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Quantum chaos in a system with high degree of symmetries
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We study dynamical signatures of quantum chaos in one of the most relevant models in many-body quantum
mechanics, the Bose-Hubbard model, whose high degree of symmetries yields a large number of invariant
subspaces and degenerate energy levels. The standard procedure to reveal signatures of quantum chaos requires
classifying the energy levels according to their symmetries, which may be experimentally and theoretically
challenging. We show that this classification is not necessary to observe manifestations of spectral correlations in
the temporal evolution of the survival probability, which makes this quantity a powerful tool in the identification
of chaotic many-body quantum systems.
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I. INTRODUCTION

Symmetries play an important role in the description of
physical systems, helping to simplify their description and
temporal evolution. In classical dynamics they are useful to
find the coordinates providing the simplest description, and
in the many-body quantum domain they allow us to divide the
Hilbert space in unconnected subspaces, strongly reducing the
dimensionality of the problem. Degeneration of energy levels
is rare in Hamiltonian systems, usually reflecting the existence
of symmetries in them [1,2].

Quantum chaos refers to quantum signatures of classically
chaotic systems and their universal properties associated with
random matrix theory. In the presence of these properties,
quantum systems with no classical analogues are also referred
to as chaotic quantum systems [2–4]. Among quantum chaos
diagnoses, one of the most popular is spectral statistics, which
requires the classification of the levels by their symmetry
properties [5–7]. In systems with many symmetries, this pro-
cess can be very demanding on the theoretical side, and very
difficult to implement in experimental studies. For example,
in the Bose-Hubbard model (BHM), which is the system that
we analyze here, the number of symmetry subspaces is at least
as large as the number of sites in the lattice.

The BHM is the simplest description of a set of spin-less
bosons with onsite interactions in a lattice. It was the first
strongly correlated lattice model being realized with ultra-
cold atoms and in which a quantum phase transition was
observed [8]. Due to the high degree of controllability and
new observational tools, which enable the detection of each
individual atom, the model is employed to describe experi-
mental quantum simulations, quantum thermalization and in
recent years quantum virtual cooling [9–14].

The spectral properties associated with quantum chaos in
the BHM were studied by Kolovsky and Buchleitner [15].
Lubasch studied measures to explore the relation between
quantum chaos and entanglement [16]. Semiclassical analysis

connected with interfering paths in Fock space were presented
in Ref. [17], with periodic mean field solutions in [18] and
with Bloch oscillations in Ref. [19]. The out-of-time-order
correlator (OTOC) and the Lyapunov exponent have also
been studied [20] and the statistical distance between initially
similar number distributions has been proposed as a reliable
measure to distinguish regular from chaotic behavior in a
Bose-Hubbard dimer [21]. Recently the half-chain entangle-
ment entropy has been used like an indicator of ergodicity
breaking in the clean Bose-Hubbard chain [22].

In the present work we use the survival probability, a dy-
namical observable, to identify quantum chaos in the BHM.
The survival probability is the probability to find the system
in its initial state at time t . In chaotic systems, it exhibits
a correlation hole of universal character at long times. This
corresponds to a dip below the saturation value of the dynam-
ics reached at even longer times. The correlation hole was
proposed in Ref. [23] as a way to detect level repulsion in
molecules [24–26], where the experimental line resolution is
not as good as in nuclear physics. The idea was that, even
if the experiment would miss some of the lines, the hole
would still indicate if the eigenvalues were correlated or not.
It can be described analytically employing the two-level form
factor of random matrix theory [27–30], exhibiting thus the
relevance of random matrices as models for the dynamics of
quantum systems that are chaotic in the classical limit [31].
This observable has been successfully employed as a quantum
chaos indicator in recent works in spin systems [32–36] and
in atom-photon systems [37].

Here we show that, contrary to spectral statistics where the
signatures of quantum chaos disappear when many symmetry
sectors are considered together, in the survival probability the
correlation hole manifests even if the whole set of symmetry
sectors are included in the dynamics. When all the symme-
try sectors are considered, the distribution of the spacings
of neighboring energy levels changes from Wigner-Dyson to
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Poisson, whereas the correlation hole in the survival probabil-
ity is still clearly seen. Analytical expressions are provided,
which, besides giving theoretical support to the persistence
of the correlation hole, describe the complete evolution of
the survival probability, both in the case of one and several
symmetry subspaces.

A drawback of the survival probability is its lack of self-
averaging at any time scale, that is the relative variance of
its fluctuations does not decrease with system size [35,38,39].
For this reason, ensemble averages over an energy win-
dow [37] or averages over initial states [40] are required to
make the correlation hole visible. Any of the two options are
experimentally accessible.

The structure of the paper is as follows. In Sec. II we
introduce the BHM, its symmetries and the properties of
its energy spectrum. Then we describe the dynamics of the
survival probability and the correlation hole in Sec. III, both
in the case of one symmetry sector and when the whole
set of invariant subspaces is considered together. In Sec. IV,
the analytical expressions derived in the previous section are
shown to describe properly numerical results for the BHM in
a chaotic regime. The way these signatures of quantum chaos
disappear as we move to integrable limits is also discussed. To
finish, our conclusions are given in Sec. V.

II. THE BOSE-HUBBARD MODEL

The model which we consider is the one-dimensional
BHM with periodic boundary conditions. This model de-
scribes N spin-less bosons on a lattice with L sites in a ring
array, relevant to numerous experiments with cold atoms in
optical lattices. The Hamiltonian of this system, with h̄ = 1,
is

Ĥ = −J
L∑

l=1

(
â†

l+1âl + H.c.
) + U

2

L∑
l=1

n̂l (n̂l − 1). (1)

The operators â†
l and âl are the creation and annihilation oper-

ators of one boson on the site l , respectively. Due to periodic
boundary conditions, the index L + 1 in the first sum should
be considered as L + 1 := 1. The first term is the kinetic
energy, describing the coherent tunneling between adjacent
sites with rate J . The second term describes the interaction
energy on-site with intensity U , where n̂l = â†

l âl gives the
number of particles on site l and the total number of particles
is constant,

∑L
l=1 n̂l = N .

