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A novel type of waves is examined in the context of non-Hermitian photonics. We can identify a class
of complex guided structures that support localized paraxial solutions whose intensity distribution is exactly
the same as the intensity of a corresponding solution in homogeneous media (free or bulk space). In other
words, intensity-wise the two solutions are identical and their phase is different by a factor exp[iθ (x, y)]. The
non-Hermitian potential is determined by the phase θ , as well as the amplitude and phase of the bulk space
solution that contributes to the imaginary and real part of the potential, respectively. That way we can connect the
plane waves and Gaussian beams of free space to constant-intensity waves and what we call the equal-intensity
waves (EI waves) in non-Hermitian media. Such a relation allows us to study three different physical problems:
Propagating EI waves inside random media, interface lattice solitons, and moving solitons in photonic waveguide
structures with free-space characteristics. The relation of EI waves to unidirectional invisibility and Bohmian
photonics is also examined.
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I. INTRODUCTION

Non-Hermitian Hamiltonians in classical and quantum
physics [1] describe the dynamics of open systems under the
influence of dissipation and/or amplification. Among their
unique characteristics are the existence of non-Hermitian
degeneracies [2] or exceptional points [3], where two or more
eigenvalues and eigenvectors coalesce for a particular value
of a system’s parameter [4,5]. Nonorthogonal modes, excess
noise, a complex spectrum, and nonconservation of power
are some of their mathematical features. One special class of
non-Hermitian Hamiltonians are those that respect parity-time
(PT ) symmetry [6]. In a number of studies it has been shown
that such a class may exhibit entirely real or partially complex
eigenvalue spectra with conjugate pairs of eigenvalues [7,8].

Over the past ten years, considerable effort has been
devoted to the realization of these counterintuitive ideas in
the field of optical physics. Indeed, based on the theoretical
[9–11] and experimental studies [12,13] related to waveg-
uided photonic structures, these mathematical notions led to
the new area of PT -symmetric optics. In this respect, loss
can be considered as an asset in optics as opposed to being
a foe, provided it can be judiciously used to realize this
new class of PT -symmetric optical systems. The plethora
of novel concepts and experimental applications that have
been recently reported, such as coherent perfect absorbers,
unidirectional invisibility, broadband wireless power trans-
fer, single-mode nanolasers, nonreciprocal microresonators,
ultrasensitive sensors based on a higher order of exceptional
points, PT -symmetric phonon lasers, and solitons in PT -
lattices, is really surprising [14–24]. The degree of intense
research activity in this new field of non-Hermitian photonics
is reflected in the large number of recent review articles and
special issues devoted to this area [25–32].

Within the context of non-Hermitian photonics, the con-
cept of “constant-intensity waves”(CI waves) was recently
introduced [33]. Such novel waves are exact solutions of
the linear and nonlinear wave equations (paraxial and wave
scattering regime), and they provide an ideal way for studying
modulation instability in inhomogeneous structures [33–35],
and perfect transmission in strongly scattering disordered
media [36]. CI waves exist for the general class of non-
Hermitian Wadati potentials of the form V (x) = W 2(x) − i dW

dx
for every real smooth function W (x). This function determines
the real and imaginary parts of the complex potential, and
it is also directly related to the phase of the CI waves as
well as the Poynting vector power flow [33,36]. These waves
were experimentally realized in the acoustics regime [37],
where engineering the gain and loss distributions across a one-
dimensional random medium leads to perfect constant pres-
sure waves that overcome the Anderson localization effects.
Two-dimensional generalization of CI waves was also studied
in scattering systems [38]. Using such schemes, not only can
the scattering amplitudes be engineered to render an object
unidirectionally invisible [39,40], but also the near-field fea-
tures can be effectively suppressed through constant-intensity
waves in inhomogeneous scattering landscapes [39,40]—a
feature that is inaccessible in Hermitian disordered environ-
ments [41–45].

