools may complement each other; for
instance, the Volterra series may be used to an advantage in er-
godic problems when time averaging is more convenient than
ensemble averaging for the evaluation of statistical properties.

The inference method based on our analytical results al-
lows us to estimate parameter values of the stochastic Van
der Pol model from observed time series of oscillations for
moderate levels of the driving noise. However, due to the
approximate nature of our theoretical expressions, this method
cannot determine accurately values of small noise amplitudes.
Two problems pose the major challenge for the Volterra-series
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approach here: finding a faithful representation of the Van der
Pol limit-cycle solution and modeling the fluctuating phase of
noisy oscillations. The latter issue is perhaps more pressing.
A viable approach to the problem of fluctuating phase could
be to study Eq. (1) in polar coordinates [46].

In a simplified case study we have demonstrated that our
theory can be applied to analyze real physical systems. In
particular, the Volterra-series approach offers a method of
constructing a linear model that imitates the dynamics of self-
sustatined oscillations. Albeit approximate, this imitation can
be used to simplify quantitative studies of complex systems.

APPENDIX A: LIMIT-CYCLE SOLUTION OF THE
AUTONOMOUS VAN DER POL OSCILLATOR

In this Appendix we derive two levels of approxima-
tion for the limit-cycle solution of the autonomous Van der
Pol problem. Although these two expressions can be ob-
tained by using the harmonic-balance and Lindstedt-Poincare
methods, respectively, we adopt here a unifying variational
Green-function approach, which is similar in spirit to that of
Refs. [47,48]. Equation (4) that we are solving can be recast
as

Lωx0 = −aẋ0 − (b − ω2)x0 − cẋ0x2
0, (A1)

in which Lω = ∂2
t + ω2 is a linear differential operator with

a constant frequency parameter ω > 0. As in the harmonic-
balance and Lindstedt-Poincare methods [26, Secs. 4.4 and
5.9], we use the initial condition [x0(0), ẋ0(0)] = (α, 0) with
α left unspecified. The solution of Eq. (A1) must then satisfy

x0(t ) =ξ0(t ) −
∫ t

0
gω(t − s)

× [
aẋ0(s) + (b − ω2)x0(s) + cẋ0(s)x2

0 (s)
]

=α cos(ωt ) − sin(ωt )

ω

∫ t

0
cos(ωs)

× [
aẋ0(s) + (b − ω2)x0(s) + cẋ0(s)x2

0 (s)
]

+ cos(ωt )

ω

∫ t

0
sin(ωs)

× [
aẋ0(s) + (b − ω2)x0(s) + cẋ0(s)x2

0 (s)
]
, (A2)

in which ξ0(t ) = α cos(ωt ) solves the equation Lωξ0 = 0,
whereas gω(t ) = sin(ωt )/ω is the Green function associated
with the operator Lω.

In the first approximation we posit a single-mode Fourier
expansion x0(t ) ≈ ξ0(t ). In order that the right-hand side
of Eq. (A2) would satisfy the periodic boundary condition
x(0) = x(2π/ω), one must choose

ξ0(t ) = α cos(
√

bt ), (A3)

with α = 2
√−a/c. Alternatively this solution can be obtained

by the method of harmonic balance [26, Sec. 4.4].

The single-mode solution ξ0(t ) can be further improved by
one Picard iteration: we substitute ξ0(t ) for x0(t ) on the right-
hand side of Eq. (A2) and complete the integration to get

ξ1(t ) = α

[
cos(

√
bt ) + 3μ

8
sin(

√
bt ) − μ

8
sin(3

√
bt )

]
.

(A4)
The above expression coincides with the perturbative solution
that can be obtained by the Lindstedt-Poincare method of
two time scales within the linear order of the parameter μ =
−a/

√
b (Sec. III). With respect to this parameter, Eq. (A2)

represents the zeroth-order approximation of the limit cycle.
The two-timing solution ξ1(t ) reproduces better the asym-

metric trajectory of the Van der Pol limit cycle (Fig. 4) than
ξ0(t ). Both Eqs. (A3) and (A4) have the same frequency
of oscillations ω = √

b[1 + O(μ2)], whose corrections are of
quadratic order in the parameter μ [3, Sec. 7.6]. As discussed
in the following Appendix, Eq. (A3) is more convenient to
describe time-invariant statistics of the response terms ξ (t )
and γξ in Eq. (13), whereas Eq. (A4) yields a more accurate
expression for the time autocorrelation function.