One of the most relevant aspects of the system is that in
the thermodynamic limit it presents a second order quantum
phase transition, going from a Mott insulator to a superfluid
phase [8,41,42].

A. Symmetries and degenerated subspaces

The symmetries of the BHM are described by the dihedri-
cal group DL, which is the group of symmetries of a regular
polygon with L sides. One of the symmetries is related to the
translational invariance of the Hamiltonian due to the periodic
boundary conditions. The shift operator Ŝ is responsible for
the decomposition into different κ-subspaces and acts in a

Fock state as

Ŝ |n1, n2, ..., nL−1, nL〉 = |nL, n1, n2, ..., nL−1〉 . (2)

The eigenvalues of Ŝ are a j = eiκ j with κ j = 2π j/L, the
single particle quasimomentum and j = 1, 2, ..., L [19]. The
only other symmetry is the parity, which is defined as

P̂ |n1, n2, ..., nL−1, nL〉 = |nL, nL−1, ..., n2, n1〉. (3)

The shift and the parity operators commute with the BH
Hamiltonian Eq. (1). However [Ŝ, P̂] �= 0, which entails a
pairwise degenerate spectrum between states belonging to the
subspaces with eigenvalues aj and a∗

j = aL− j . For a j=L = 1
or a j=L/2 = −1 (the latter appearing only for L even) the
subspaces can be decomposed in two additional subspaces
with definite parity. In this way we can classify the entire
Hamiltonian spectrum.

Fig. 1(a) shows a schematic representation of the shift
and parity operator acting on a system of L = 9 sites. From
now on, we consider this number of sites and the same
number of bosons N = 9. For this choice, the Hilbert space
dimension is D = 24310, and it can be decomposed into
9 subspaces associated with the eigenvalues a j of Ŝ as
shown in the Fig. 1(b). The dimensions of the subspaces
are D1 = D8 = 2700, D2 = D7 = 2700, D3 = D6 = 2703,
D4 = D5 = 2700, D9 = 2704. Additionally, the subspace as-
sociated with j = 9 can be decomposed in two subspaces
with definite parity, whose dimensions are D9-even = 1387 and
D9-odd = 1317. In Fig. 1(b) each subspace pair related by a
black arrow has the same spectrum. Only the 9-subspace has
no degeneracies, and the two subspaces with different parity
have different spectrum. This is the full decomposition of the
system in symmetries.

For the Hamiltonian parameters, we use the parametriza-
tion introduced in Ref. [43] U = u and J = 1 − u with u ∈
[0, 1]. With this parametrization the system is integrable in
the two limits u = 0 and u = 1. Except for some few indicated
cases, in the following sections we use the value u = 0.5 as a
representative chaotic example.

B. Level statistics and density of states

We obtained the full spectrum of the model by exact nu-
merical diagonalization. The density of states (DoS) ν(E ) is
shown in the Fig. 2(a). The DoS has a Gaussian form, common
in many body interacting systems with a finite Hilbert space.
Due to the similar dimension of the subspaces the density of
states in each one is very close to a ninth of the total density of
states ν j (E ) = ν(E )/9, for j = 1, ..., 9. The light gray zone
in Fig. 2(a) depicts the energy interval that we consider in
the numerical calculations presented below for the spectral
distributions and the survival probability. This is a window of
width equal to four (energy units) with center in the maximum
of the distribution.

The nearest-neighbor spacing distribution for the unfolded
energy levels of the 1-subspace, containing the central 80%
of its spectrum, is shown in Fig. 2(b). The red-dashed line
is the Wigner-Dyson distribution for the Gaussian orthogonal
ensemble (GOE). We have verified the same very good match
with the Wigner-Dyson distribution for the energy spacing of
the other symmetry subspaces.

032208-2



QUANTUM CHAOS IN A SYSTEM WITH HIGH DEGREE OF … PHYSICAL REVIEW E 102, 032208 (2020)

(a)

(b)

FIG. 1. (a) Schematic representations of the shift Ŝ and parity
P̂ operators. These operators describe the symmetries of the BH
model with periodic boundary conditions and are the same as those
of a regular polygon of L sides. (b) Eigenvalues of Ŝ in the complex
plane, for L = 9 sites, indicated by dots. Pairwise subspaces related
by complex conjugate eigenvalues of Ŝ have the same spectrum,
these are linked by the black arrows. The subspace j = 9 is the only
nondegenerate subspace and it has two parity symmetric invariant
subspaces.

If instead we consider all the energy levels in the interval
in the middle of the spectrum, as indicated in Fig. 2(a), and
do not separate them by symmetry sectors, then we obtain
the unfolded energy spacing distribution displayed in the in-
set of Fig. 3. The distribution shows a peak at zero energy,
which comes from the exact respective degeneracies between
subspaces j = 1–4 and j = 8–5. If we remove these exact de-
generacies by considering only subspaces j = 1–4 and j = 9,
then we get rid of the peak and obtain a distribution very
close to a Poisson distribution of uncorrelated levels, as can
be seen in the main panel of Fig. 3. This well known result
shows that the nearest-neighbor distribution is unable, when

(a)

(b)

FIG. 2. (a) Gray bars depict the density of states (DoS) obtained
numerically for the BHM with L = 9 sites and N = 9 bosons, for
u = 0.5. A Gaussian fit is shown by the red dashed line. The light-
gray zone in the DoS represents the energy interval used in panel
(b) and Figs. 3, 4, and 7 (top). (b) Nearest-neighbour level spacing
distribution for the unfolded spectrum of the subspace associated to
the j = 1 (κ1 = 2π/9) symmetry subspace. The distribution coin-
cides with the Wigner-Dyson surmise of the GOE ensemble (dashed
red line).

the energy eigenstates belonging to different symmetry sec-
tors are considered together, to reflect the repulsion between
levels within the same symmetry sector. These correlations
become hidden by the lack of correlations between levels with
different symmetries.