In this paper, we examine generalizations of CI waves.
Since CI waves are the analogs of free-space plane waves
inside non-Hermitian structures, a natural question one may
ask is what is the corresponding analog of a Gaussian beam?
Is there a systematic way to associate the homogeneous
space solutions to confined solutions of inhomogeneous wave
equations for a non-Hermitian system? More specifically, we
investigate the conditions under which one can obtain a rela-
tion between the solutions of the paraxial wave equation (bulk
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media) and the inhomogeneous wave equation (non-
Hermitian media). By applying such a transformation, is pos-
sible to connect the intensities of the two solutions provided
that the corresponding potential in non-Hermitian. Apart from
a phase factor, the two different solutions have equal intensi-
ties in any point of space. This phase factor is directly related
to the real and imaginary parts of the complex potential.
By applying such a concept, we were able to derive new
families of paraxial beam solutions in z-dependent complex
potentials, as well as classes of analytical interface soliton
solutions for both one- and two-dimensional structures. The
paper is organized as follows: In Secs. II and III the transfor-
mation between linear wave equations is examined in detail
by providing pertinent examples. In Secs. IV, V, VI, and
VII the extension in the nonlinear domain is systematically
investigated.

II. EQUAL-INTENSITY BEAMS IN LINEAR MEDIA

Our starting point is the paraxial equation of diffraction in
an inhomogeneous waveguide system, which in normalized
units is given by

iUz + ∇2
⊥U + V (x, y, z)U = 0, (1)

where ∇2
⊥ ≡ ∂2

∂x2 + ∂2

∂y2 denotes the transverse Laplacian in

the two spatial transverse coordinates, and Uz = ∂U
∂z is the

evolution term of the field’s envelope along the propagation
direction z. The physical photonic structure is that of an
optical z-dependent potential V (x, y, z) [10,30]. On the other
hand, the propagation of waves in free or bulk space is
described by the paraxial equation of diffraction. Free or bulk
media are mathematically equivalent here, and the diffraction
of waves is described by the same normalized equation (thus
these two terminologies will be used equivalently), which is

iφz + ∇2
⊥φ = 0. (2)

The question that we are dealing with in this paper is if we
can relate these two different problems (in terms of field
intensities) by allowing the optical potential V (x, y, z) to be
complex. In other words, we require the intensities of the two
different solutions to be equal:

|φ(x, y, z)|2 = |U (x, y, z)|2, (3)

which leads us naturally to the following relation:

U (x, y, z) = φ(x, y, z) exp[iθ (x, y)]. (4)

The only way we can connect the intensities of the two
equations for any arbitrary phase factor θ (x, y) is by allow-
ing the potential V (x, y, z) to be complex. By expressing
the homogeneous space solution φ in the form φ(x, y, z) =
φA(x, y, z) exp[iφP(x, y, z)], where φA(x, y, z) and φP(x, y, z)
are the real functions of the amplitude and phase of the field,
respectively, we can write the corresponding non-Hermitian
potential in the following general form (where the gradient
operator ∇ always refers to two spatial dimensions, in all the
remaining sections):

V = ∇θ · ∇[θ + 2φP] − i[∇2θ + 2∇θ · ∇ lnφA]. (5)

As we can see from the preceding equation, since the field’s
envelope function φ(x, y, z) is complex, its amplitude φA

affects the imaginary part of the optical potential, whereas
the phase φP contributes to the real part. At this point, let us
better understand the features of this relationship, which lead
us to a novel class of non PT -symmetric complex potentials.
First of all, this is a nonlinear transformation in the sense of
Cole-Hopf transform between the Burgers equation and the
heat equation. Moreover, since any pair of φ,U corresponds to
a different potential V (x, y, z), a superposition of two different
φ’s will not lead to a superposition of the complex potentials.
Secondly, the function θ (x, y) does not depend on the solution
φ. This means that we can choose any function θ for the same
solution φ. Furthermore, by using such a transformation, we
can relate any known solution of the free space, that does
not have zeros at different locations from its derivative, to
an infinite number of z-dependent complex potentials that
contain gain and loss and are determined by θ (x, y).

Another important aspect we would like to examine is the
relation of the CI waves [33] to the aforementioned equal-
intensity (EI) waves. Let us choose the most fundamental
solution of the free-space paraxial equation of diffraction,
Eq. (2), which is the plane wave:

φ(x, y, z) = ei(βz−kxx−kyy) (6)

with a parabolic dispersion relation β = k2
x + k2

y = �k2 be-
tween the propagation constant β and the transverse wave
vector �k. Obviously it is true that ∇[2 lnφA] = 0 and ∇φP =
−�k. Therefore, by substituting into the preceding equation
Eq. (5), we get the following potential:

V (x, y, z) = ∇θ · ∇θ − 2�k · ∇θ − i∇2θ, (7)

which for �k = 0 (propagation parallel to the z-direction)
leads us to the non-Hermitian Wadati potential V (x, y) =
∇θ · ∇θ − i∇2θ that support CI waves of the form U =
exp[iθ (x, y)] [33].