APPENDIX B: STATISTICAL PROPERTIES OF NOISY
RELAXATION OSCILLATIONS

Even in the absence of the external force f (t ) in Eq. (1),
relaxation oscillations of the Van der Pol oscillator have non-
trivial statistics. In the case of the zeroth-order approximate
solution x0(t ) ≈ ξ0(t ) [Eq. (A3)] we can find an exact prob-
ability distribution p(ξ0), which is given by the arcsine law
[49, Chapters 16 and 17]—a special case of β distributions
with the support interval shifted by −1/2 and scaled by 2α:

p(ξ0) = d

πdξ0

[
arcsin

(
ξ0

α

)
− π

2

]
= (πα)−1√

1 − ξ 2
0 /α

. (B1)

Statistics of ξ0(t ) can also be evaluated by time averaging

〈ξ0〉 =
∫ 2π/

√
b

0

√
bds

2π
ξ0(s) = 0,

〈
ξ 2

0

〉 = α2

2
, (B2)

〈ξ0(0)ξ0(t )〉 =
∫ 2π/

√
b

0

√
bds

2π
ξ0(s)ξ0(s + t )

= 〈
ξ 2

0

〉
cos(

√
bt ). (B3)

The probability density of ξ0(t ) has two singularities at
the ends of its support interval ξ0 = ±α. Histograms of the
time series ξ0(t ), as well as of x0(t ), have two distribution
modes near these points. In the companion paper [23] we
have succeeded in fitting a bimodal probability density of the
noisy Duffing oscillator to an approximate expression that
was derived from a power series for the exponential family
of random variables. This approach unfortunately fails in the
case of the noisy Van der Pol oscillator: such an expansion
may not exist near the two singularities at which p(ξ0) tends
to infinity.

For the probability density of xξ (t ) [Eq. (13)], regarded as
the sum of two independent variables ξ (t ) � ξ0(t ) and γ̃ (t ),
there is no simple analytical expression. However the Fourier
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FIG. 5. Comparison of the theoretical expression given by Eq. (B4) with the empirical characteristic function η(Xξ ) obtained by simulating
the Van der Pol Eq. (1). The system parameters are: (a) μ = 1, A = 0.0 and (b) μ = 1, A = 0.6. In these examples the theory is accurate at
least for Xξ � 〈x2〉−1/2 ≈ 0.7.

image η(Xξ )—the characteristic function of xξ for the recip-
rocal variable Xξ —can be obtained in a closed form. Because
γ̃ (t ) is Gaussian, we have

η(Xξ ) = 〈eiXξ xξ 〉 = J0(αXξ ) exp

(
− A2X 2

ξ

4〈aξ 〉〈bξ 〉

)
, (B4)

in which

J0(αXξ ) =
∫ 2π/

√
b

0

√
bds

2π
eiXξ ξ0(s)

is the characteristic function of ξ0(t ) with J0(·) being the
zeroth-order Bessel function of the first kind. Using ξ (t ) �
ξ0(t ) in Eqs. (9) and (10) we get 〈aξ 〉 ≈ −a and 〈bξ 〉 = b.

In Fig. 5 we compare the empirical characteristic function
of x(t ) with Eq. (B4) for two representative examples. Our
analytical expression for η(Xξ ) is accurate at least for Xξ �
〈x〉−1/2 even for large noise amplitudes A. The theory is in
excellent agreement with the simulations for A ≡ 0.

Although we have not obtained analytical expressions anal-
ogous to Eqs. (B1) and (B4) for the first-order approximate
solution ξ1(t ), its autocovariance function can be evaluated by
time averaging:

〈ξ1(0)ξ1(t )〉 =
∫ 2π/

√
b

0

√
bds

2π
ξ1(s)ξ1(s + t )

= 〈
ξ 2

1

〉 cos(
√

bt )

1 + 5μ2/32

{
1 + μ2

32
[4 + cos(2

√
bt )]

}
,

(B5)

in which 〈ξ 2
1 〉 = (1 + 5μ2/32)α2/2.

Our simulations show that the theoretical expressions
based on the linear-order approximation ξ (t ) � ξ1(t ) overes-
timate the variance of the autonomous term x0(t ), as well as of
the noisy oscillations x(t ). This discrepancy might be caused
by a broader orbit of ξ1(t ) in the phase space, as compared to
x0(t ) and ξ0(t ) [Fig. 4(b)]. Because the solution ξ0(t ) provides
a more accurate estimate of the variance 〈x2

0〉, Eq. (18) is based
on Eq. (A3).