As we show below, this is not the case of the survival prob-
ability, which is sensitive to the correlations in the spectrum
even if several symmetry sectors are considered together. In
what follows we discuss how these correlations manifest as

FIG. 3. Main panel shows the nearest-neighbor spacing distribu-
tion of energy levels in the light gray region of Fig. 2 considering
subspaces j = 1 − 4 and j = 9. Inset shows the same distribution
for the whole set of symmetry subspaces.
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a dip in the temporal evolution of the survival probability,
known as correlation hole, and compare it with the spectral
analysis performed above.

III. THE SURVIVAL PROBABILITY
AND THE CORRELATION HOLE

The survival probability is a dynamical observable defined
as the probability to find a given initial state |�(0)〉 at time t ,

SP(t ) = |〈�(0)|�(t )〉|2. (4)

If we expand the initial state |�(0)〉 in the energy eigenbasis
{|φk〉},

|�(0)〉 =
D∑

k=1

ck |φk〉 , (5)

where Ĥ |φk〉 = Ek |φk〉 and ck = 〈φk|�(0)〉, then the survival
probability reads

SP(t ) =
∣∣∣∣∣
∑

k

|ck|2e−iEkt

∣∣∣∣∣
2

. (6)

A. Initial decay and asymptotic value

The survival probability can be expressed as the squared
modulus of the Fourier transform of the local density of states
(LDOS)

SP(t ) =
∣∣∣∣
∫

G(E )e−iEt dE

∣∣∣∣
2

, (7)

where the LDOS, G(E ) = ∑
k |ck|2δ(E − Ek ), is the energy

distribution weighted by the components of the initial state.
By considering a smooth approximation to the LDOS, ρ(E ) ≈
G(E ), we can obtain an analytical expression for the initial
decay of SP(t ) [32,37]. For instance, for a smoothed LDOS
described by a rectangular profile,

ρ(E ) =
{ 1

2σR
for E ∈ [Ec − σR, Ec + σR]

0 otherwise
, (8)

we obtain a sinc squared function for the initial decay of SP(t )

Sbc
p (t ) = sin2(σRt )

(σRt )2
, (9)

where the super-index bc indicates that this expression is valid
before the dynamics is able to resolve the correlations in
the spectrum. In the following, we consider this rectangular
energy profile with parameters determined by the energy win-
dow of Fig. 2, where Ec = 3.60 is the center of the distribution
and σR = 2 is its half-width.

The initial decay holds up to a temporal scale where the
dynamics is able to resolve the discrete nature of the en-
ergy spectrum. For t → ∞, the survival probability fluctuates
around an asymptotic value, S∞

P , which can be determined as
follows. By expanding the squared modulus in Eq. (6), we
obtain

SP(t ) =
∑
k �=l

|cl |2|ck|2e−i(Ek−El )t +
∑

k

|ck|4. (10)

The asymptotic value can be obtained by considering a tem-
poral average of this expression

S∞
P = lim

t→∞
1

t

∫ ∞

0
SP(t ′)dt ′. (11)

In the absence of degeneracies, the first term in the right-hand
side (RHS) of Eq. (10) cancels out in average and

S∞
P =

∑
k

|ck|4, (12)

which is the case of the BHM when only one symmetry sector
is considered. In the case of degeneracies, that appear in the
BHM when several symmetry sectors are considered, the first
term in the RHS of Eq. (10) contributes with extra terms to the
asymptotic value, which is now given by

S∞
P =

∑
Ek

⎛
⎝ dEk∑

m=1

∣∣cEk ,m

∣∣2

⎞
⎠

2

, (13)

where cEk ,m is the component of the initial state in the energy
level |Ek, m〉 with degeneracy dEk ,

cEk ,m = 〈Ek ; m|�(0)〉 (m = 1, ..., dEk ).

B. Initial states

In between the initial decay and the saturation of the dy-
namics, correlations in the energy spectrum manifest as a dip
of the SP below the asymptotic value. To reveal the presence of
this correlation hole, averages over different initial states have
to be considered [32–37]. On the one hand, this is a necessary
step to overcome the quantum fluctuations in the temporal
evolution of the survival probability, whose size relative to the
average value do not diminish with the size of the system: they
are not self-averaging [39]. On the other hand, the preparation
of these sets of initial states has been recently realized in
trapped ion systems [40].

In this paper we consider ensembles of initial states with
components different to zero only in the energy interval
[Ec − σR, Ec + σR] and whose squared modulus are randomly
chosen as follows:

|ck|2 = rk f (Ek )∑
q rq f (Eq)

, (14)

where rk ∈ [0, 1] are random numbers coming from a uniform
distribution. The function f (E ) = ρ(E )/ν(E ) guarantees that
the random initial state has the selected energy profile ρ(E )
[Eq. (8) in our case]. This is achieved by compensating, with
the denominator, for changes in the density of states.