At this point, we have to mention the difference between
our work and the recently introduced two-dimensional poten-
tials of Bohmian photonics [38]. Apart from the fact that such
waves refer to the Helmholtz scattering wave equation (two-
dimensional) and not to the paraxial equation of diffraction
(2 + 1 dimensions), the function φ is not some arbitrary design
intensity pattern, but it satisfies the free-space wave equation.
This allows us to connect two different wave equations and
use the bulk space solutions to construct non-Hermitian struc-
tures with free-space characteristics.

III. EQUAL-INTENSITY GAUSSIAN BEAMS

An initial example of a non-Hermitian structure that sup-
ports solutions with free-space characteristics can be obtained
if we connect the paraxial Gaussian beam of free space
to a corresponding EI wave. The Gaussian beam analytical
solution of Eq. (2) (in one spatial dimension) is given in
normalized units by the following expression:

φ(x, z) =
(

2

πw2

)1/4

exp

(
− x2

w2
+ i

x2

2R
− i

ϕ0

2

)
, (8)
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FIG. 1. A non-Hermitian z-dependent random potential that sup-
ports an EI wave with equal intensity to that of the free-space
Gaussian beam. In (a),(b) the real and imaginary parts of the V (x, z)
are depicted, respectively.

where

R(z) = 2z + 1

z

w4
0

8
, (9)

w(z) = w0

√
1 +

(
4z

w2
0

)2

, (10)

tan ϕ0 = 4z

w2
0

. (11)

R,w, ϕ0 are the beam’s curvature, the beam’s waist, and the
Gouy phase shift, respectively. The one-dimensional analog
of Eq. (5) is

V (x, z) = [
θ2

x + 2θxφPx
] − i[θxx + 2θx(lnφA)x]. (12)

By substituting Eq. (8) into Eq. (12), we obtain the following
family of complex potentials:

V (x, z) = θ2
x + 2θx

x

R(z)
+ i

(
4θx

x

w2(z)
− θxx

)
. (13)

Notice that the above potential depends on both x and
z coordinates and describes a general family of complex
potentials, which are not PT -symmetric in general, for any
smooth function θ (x). For example, the function θ (x) = x2

2
leads to a parabolic potential with z-dependent gain and loss
refractive index distributions, which supports a beam solution
with an intensity profile exactly the same as that of free space.

To highlight the nontrivial aspects of the EI waves and their
physical implications, we will relate the free-space evolution
of a Gaussian beam to that inside a disordered medium in
order to achieve undistorted propagation against transverse
disorder. For this reason, we choose the θ (x)-function to be
a random superposition of N Gaussian functions with random
widths wn and positions cn. In particular, we have

θ (x) =
N∑

n=1

Ae−( x−cn
wn

)2
. (14)

Substitution of Eq. (14) into Eq. (13) leads to a z-dependent
disordered potential, which in the Hermitian limit (when gain
and loss are absent) supports localized eigenmodes. The real
and imaginary parts of this complex potential as a function
of the propagation distance z are presented in Figs. 1(a) and
1(b), respectively. The corresponding diffraction dynamics
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FIG. 2. The intensity of a propagating Gaussian beam in (a) a
real random potential, and (b) inside the corresponding non-
Hermitian random potential. The absolute value of the diffracted
field at z = 40 is depicted in (c). In particular, we can see the direct
comparison between the |U | inside the non-Hermitian potential
(dashed black line) and the corresponding |φ| of a Gaussian beam
(with a width at focus equal to w0 = 5) in free space (green line).
The two intensity profiles are identical. Also the real (blue line) and
imaginary (red line) parts of the V (x, 40) are shown.

is depicted in Fig. 2. In fact, we see that when the imagi-
nary part is zero (Hermitian case), then the beam is mostly
trapped inside the disordered index variation [Fig. 2(a)] due
to Anderson localization in the transverse direction. On the
other hand, when we consider the full non-Hermitian potential
[Fig. 2(b)], then the wave diffracts exactly as a Gaussian
beam in free space. This means that in these two different
physical problems, the beam’s intensity profiles are identical.
In particular, the comparison between the beam’s intensity at
z = 40 in free space (green line) and inside the non-Hermitian
potential (dashed black line) is shown in Fig. 2(c).