As the terms ξ (t ) and γ̃ (t ) in Eq. (13) are statistically
independent, the autocorrelation function of xξ (t ) is given

simply by

χξ (t ) = 〈xξ (0)xξ (t )〉〈
x2
ξ

〉 = 〈ξ (0)ξ (t )〉 + 〈γ̃ (0)γ̃ (t )〉
〈ξ 2〉 + 〈γ̃ 2〉 . (B6)

Approximating ξ (t ) by ξ0(t ) and ξ1(t ) we obtain, respectively,

χ0(t ) =
〈
ξ 2

0

〉
〈
ξ 2

0

〉+ 〈
γ̃ 2

0

〉 cos(
√

bt ) +
〈
γ̃ 2

0

〉
〈
ξ 2

0

〉+ 〈
γ̃ 2

0

〉
× e− a0t

2

[
cos(�0t ) + a0

2�0
sin(�0t )

]
, (B7)

χ1(t ) =
〈
ξ 2

1

〉
〈
ξ 2

1

〉+ 〈
γ̃ 2

1

〉 × cos(
√

bt )

1 + 5μ2/32

×
{

1 + μ2

32
[4 + cos(2

√
bt )]

}
+

〈
γ̃ 2

1

〉
〈
ξ 2

1

〉+ 〈
γ̃ 2

1

〉
× e− a1t

2

[
cos(�1t ) + a1

2�1
sin(�1t )

]
, (B8)

in which

a0 = μ
√

b, a1 = μ
√

b(1 + 5μ2/16), (B9)

�0 =
√

b2 − a2
0/4, �1 =

√
b2 − a2

1/4, (B10)

〈
γ̃ 2

0

〉 = A2

2a0b

〈
γ̃ 2

1

〉 = A2

2a1b
. (B11)

In Fig. 6 the empirical autocorrelation function χ (t ) ob-
tained from simulations of Eq. (1) is compared with the
theoretical curve χ1(t ). To avoid redundancy, we do not
reproduce the plot of χ0(t ) [Eq. (B7)], which is almost in-
distinguishable from that of χ1(t ). Our theoretical expression
predicts well the initial decay of the empirical time auto-
correlation function, although a moderate phase difference
accumulates at longer times.

As discussed in Sec. II A, the approximate Eq. (13) does
not account for the fluctuating phase shift of the noisy os-
cillations that occur in presence of the driving force f (t )
and vanish as A → 0. These stochastic phase variations ac-
cumulate slowly and decorrelate the time series of x(t ).
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FIG. 6. Comparison of the theoretical expression χ1(t ) [Eq. (1)]
with the empirical time autocorrelation function χ (t ) obtained from
simulations of the Van der Pol Eq. (1). The system parameters are
μ = 1, A = 0.6. The agreement is good in the shaded region selected
by the criterion of Lagarkov and Sergeev (Sec. II B).

Consequently the empirical autocorrelation function χ (t ) de-
cays to zero as t → ∞ (Fig. 6) unless f (t ) ≡ 0. This decay
becomes faster as the noise amplitude A increases. The persis-
tent periodic terms ∝ cos2(

√
bt ) in Eqs. (B7) and (B8), whose

amplitude is constant, are therefore accurate only at small time
scales.

Although graphs of Eqs. (B7) (not reproduced in Fig. 6)
and (B8) are indistinguishable, fitting the latter expression to
empirical time autocorrelations (Sec. II B) performs better,
because it provides tighter constraints on the parameter μ.
Fitting Eq. (B7), in which the first term ∝ cos2(

√
bt ) depends

only on the parameter b, yields less accurate estimates of the
constant μ.

APPENDIX C: SIMULATION ALGORITHM

In our computational experiments we use a companion
system of Eq. (1) with X = (x, y) = (x, ẋ):{

ẋ = y
ẏ = −(a + cx2)y − bx + f (t )

. (C1)

We adopt a second-order operator-splitting approach [50] for
stochastic systems [23,51, Appendix C], by decomposing the
time-evolution operator T as

Ẋ = T X = (T f + Ty + Tx )X , (C2)

in which

Tx = y∂x, Ty = −(a + cx2)y∂y, T f = ( f − bx)∂y.

The formal solution of Eq. (C2) for a time step �t,

X (t + �t ) = exp(T �t )X (t ),

can be approximated by

exp[T �t + O(�t2)]

= exp

(Tx�t

2

)
exp

(Ty�t

2

)
exp(T f �t )

× exp

(Ty�t

2

)
exp

(Tx�t

2

)
. (C3)

The action of individual operators of the form exp(L�t ) is
determined by the differential equation

Ẋ (t ) = LX (t ) ⇒ X (t + �t ) = exp(L�t )X (t ). (C4)

The operators Tx, Ty, and Tf produce linear equations of the
above type and their action is given by The composite operator
Eq. (C3) then leads to the following integration algorithm for
Eq. (C2):

e
tTx

2 (x, y) =
(

x + y
�t

2
, y

)
,

e
tTy

2 (x, y) =
(

x, ye− (a+cx)�t
2

)
,

etT f (x, z) =
(

x, y + bx2�t +
∫ �t

0
ds f (s)

)
.

For each value of the parameter A, the simulations reported
in Sec. III involved 5 × 105 time steps of a size �t = 0.01
in the reduced units. Statistics were calculated from single
trajectories sampled at time intervals of 0.05, which included
105 observations.