C. Analytical expressions for the survival probability

1. One symmetry sector

In Ref. [37], by following an idea initially introduced in
Ref. [34], an analytical expression for the ensemble average
of the survival probability was derived, which applies for the
case of one sequence of nondegenerate energy levels with
energy density ν and correlations similar to those of random
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matrices of a Gaussian orthogonal ensemble (GOE),

〈SP(t )〉 = 1 − 〈S∞
P 〉

η − 1

[
ηSbc

P (t ) − b2

(
t

2πν̄

)]
+ 〈S∞

P 〉, (15)

here Sbc
P (t ) is given in Eq. (9), ν̄ is the mean DoS in the energy

interval, and η is the effective dimension of energy levels
available for the ensemble, which is given by

η = 1∫
dE ρ2(E )

ν(E )

= 4σ 2
R∫ Ec+σR

Ec−σR
dE 1

ν(E )

, (16)

where in the last equality we have used the rectangular pro-
file for the energy distribution. When the energy interval is
approximately centered in the middle of the Gaussian distri-
bution for ν(E ), the last equation can be approximated by
substituting ν(E ) in the denominator by its average in the
energy interval (ν̄), leading to a simple expression

η = 2σr ν̄,

which equals the number of states in the energy interval. The
asymptotic value 〈S∞

P 〉 is obtained by averaging Eq. (12),
which can be shown [37] to be given by

〈S∞
P 〉 = 〈r2〉

〈r〉2

1

η
= 4

3η
, (17)

where 〈rn〉 is the nth moment of the distribution of the random
numbers and in the last equality we have used that for a
uniform distribution 〈rn〉 = 1/(n + 1).

The second term inside the brackets in Eq. (15) is the two-
level form factor of the GOE ensemble [30],

b2(t ) = [1 − 2t + t ln(2t + 1)]�(1 − t )

+
[

t ln

(
2t + 1

2t − 1

)
− 1

]
�(t − 1), (18)

where � is the Heaviside step function. The two-level form
factor brings the survival probability from its minimum value
up to the asymptotic value 〈S∞

P 〉, creating the dip that is
known as the correlation hole. Although the averaged survival
probability can display oscillations, the presence of a hole,
which can be described by Eq. (15), is a direct signature of the
existence of correlated eigenvalues, and it does not develop in
systems with uncorrelated eigenvalues.

2. Whole set of symmetry sectors

Equation (15) is applicable to the BHM when only one
symmetry sector is considered. Here we extend Eq. (15) to the
case where the whole set of symmetry sectors is included. The
interesting point is that the correlations between the energy
levels coming from the same symmetry sectors are still re-
flected in the behavior of the ensemble average of the survival
probability, which in a very general case is given by (see the
Appendix for a detailed derivation)

〈SP(t )〉a

=
(
1 − 〈r2〉

〈r〉2
1
η

)
η − 1

[
ηSbc

P (t )−
Ne∑

i=1

d2
i

ν̄i

ν̄
b2

(
t

2πν̄i

)]
+〈S∞

P 〉a,

(19)

where Ne is the number of energy sequences. We assume GOE
correlations for energy levels in the same sequence, and no
correlations between different sequences. The degeneracy and
density of states of each sequence are given, respectively, by
di and νi with i = 1, ..., Ne. The density of states of the whole
spectrum satisfies ν = ∑Ne

i diνi and η is given by Eq. (16).
The energy components of the ensemble’s members are still
given by Eq. (14), where the random numbers rk come from
a given probability distribution p(r) with momenta 〈rk〉 =∫

rk p(r)dr. The asymptotic value of the survival probability
is obtained by ensemble averaging Eq. (13), which leads to
(see the Appendix for details)

〈S∞
P 〉a = 〈r2〉

〈r〉2

1

η
+

(
1 − 〈r2〉

〈r〉2
1
η

)
η − 1

Ne∑
i=1

di(di − 1)
νi

ν
. (20)

For the BHM with L = 9 sites, the twofold degeneracies
between sectors κ j-κL− j yield Ne = 6 different energy se-
quences whose densities are approximately ν j = ν/9 ( j =
1, ..., 4) and ν9-even = ν9-odd = ν/18, while their degeneracies
are d j = 2 for j = 1, ..., 4 and d9-even = d9-odd = 1. In this
case and for random numbers rk in Eq. (14) coming from
a uniform distribution, the ensemble average of the survival
probability reads

〈SP(t )〉a =
1 − 4

3η

η − 1

[
ηSbc

P (t ) − 16b2
(

9t
2πν̄

) + b2
(

18t
2πν̄

)
9

]

+ 〈S∞
P 〉a , (21)

with the asymptotic value 〈S∞
P 〉a ,

〈S∞
P 〉a = 4

3η
+ 8

9

(
1 − 4

3η

)
η − 1

η�1−−→ 20

9η
. (22)

As already mentioned, the key point is that, again, as in the
case of only one symmetry sector, the intracorrelations of
levels in the same symmetry sectors, brings the survival from
its minimum up to the asymptotic value, creating a correlation
hole.

At variance with the one-symmetry case, in this case the
correlation hole is governed by a pair of two-level form-
factors b2. One coming from the subspaces j = 1–8 which
implies that the density entering in its argument is ν̄ j = ν̄/9,
while the second comes from intra-correlations in the spec-
trum of subspaces 9-even and 9-odd. That is why in the
argument of this b2 function enters ν̄9-even = ν̄9-odd = ν̄/18.
Since the dynamics of subspaces j = 1–8 have the same tem-
poral scale, their individual contributions add coherently to
build up the correlation hole and they dominate the second
term inside the parenthesis in Eq. (21).

IV. NUMERICAL VERSUS ANALYTICAL RESULTS

In this section we compare the analytical expressions for
the survival probability from the previous section with numer-
ical results obtained by diagonalizing numerically the BHM
for one and the whole set of symmetry sectors. We also study
the way the correlation hole, signaling the presence of chaos,
dilutes as we approach an integrable limit.
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(a)

(c)

(b)

(d)

FIG. 4. Survival probability as a function of time in log-log scale. Panels (a) and (b) show, for subspace j = 1 and j = 9-even, respectively,
the survival probability for individual members of the ensemble (gray lines), dark red lines represent the ensemble averages and light green
lines are obtained from the analytical Eq. (15). A similar behavior (not shown) was found for the rest of symmetry subspaces. Panels (c) and
(d) show averages over temporal windows of constant size in log scale plotted versus the mean time of the respective temporal windows for
the numerical ensemble average of SP(t ) (dark red) and for the analytical expression of the survival probability (light green). Panel (c) is for
the 1-subspace and panel (d) for the 9-even-subspace.