So far we have seen that a plane wave in free space
corresponds to a CI wave, and a Gaussian beam corresponds to
an EI wave. One may wonder if we can derive other EI waves
by considering different known solutions of the free-space
equation of diffraction, such as higher-order Gaussian beams,
diffraction-free Bessel beams, or accelerating Airy beams. In
these cases, the field has zeros in different locations from its
derivative, and therefore singularities appear in the potential
of Eq. (5).

IV. NONLINEAR EI WAVES

The above ideas that connect a non-Hermitian system
with the bulk space can be directly applied to the nonlinear
regime in order to construct complex guided structures with
free-space-like characteristics. Thus, the wave evolution in a
nonlinear Kerr medium is described by the inhomogeneous
nonlinear Schrödinger equation (NLSE), which in normalized
units reads

iUz + Uxx + V (x)U + |U |2U = 0. (15)
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FIG. 3. (a) Real (blue line) and imaginary (red line) parts of
the complex potential vs the spatial coordinate x. (b) Real (black
color) and imaginary (magenta color) parts of the linear eigenvalue
spectrum (μ) vs the eigenmode (ũ) index for 160 lattice cells, of the
cos2(x), and imposed periodic boundary conditions. (c) Power (P)
eigenvalue (λ) diagram of the interface lattice soliton. Here the inset
depicts the soliton’s intensity (red line) for P ≈ 2.5. The real part of
the lattice is also presented (blue line) for comparison in the inset.
(d) Dynamics of soliton for λ = 0.68. As we can see, the soliton
appears to be unstable after z ∼ 33 under the influence of random
perturbations.

Stationary soliton solutions have the following form:

U (x, z) = u(x) exp(iλz), (16)

where u(x) is the complex valued field profile and λ is
the nonlinear propagation constant. By substituting this last
ansatz into Eq. (15), we get the following nonlinear eigenvalue
problem:

uxx + V (x)u + |u|2u = λu. (17)

The above eigenvalue problem is a nonlinear one since the
nonlinear eigenvalue λ and the soliton profile u(x) are non-
trivially related and there is no guarantee that a solution even
exists or how many solutions we have in the first place.
Rigorously speaking, u = u(x, λ), and we use iteration renor-
malization techniques (see the next section) to numerically de-
termine the relation between the soliton’s power P = P(λ) ≡∫ +∞
−∞ |u(x, λ)|2dx and the nonlinear propagation constant λ

(power-eigenvalue diagram) [46,47]. Before we study the
above nonlinear eigenvalue problem, it is always beneficial to
understand the underlying linear eigenvalue problem, namely

ũxx + V (x)ũ = μũ, (18)

which is obtained by the linear version of Eq. (17) when
looking for the eigenmode profiles U (x, z) = ũ(x) exp(iμz).

We can now relate the solutions of the inhomogeneous
NLSE of Eq. (15) to a bulk space NLSE, which is given by

iφz + φxx + |φ|2φ = 0. (19)

The corresponding nonlinear eigenvalue problem is obtained
by looking for solutions of the type φ(x, z) = ρ(x) exp(iλz),
where ρ(x) is a positive real function of x. Therefore, we have

ρxx + ρ3 = λρ. (20)

The two nonlinear eigenvalue problems of Eqs. (17) and (20)
are directly related if one assumes a complex potential. More
specifically, by considering a solution of Eq. (17) of the
form u(x) = ρ(x) exp[iθ (x)], with ρ(x), θ (x) real functions
of position x, one can relate any solution of Eq. (17) to the
corresponding bulk problem. For such an assumption to be
true, we must allow the potential to be complex, V (x) =
VR(x) + iVI (x). In fact, it must have the following form:
V (x) = θ2

x − i[θxx + 2θx(lnρ)x]. Notice that the real part of
the potential does not depend on the solution profile ρ but
only on θ . This is expected, since in this case φP(x) = 0 and
φA(x) = ρ(x). The above analysis is general and it relates
two different nonlinear eigenvalue problems, that of the ho-
mogeneous and inhomogeneous complex NLSE. Moreover, it
allows us to construct non-Hermitian structures that support
nonlinear EI waves with bulk space characteristics. Given a
stationary solution ρ of the bulk NLSE eigenvalue problem,
we can derive a complex potential that supports a nonlinear
EI wave with bulk-space-like intensity profiles. The simplest
example is that of the fundamental solution of the NLSE, the
bright soliton of the form ρ(x) = A sech(bx). For any real-
valued function θ (x), the corresponding complex potential is