APPENDIX D: HIDDEN VAN DER POL MODEL FOR
HAIR-CELL BUNDLE OSCILLATIONS

In this Appendix we reduce the parsimonious model of
hair-cell bundle oscillations [37] to a simple form of a linear
oscillator x(t ) coupled to a hidden Van der Pol oscillator z(t )
[Eqs. (20) and (21)]. The starting point of our derivation is a
system of equations for (x, y) [37, cf. Eqs. (1) and (S6)]:

Mẍ = −�ẋ − K0x + K1(x − y) − B0(x − y)3 + F, (D1)

τ0ẏ = K2x − K3y, (D2)

in which M and x(t ) are the mass and the position of the
hair bundle, y(t ) is an adaptation coordinate, K0 > 0, K1 > 0,
K2 > 0, K3 > 0, and B0 > 0 are elastic constants, whereas
� > 0, τ0 > 0, and F (t ) are, respectively, a friction coeffi-
cient, a relaxation time of the adaptation coordinate y, and an
external force.

We proceed by taking the overdamped limit of Eq. (D1)
M/� → 0 and substituting a simplifying assumption K2 ≈ K3

into Eq. (D2):

ẋ = −k0x + k1(x − y) − b0(x − y)3 + f , (D3)

ẏ = cx(x − y), (D4)

in which ki=0,2 = Ki=0,1/�, cx = K2/�, b0 = B0/�, and
f (t ) = F (t )/�. Next we use a substitution of variables z =
x − y, which transforms Eqs. (D3) and (D4) into

ẋ = −k0x + k1z − b0z3 + f , (D5)

ẋ − ż = cxz. (D6)

By subtracting the second of the above equations from the first
one, we can recast our original system (x, y) into a system
(x, z):

ẋ = −k0x + k1z − b0z3 + f , (D7)

ż = −k0x − (cx − k1)z − b0z3 + f . (D8)
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Further, we use Eq. (D8) and its time derivative to express k0x
and k0ẋ, respectively, as

k0x = −ż − (cx − k1)z − b0z3 + f , (D9)

k0ẋ = −z̈ − (cx − k1)ż − 3b0z2ż + ḟ . (D10)

Then we use the above equations to eliminate ẋ and x from
Eq. (D7) and, thus, obtain

z̈ + (k0 − k1 + cx )ż + k0cxz + 3b0z2ż = ḟ . (D11)

If in the last equation we identify

a = k0 − k1 + cx, b = k0cx, c = 3b0, f = aẇ,

then we obtain Eq. (21)—the hidden Van der Pol oscillator.
Equation (D6) entails the linear coupling between x(t ) and
z(t ) [Eq. (20)].

In simulations we integrate Eqs. (D7) and (D8) using a
decomposition of the time evolution operator T :

(ẋ, ż) = T (x, z) = (T f + Nz + Lz + Lx )X , (D12)

in which

Lx = (k1z − b0z3 − k0x)∂x, (D13)

Lz = −(k0x + kzz)∂z, (D14)

Nz = −b0z3∂z, T f = f (∂x + ∂z), (D15)

and kz = cx − k1. Up to the second order in t we then have

etT +O(t2 ) = e
tLx

2 e
tLz

2 e
tNz

2 etT f e
tNz

2 e
tLz

2 e
tLx

2 , (D16)

in which the action of individual operators is

e
tLx

2 (x, z) =
[

xe− k0t
2 + k1z − b0z3

k0
(1 − e− k0t

2 ), z

]
,

e
tLz

2 (x, z) =
[

x, ze− kzt
2 − k0x

kz
(1 − e− kzt

2 )

]
,

e
tNz

2 (x, z) =
(

x,
z√

1 + z2b0t

)
,

etT f (x, z) =
(

x +
∫ t

0
ds f , z +

∫ t

0
ds f

)
.

As proposed in Sec. IV, the dynamical Eqs. (D3)–(D11)
can be imitated by a driven harmonic oscillator. To implement
this idea we replace the cubic nonlinear term of the original
problem by a deterministic active force fa(t ) = αa cos(ωat ) +
βa sin(ωat ) and a compensatory linear term �k(x − y) with
real constants αa, βa, ωa, �k:

ẋ = −k0x + kxy(x − y) + fa + f , (D17)

ẏ = cx(x − y), (D18)

in which kxy = k1 + �k. By requiring that the steady-state
solution of the above system is given by Eq. (22), we find

αa = μ
√

bα, βa = 0, ωa =
√

b, kxy = k0 + cx − μ
√

b.

Instead of Eq. (D11) we then obtain

z̈ + μ
√

bż + bz = ḟa + ḟ , (D19)

whereas the linear coupling Eq. (20) remains unaltered.
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