A. Correlation hole for an ensemble of initial states in the same
symmetry subspace

In Fig. 4 we compare numerical results for the survival
probability with the analytical expression given by Eq. (15).
We employ the same distribution of random initial states in
the energy interval [Ec − σ, Ec + σ ] indicated by light-gray
columns at the center of the DoS in Fig. 2. For each κ j

subspace, we consider as many random initial states as the
number of energy levels of that subspace in the energy inter-
val, i.e, ∼1170 for the j = 1–4-subspaces and ∼590 initial
states for the subspaces 9-even and 9-odd. The exact numbers
are shown in the third column of Table I.

TABLE I. Parameters of the analytical Eq. (15) plotted in Fig. 4
for the j = 1 and 9-even-subspaces. Second and third columns come,
respectively, from Eqs. (17) and (16). Fourth column is the nu-
merically evaluated mean density of states in the energy window
[Ec − σR, Ec + σR]. Last row shows the parameters used in the an-
alytical Eq. (21) plotted in the top panel of Fig. 7. Second and
third-column values come from Eqs. (22) and (16). For the cases
shown the parameter η coincides with the respective number of states
in the energy window shown by light gray columns in Fig. 2.

j-subspace 〈S∞
P 〉 × 103 η ν

1, 8 1.11 1174 293.5
2, 7 1.13 1175 293.7
3, 6 1.13 1178 294.5
4, 5 1.13 1179 294.7
9 even 2.23 597 149.25
9 odd 2.32 574 143.5
Complete 0.210 10581 2645.25

In Figs. 4(a) and 4(b), the gray lines show the survival
probability as a function of time for different random initial
states with components in the indicated κ j-subspace, the red
lines are the numerical averages over the ensemble, whereas
the green line is the analytic expression given in Eq. (15) with
parameters determined from Eqs. (16) and (17). We can see
that the analytical expression properly describes the temporal
trend of the numerical ensemble average. At short times and
before the SP(t ) attains its minimum value, the fluctuations
of the numerical ensemble average are small, which is a
consequence of the fact that the initial decay is determined
entirely by the smoothed energy profile of the initial states,
Eq. (9), which is the same for every member of the ensemble.
At the temporal scale of the correlation hole and beyond, the
fluctuations in the numerical ensemble average are relatively
larger. To further reduce these fluctuations we consider aver-
ages over temporal windows of constant size in log scale. By
considering the same smoothing procedure in the analytical
expression, we obtain Figs. 4(c) and 4(d), which show an
excellent agreement between the analytical expression and
numerical averages, and make evident the correlation hole,
confirming the existence of a GOE correlated spectrum and
thus quantum chaos in this energy region of the Bose-Hubbard
model.

1. Survival probability for different regions of the spectrum

In the previous section we have analyzed initial states with
random components in the central region of the spectrum.
Now we study what happens with the survival probability
if we select initial states in energy regions approaching the
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FIG. 5. Averages over temporal window of constant size in log
scale of the numerical ensemble average of the Survival probability,
plotted versus the mean value of the respective temporal windows
(red dark line). Three ensembles over energy regions with 600 levels
each were considered. The energy regions of each ensemble are in-
dicated in the histograms shown as insets. Light green lines indicate
the same temporal averages of the analytical Eq. (15). Only energy
levels of the j = 1-subspace were considered. From top to bottom the
energy regions move from the center of the spectrum to its highest
border.

border of the spectrum. It is known that the universal statistical
properties of the chaotic spectra are not applicable to the
borders of the spectra, which are model dependent [4]. This
is confirmed in the behavior of the survival probability shown
in Fig. 5 with dark red lines. Results for three ensembles
are shown, one ensemble, as before and used as reference, is
located in the center of the DoS and the other two approach
the high energy border of the spectrum. We consider again
rectangular energy profiles, and move the energy window to
the large energy regions using eigenstates of the 1-subspace.
The energy windows we consider are shown in the insets of
Fig. 5. The number of energy levels contained in the three
energy windows is equal to 600.

We observe, as in Fig. 4, a correlation hole for the first and
second ensemble of states, located, respectively, in the central
part of the spectrum and in a region with slightly higher
energies. In both cases the survival probability and correla-
tion hole are very well described by the analytical Eq. (15),
shown with light green lines. Since these two ensembles prove

energy levels far enough of the borders of the spectrum, the
universal behavior expected from the GOE ensemble is clearly
observed.

For the third ensemble, located close to the border of the
spectrum, we can observe a clear deviation respect to the
universal behavior indicated by the light green line obtained
from Eq. (15). We observe a correlation hole in the numerical
results that is smaller than the one coming from the analytical
expression. This implies that, contrary to the two previous
ensembles, only a fraction of levels in this energy region have
GOE correlations. The participation, in this third ensemble,
of energy levels located in the higher part of the spectrum,
not only diminish the depth of the correlation hole, but also
produce larger oscillations in the survival probability, as can
be observed in the bottom panel of Fig. 5.

2. Survival probability for different Hamiltonian parameters

Above we have analyzed the properties of the spectrum of
the BHM in the chaotic regime with parameter u = 0.5. In
this section we study the survival probability with initial states
in the same central region of the spectrum of the symmetry
sector κ1, but now for values of the parameter u approaching
the integrable limit u = 0.