V (x) = θ2
x − i[θxx − 2bθx tanh(bx)]. (21)

We are going to examine in the next section how one can
numerically identify the supported nonlinear EI waves of the
above potential by direct application of the spectral renormal-
ization method [48]. It is of particular interest to consider
PT -symmetric periodic potentials. In other words, we will
examine complex potentials that are PT -symmetric provided
that their real part is even in x, and the imaginary component
(that describes the loss or gain) is odd. In other words,
the necessary but not sufficient condition for PT -symmetry,
namely V (x) = V ∗(−x), must be satisfied [11].

Before we proceed to particular one-dimensional exam-
ples, we would like to note that nonlinear EI waves also exist
in two spatial dimensions. In particular, let us consider the
two-dimensional normalized nonlinear Schrödinger equation
with a complex potential:

iUz + Uxx + Uyy + V (x, y)U + |U |2U = 0. (22)

The methodology that we follow here is similar to the
one we followed for the one-dimensional problems. Hence,
by assuming U (x, y) = u(x, y)eiλz, where u(x, y) represents
the complex soliton field profile and λ is the propagation
constant or the soliton’s eigenvalue, we get the nonlinear
eigenvalue problem ∇2u + V (x, y)u + |u|2u = λu. By substi-
tuting φ(x, y, z) = ρ(x, y)e(iλz) into the two-dimensional bulk
NLSE, iφz + ∇2φ + |φ|2φ = 0, we get the nonlinear eigen-
value problem for ρ(x, y), namely ∇2ρ + ρ3 = λρ. Since
there are no analytical solutions for the last bulk nonlinear
eigenvalue problem, we apply an iterative spectral renormal-
ization method to identify stationary solutions. Based on these
solutions, we can (only computationally) determine the cor-
responding non-Hermitian potential V (x, y), which supports
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nonlinear EI waves:

V (x, y) = ∇θ · ∇θ − i[∇2θ + 2∇θ · ∇lnρ]. (23)

V. SPECTRAL RENORMALIZATION METHOD

Since we are dealing with nonlinear eigenvalue problems,
it is beneficial to briefly present here the spectral renor-
malization method, which is a self-consistent computational
technique for finding stationary soliton solutions of the in-
homogeneous nonlinear Schrödinger equation. The spectral
renormalization approach was first introduced by Ablowitz
and Musslimani [48] to numerically construct a family of
localized soliton solutions of the NLSE on bulk or lattice
systems. In fact, by using such a method we can numerically
compute localized soliton solutions to both one- and two-
dimensional NLSEs in non-Hermitian potentials [11]. The
method can be applied for any potential (periodic or not) by
using finite-difference or spectral derivative schemes.

Here we will work on the spectral domain and use Fourier
transforms. These transforms in the spatial domain are defined
as follows:

û(k) = F[u(x)] =
∫ ∞

−∞
u(x)e−ikxdx, (24)

u(x) = F−1[û(k)] = 1

2π

∫ ∞

−∞
û(k)eikxdk. (25)

By taking the Fourier transform of Eq. (17), we have

−λû(k) − k2û(k) + F[V (x)u(x)] + F[|u(x)|2u(x)] = 0,

(26)
which leads us to the relation

û(k) = M[û(k)], (27)

where M is defined as

M[û(k)] = F[V (x)u(x)] + F[|u(x)|2u(x)]

λ + k2
. (28)

Equation (26) is an infinite-dimensional fixed-point equa-
tion for û(k) that will be solved using the spectral renormal-
ization method. At this point, we also note that we are looking
for solutions with λ > 0. On that basis, since we want to
construct a condition that limits the amplitude under iteration
from either growing without bound or tending to zero, we
introduce a new field variable s such that

u(x) = rs(x), û(k) = rŝ(k), (29)

where r is the renormalization constant (r 
= 0) to be deter-
mined. By iteration, all sn are given by the following relation:

ŝn+1 = M[ŝn(k), rn], (30)

where M[ŝn(k), rn] is given by the expression

M[ŝn(k), rn] = F[V (x)sn(x)] + |rn|2F[|sn(x)|2sn(x)]

λ + k2
.

(31)
Now the renormalization constant rn at every iteration step

can be directly determined by Eq. (26). After substituting

Eq. (29), multiplying both sides with ŝ∗
n(k), and integrating

in all k-space, we get the following equation for |rn|2:∫ ∞

−∞
|ŝn(k)|2dk =

∫ ∞

−∞
ŝ∗

n(k)
F[V (x)sn(x)]

λ + k2
dk

+ |rn|2
∫ ∞

−∞
ŝ∗

n(k)
F[|sn(x)|2sn(x)]

λ + k2
dk.

(32)

From the preceding equation we can directly determine the
renormalization constant rn, which one can show is a real
number (due to the gauge invariance of the inhomogeneous
NLSE). Once we know the renormalization constant at every
iteration step, we can determine the corresponding solution
from Eq. (28). Once the scheme converges and the error
between successive solutions tends to zero, the inverse Fourier
transform of û(k) leads us to the desired stationary soliton
solution u = u(x, λ). Direct generalization of this method to
two spatial dimensions is possible [11].

VI. FREE-SPACE-LIKE LATTICE SOLITONS

In this section, we are going to apply the spectral renor-
malization method to obtain nonlinear EI waves in guided
non-Hermitian structures. For reasons of physical relevance,
we choose θ (x) to be the periodic function θ (x) = sin x.
Then based on Eq. (21) we get the following complex PT -
symmetric potential:

V (x) = cos2 x + i[sin x + 2b cos x tanh(bx)]. (33)

First of all, the real part of the potential is indeed a periodic
function, whereas the imaginary part describes two different
semi-infinite lattices with a defect around x = 0. The width
of the defect is determined by the parameter b. The real and
imaginary parts of this potential are shown in Fig. 3(a), and the
corresponding linear eigenvalue spectrum based on Eq. (18)
is shown in Fig. 3(b) for the case in which b = 0.4. Here we
consider a finite number of cells and impose periodic bound-
ary conditions at both ends of the finite lattice. Therefore,
the above potential describes physically a refractive index
modulation profile that corresponds to a perfectly periodic real
potential with an imaginary defect at x = 0, which separates
two imaginary semi-infinite lattices. This means that we ex-
pect to have a surface lattice soliton at the interface (x = 0)
with a power threshold [46,47]. For b = 0.4 this threshold is
Pth ≈ 2.5, as is evident from the power eigenvalue diagram of
Fig. 3(c). The lattice soliton, as one can see in the inset of
Fig. 3(c), does not have peaks at the center of each waveguide
but rather a smooth intensity profile, like the fundamental
soliton of NLSE. Furthermore, by applying spectral beam
propagation methods, we can examine the nonlinear stability
of our soliton solutions. As we can deduce from Fig. 3(d),
the interface soliton for b = 0.4 appears to be unstable. Since
the soliton’s stability is not our main focus here, we did
not perform linear stability analysis. Our goal is to use the
non-Hermitian transformation in order to enhance the wave’s
transport through complex media.

Two-dimensional non-Hermitian lattices, which support
solitons with free-space features, can also be derived based
on Eq. (23). More specifically, direct application of the
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FIG. 4. (a) Real and (b) imaginary part of the two-dimensional
non-Hermitian optical lattice. In (c) the lattice soliton’s intensity is
depicted, and in (d) the corresponding phase distribution is shown
(for λ = 3).

spectral renormalization method provides the numerical so-
lutions ρ(x, y) for the bulk two-dimensional NLSE, and
therefore we can obtain the potential of Eq. (23) only nu-
merically (and not analytically, as in the one-dimensional
case). Furthermore, we choose a physically relevant peri-
odic phase θ (x, y), namely θ = sin x + sin y. Our results are
shown in Fig. 4. In Figs. 4(a) and 4(b), the real and imag-
inary parts of the complex potential, based on a ρ(x, y)
solution for λ = 2, are illustrated. In Figs. 4(c) and 4(d),
we present the lattice soliton intensity and its phase, re-
spectively. The free-space characteristic of the soliton here
is the circular symmetry of its intensity profile despite the
fact that there is coupling to several nearest-neighboring
lattice sites.