In Fig. 6 we show the combined ensemble and temporal
average of the survival probability, both numerical (red) and
analytical (green), for four different values of the u param-
eter. For u = 0.3, Fig. 6(a) shows a perfect match between
numerical and analytical results and a clear presence of the
correlation hole. This is consistent with the nearest-neighbor
energy distribution shown in the inset, which is very well
described by the Wigner-Dyson surmise. As we approach the
integrable limit, the nearest-neighbor energy differences his-
tograms in the insets of Figs. 6(b), 6(c) and 6(d) show that the
spectrum correlations disappear. Accordingly, except for the
initial decay and asymptotic value, the analytical expression
no longer describes the numerical survival probability and
instead of a correlation hole we observe revivals whose am-
plitude increases as the value of u approaches the integrable
limit.

B. Correlation hole for an ensemble of initial states in the full
space

In this section we present numerical and analytical results
for random initial states but considering now the whole set
of symmetry sectors. The combined temporal and ensemble
average of SP(t ) for a such set of initial states with the partic-
ipation of levels in the energy interval indicated by light-gray
bars in Fig. 2 is shown with a red line in Fig. 7 (top). The
important finding is that, even if we employ the complete
energy spectrum without any consideration about symmetries,
the survival probability exhibits a clearly visible correlation
hole, which is again very well described by the analytical
expression (green line), now given by Eq. (21), whose param-
eters shown in Table I are determined from Eqs. (16) and (22).

By inspecting Eq. (21), we observe that the correlation
hole is governed mainly by the first term with the two-level
form factor b2 coming from the subspaces κ j = κ1, ..., κ8,
which is 16 times larger than the second term with the b2

function coming from the subspaces 9-even and 9-odd. The
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(a)

(c)

(b)

(d)

FIG. 6. Averages over temporal windows of the survival probability for initial states with components in the central part of the spectrum
of the 1-subspace. The dark red curve is the numerical ensemble average of the survival probability, while the light green line is the analytical
Eq. (15). Four different couplings u, indicated in each panel, were used. The insets display the corresponding nearest-neighbor spacing
distribution, where the continuous red line is the Poisson distribution and the dashed line is the Wigner-Dyson distribution.

presence of (L − 2)/2 (for even L) or (L − 1)/2 (for odd L)
sequences of energy levels with similar densities and GOE
intra-correlations, is the general scenario that can be found
in the BHM for an arbitrary number of sites, and therefore
no-exception can be foreseen for the appearance of the cor-
relation hole in the chaotic regime of the BHM for arbitrary
size. To illustrate the generality of the previous scenario, we
show in Fig. 7 (middle) the same analysis as before, but now
for a coupling u = 0.3. We observe a perfect match between
analytical and numerical results, allowing to conclude that this
coupling corresponds also to a chaotic regime.

Finally, in the bottom panel of Fig. 7 we present the
survival probability for a coupling, u = 0.1, close to the inte-
grable limit. Similarly to the results shown in Figs. 6(b), 6(c)
and 6(d), only the initial decay and asymptotic value are
well described by the analytical expression. At the temporal
scale where the correlation hole would develop, the numer-
ical results show instead partial revivals, indicating that for
this coupling there are no GOE correlations even for states
belonging to the same symmetry sector.

Figure 7 shows that for an spectrum coming from dif-
ferent symmetry sectors, the correlation hole in the survival
probability serves as a good indicator of quantum chaos,
differently to the nearest-neighbour-energy differences distri-
bution, which, as shown in the insets of Fig. 7, are Poisson-like
in the three cases and thus useless to distinguish a chaotic from
a regular regime.

Even in more general chaotic cases, distinct to the BHM,
the analytical general formula for the ensemble average of
SP in Eq. (19) and derived in the Appendix, shows that the
correlation hole is a general feature appearing in the evolution
of the SP(t ) and can be used as a reliable indicator of quantum
chaos without having to classify the energy levels according to
their symmetries. Additionally, there is no need for unfolding
the spectrum, it is a dynamical indicator of chaos useful for
experiments that cannot access eigenvalues or eigenstates, and
it is a true detector of spectral correlations, contrary to the
out-of-time-ordered correlator OTOC which detects instabil-
ity, not necessarily chaos [44,45].

In this context, it is appropriate to mention a recent study
of the temporal evolution of the Survival Probability in the
chaotic region of the Dicke model [46], where initial states
mixing two subspaces with different parity symmetries are
considered. In that reference is also reported the need to
employ the full effective dimension η, but only the density of
states of every subspace to describe analytically the presence
of the correlation hole in the numerical averages. This result
is a particular case of the general Eq. (19) for the survival
probability when several symmetry subspaces are included.

V. CONCLUSIONS

In the present work we studied dynamical signatures of
quantum chaos in the Bose-Hubbard model in a ring con-
figuration. When levels in the same subspace of the shift
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FIG. 7. Dark red lines show rolling temporal averages of the
survival probability for the ensemble average of 10 581 initial states
with the same number of components inside the central energy
interval of all the symmetry subspaces. Three different couplings
u, indicated in each panel, were employed. For the top panel the
energy interval used is indicated by light-gray bars in panel (a) of
Fig. 2. Light green lines are the saem rolling temporal averaged of
the analytical expression in Eq. (21). Insets show the corresponding
nearest-neighbor spacing distribution of energy levels considering
only subspaces j = 1 − 4 and j = 9.

symmetry are considered, the unfolded nearest-neighbor dis-
tribution match the Wigner-Dyson surmise of the Gaussian
orthogonal ensemble; however, this is not the case when the
full spectrum is included. Nevertheless, for initial states with
energies away from the borders of the spectrum, we showed
that the ensemble average of the survival probabililty 〈SP(t )〉
reveals the presence of spectral correlations by developing a
correlation hole, irrespective of whether the initial states are
defined over one or several symmetry subspaces. Analytical
expressions deduced employing random matrix theory were
shown to describe very well the complete evolution of the
ensemble average of the survival probability.

Unlike the well established spectral analysis, we found
that the correlation hole is a signature of quantum chaos

that does not require the classification of energy levels ac-
cording to their symmetries. Contrary to the analysis of the
nearest-neighbor-energy-spacings, in the survival probability
the intracorrelations of levels in the same symmetry sectors
are not washed out by the absence of correlations between
levels coming from different symmetry sectors. The analytical
expressions describing perfectly the numerical results were
shown to support this claim. The existence of the correlation
hole was also related with the presence of quantum chaos for
different values of the interaction parameter u.

The fact that the correlation hole is present even when no
separation in symmetries is performed, demonstrates that the
survival probability is a powerful tool to identify the presence
of quantum chaos in systems where the identification of all
symmetry sectors may be far from trivial theoretically or
experimentally. The correlation hole increases the number of
available tools [47,48] to diagnose quantum-chaos without a
complete symmetry classification of the energy levels.

An interesting extension of the studies presented here
would be to investigate the dynamics of special sets of initial
states, like Fock states. The evolution of the survival proba-
bility as the dimension of the system changes as well as the
study of other observables would be directions worth to be
investigated.
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APPENDIX: ENSEMBLE AVERAGE OF THE SURVIVAL
PROBABILITY FOR SEVERAL DEGENERATE

SEQUENCES OF ENERGY LEVELS

Here we generalize the analytical expression for the en-
semble average of the survival probability in chaotic regimes
derived in Ref. [37] to the case of several symmetry sectors
with energy degeneracies, which is the general case of the
Bose-Hubbard model.

Let Ne be the number of energy sequences. We assume
that the unfolded energies in every sequence have the same
correlations as the Gaussian orthogonal ensemble, and no
correlations exist between energies of different sequences. Let
di, νi and Li be, respectively, the degree of degeneracy of each
energy level, the density of states and the number of energy
levels in the ith energy sequence (i = 1, ..., Ne). The following
relation holds

∑Ne
i diνi = ν, where ν is the density of states of

the whole spectrum. The survival probability can be expressed
as SP(t ) = S∞

P + S f (t ) with

S∞
P =

Ne∑
i=1

Li∑
k=1

(
di∑

m=1

∣∣c(m)
ik

∣∣2

)2

(A1)
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and

S f (t ) =
∑

i, k, m, i′, k′, m′
(i, k) �= (i′, k′ )

∣∣c(m)
ik

∣∣2∣∣c(m′ )
i′k′

∣∣2
e−i(Eik−Ei′k′ )t , (A2)

where c(m)
ik are the energy components of the initial state

|�o〉 = ∑
c(m)

i,k |Ei,k ; m〉. The term S f (t ) has an infinite tempo-
ral average equal to zero, consequently, the first term (S∞

P )
gives the asymptotic value of the survival probability.

As stated in the main text, the components of the initial
states are chosen randomly according to

∣∣c(m)
ik

∣∣2 = r (m)
ik f (Eik )∑

i′k′m′ r (m′ )
i′k′ f (Ei′k′ )

,

where f (Eik ) = ρ(Eik )/ν(Eik ) and r (m)
ik are positive random

numbers from a probability distribution p(r).
To derive an analytical expression for the ensemble aver-

age of the Survival probability, we proceed similarly as in
Ref. [37], and consider the following approximations for the
ensemble averages

〈∣∣c(m)
ik

∣∣4〉 ≈ 〈r2〉
〈r〉2

f 2
ik (A3)

and

〈∣∣c(m)
ik

∣∣2∣∣c(m′ )
i′k′

∣∣2〉 ≈ η

(
1 − 〈r2〉

〈r〉2
1
η

)
η − 1

fik fi′k′ , (A4)

where we have used the shorthand notation fik = f (Eik ), 〈rn〉
are the nth moments of the probability distribution p(r) and

η ≡ 1∑
ikm f 2

ik

≈ 1∫
ρ2(E )
ν(E ) dE

(A5)

is the effective dimension of states available for the ensemble.
In the last equality we have approximated the sum by an
integral according to the rule∑

i,k,m

G(Eik ) →
∫

G(E )ν(E )dE

for an arbitrary function G(E ).
The previous approximations allow to obtain expressions

for the ensemble average of the survival probability and its
asymptotic value. For the latter, we consider the RHS of
Eq. (A1), expand its squared parenthesis, and take an ensem-
ble average, which upon approximation Eqs. (A3) and (A4),
leads to

〈S∞
P 〉a = 〈r2〉

〈r〉2

1

η
+ η

(
1 − 〈r2〉

〈r〉2
1
η

)
η − 1

Ne∑
i=1

di(di − 1)
Li∑

k=1

f 2
ik,

(A6)
where we have used the definition of η in Eq. (A5). The
sum over index k in the RHS of the previous equation can
be approximated by an integral, but since now the sum is
restricted to the ith sequence of energy levels, the density
entering in the integral is νi(E ):

Li∑
k=1

f 2
ik ≈

∫
νi(E )

[
ρ(E )

ν(E )

]2

dE .

By noting that the ratio νi(E )/ν(E ) is a constant, νi/ν, the
previous integral becomes equal to νi/(νη), which substituted
in Eq. (A6) leads to Eq. (20) of the main text,

〈S∞
P 〉a = 〈r2〉

〈r〉2

1

η
+

(
1 − 〈r2〉

〈r〉2
1
η

)
η − 1

Ne∑
i=1

di(di − 1)
νi

ν
. (A7)

To obtain an expression for the ensemble average of the
entire survival probability, we have to consider now Eq. (A2).
The ensemble average of this expression under approxima-
tion (A4) yields

〈S f (t )〉 = η

(
1 − 〈r2〉

〈r〉2
1
η

)
η − 1

∑
i, k, m, i′, k′, m′
(i, k) �= (i′k′ )

fik fi′k′e−i(Eik−Ei′k′ )t .

To approximate the double sum in the previous expression
by a double integral, we have to take into account possible
correlations between energy levels. If the energy levels were
completely uncorrelated, then the double sum for an arbi-
trary function G(E , E ′) could be properly approximated as∑

α,α′ G(Eα, Eα′ ) → ∫
dEdE ′ν(E )ν(E ′)G(E , E ′), where we

have introduced the short-hand notation α ≡ (i, k, m). On the
contrary, for correlated energy levels, in addition to the prod-
uct of densities ν, the two-level cluster function T (E − E ′)
should be included, defining the Dyson two-point correlation
function [49],

R(E , E ′) = ν(E )ν(E ′) − T (E − E ′),

with which the double sum would be approximated as∑
α,α′

G(Eα, Eα′ ) →
∫

dEdE ′R(E , E ′)G(E , E ′). (A8)

The case we are handling here mixes both situations: levels
coming from different energy sequences are not correlated,
whereas levels coming from the same sequence (with degener-
acy di) have GOE correlations described by a two-level cluster
function Ti(E − E ′). Therefore, the double sum becomes∑

i, k, m, i′, k′, m′
(i, k) �= (i′k′ )

fik fi′k′e−i(Eik−Ei′k′ )t −→

∫
ν(E )ν(E ′) f (E ) f (E ′)e−i(E−E ′ )t dEdE ′

−
∑

im,i′m′
δii′

∫
Ti(E − E ′) f (E ) f (E ′)e−i(E−E ′ )t dEdE ′. (A9)

Note that in the first integral participate all the energy levels,
whereas only correlated levels contribute to the second term.
This fact is the key point that allows the survival probability
to detect GOE correlations even if different symmetry sectors
are considered together.

By recalling that f (E ) = ρ(E )/ν(E ), the double integrals
in Eq. (A9) simplify to∣∣∣∣

∫
ρ(E )e−iEt dE

∣∣∣∣
2

−
∑

i

d2
i

∫
Ti(E − E ′)
ν(E )ν(E ′)

ρ(E )ρ(E ′)e−i(E−E ′ )t dEdE ′,

(A10)
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where the squared degeneracies d2
i come from the double

sum over variables m and m′ in Eq. (A9). The ratio Ti(E −
E ′)/[νi(E )νi(E ′)] defines, in the limit of an infinite number
of levels, an universal function in terms of unfolded ener-
gies Y ([E − E ′]ν̄i ) = Ti(E − E ′)/[νi(E )νi(E ′))], where νi(E )
is the density of states of the ith sequence and ν̄i its mean
value in the energy region probed by the ensemble. With
this function, the second term in Eq. (A10) can be written
as∑

i

d2
i

(νi

ν

)2
∫

Y ([E − E ′]ν̄i )ρ(E )ρ(E ′)e−i(E−E ′ )t dEdE ′,

where we have used that the ratio νi(E )/ν(E ) becomes inde-
pendent of E . By making the change of variables x = (E −
E ′)ν̄i and z = E ′, the previous expression reads

∑
i

d2
i

(νi

ν

)2 1

ν̄i

∫
dzdxρ(z)ρ(z + x/ν̄i )Y (x)e−i2πxt̄ ,

with t̄ = t/(2πν̄i ). By expanding ρ(z + x/ν̄i ) in powers of
x and considering only the lowest order, the double integral
appearing in the previous expression can be approximated by
a product of two independent integrals

∑
i

d2
i

(νi

ν

)2 1

ν̄i

∫
dzρ(z)2

∫
dxY (x)e−i2πxt̄

= 1

η

∑
i

d2
i

ν̄i

ν̄
b2

(
t

2πν̄i

)
, (A11)

where we have used νi/ν = ν̄i/ν̄, the definition of η in
Eq. (A5) and b2 is the known Fourier transform of the GOE
two-level cluster function Y (x) [49], the so called two-level
form factor shown in Eq. (18). Gathering the previous results
together, we obtain the expression for the ensemble average
of the survival probability shown in Eq. (19) of the main

text

〈SP(t )〉a =
(
1 − 〈r2〉

〈r〉2
1
η

)
η − 1

×
[
ηSbc

P (t ) −
Ne∑

i=1

d2
i

ν̄i

ν̄
b2

(
t

2πν̄i

)]
+ 〈S∞

P 〉a,

(A12)

where Sbc
P (t ) = | ∫ ρ(E )e−iEt dE |2 gives the initial decay of

the survival probability and 〈S∞
P 〉a is given in Eq. (A7).

It is straightforward to show that the previous expression
for the survival probability has the right value in t = 0,
〈SP(t = 0)〉a = 1.

For the Bose-Hubbard model we consider in this paper
(L = N = 9), we have six sequences of energy levels, four
of them have degeneracy two (d1 = d2 = d3 = d4 = 2) and
the other two are nondegenerate d9-even = d9-odd = 1. The re-
spective density of states are ν1 = ν2 = ν3 = ν4 = ν/9 and
ν9-even = ν9-odd = ν/18. For this case, the ensemble averages
read

〈S∞
P 〉a = 〈r2〉

〈r〉2

1

η
+

(
1 − 〈r2〉

〈r〉2
1
η

)
η − 1

8

9
(A13)

and

〈SP(t )〉 = 〈S∞
P 〉a +

(
1 − 〈r2〉

〈r〉2
1
η

)
η − 1

×
[
ηSbc

P (t ) − 16

9
b2

(
9t

2πν̄

)
− 1

9
b2

(
9t

πν̄

)]
.

(A14)

For the particular uniform distribution p(r) we consider in the
main text 〈r2〉

〈r〉2 = 4
3 . By substituting this ratio in Eqs. (A13)

and (A14) we retrieve Eqs. (21) and (22) of the main text.
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