VII. MOVING SOLITONS IN NON-HERMITIAN LATTICES

An interesting problem in the context of nonlinear lattice
physics is to examine if moving solitons are possible in
a periodic potential [49]. Most of the existing studies are
focused on complicated analytical techniques limited by the
inherent approximations of a discrete NLSE for Hermitian
systems. In this section, we can approach such a problem
in a different way based on nonlinear EI waves. By relating
the bulk space, where traveling solitons are possible due
to translational symmetry, to an appropriate non-Hermitian
structure, we can obtain nonlinear EI waves by considering
potentials that have suitable gain and loss distributions.

In particular, we require that the field amplitude is z-
dependent as well. This means that U (x, z) = ρ(x, z)eiθ (x)eiλz.
Thus, the desired potential has the following form:

V (x, z) = θ2
x − i[θxx + 2θx(lnρ)x + (lnρ)z], (34)

FIG. 5. (a) Imaginary part of the lattice V (x, z) as a function
of the propagation distance and (b) the intensity of the moving
soliton’s evolution across the lattice interface. In the bottom figures
we compare the analytically and numerically obtained solutions at
a propagation distance of z = 1.2. In particular, we compare the
numerically and analytically obtained moving soliton solutions for
(c) the absolute value of the field, and (d) the phase profile. As we
can see, the agreement is perfect.

where ρ(x, z) satisfies the equation λρ − ρxx − ρ3 = 0. If we
assume now a moving soliton solution for ρ, namely ρ(x, z) =
A sech(bx + az), we get the following general family of non-
Hermitian potentials:

V (x, z) = θ2
x − i[θxx − (2bθx + a) tanh(bx + az)]. (35)

Notice that only the imaginary part of the potential depends on
z, a fact that is physically expected since the phase of the bulk
solution (which contributes to the real part of V ) is zero. A
particular case of interest, as before, is when the phase factor
is periodic, meaning that θ (x) = sin x. Thus we get the non-
Hermitian potential:

V = cos2 x + i[sin x + (2b cos x + a) tanh(bx + az)], (36)

which supports the nonlinear EI-wave solution U (x, z) =√
2b sech(bx + az)ei sin xeib2z. Our results are depicted in Fig. 5

for the parameter values of a = 1 and b = 0.2. The real part
of the potential is a period lattice, whereas the corresponding
imaginary part is illustrated in Fig. 5(a). Instead of a periodic
lattice, we have two tilted semi-infinite lattices, one with a
gain modulation (on the left) and another that is lossy (on the
right). The soliton travels [Fig. 5(b)] across this titled interface
for several coupling lengths before instabilities destroy its
invariant spatial profile. A comparison between the analyti-
cally and the computationally obtained solution is shown for
z = 1.2 in Figs. 5(c) and 5(d) for the amplitude and phase,
respectively. What is remarkable is that we can construct a
non-Hermitian structure that has no translational symmetry,
but nevertheless supports a nonlinear EI wave with bulk space
features. In this case, the relevant feature is a traveling soliton
in free space.
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VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have derived non-Hermitian structures
that support solutions with free-space characteristics. In par-
ticular, we found that such solutions are different from free-
space solutions only by a nonconstant phase given by a
parameter function θ (x, y). This phase directly determines the
complex potential that describes the inhomogeneous space.
In the context of non-Hermitian photonic systems, we have
examined various pertinent examples of guided paraxial struc-
tures in linear and nonlinear regimes and also in one and two
spatial dimensions. We note here that the CI waves, which are
supported by Wadati potentials [50–54], are a limiting case
of the general family of solutions we study in this work. We
note that there are various analytical methods for constructing
analytical solutions in complex potentials [50–56], but we
emphasize here that our focus is the underlying physical
behavior of the obtained non-Hermitian potentials.

A potential application of our non-Hermitian transfor-
mation between two different systems could relate the
recently discovered nonlocal integrable NLSE [57] and
the non-Hermitian inhomogeneous wave equation. Such
an integrable equation has the form ρxx + ρ2(x)ρ∗(−x) =
λρ, where ρ(x) is now a complex function. By set-
ting ũ(x) = ρ(x) exp[iθ (x)] and demanding ũxx + V (x)ũ =
λũ, we can find after some algebra the corresponding
non-Hermitian potential, V (x) = θ2

x +ρρ∗(−x)−2iθx(lnρ)x−
iθxx. So far there is no physical system that this integrable

nonlocal equation describes. This transformation could pro-
vide a systematic way of finding an optical guided structure
that under specific conditions supports solutions with the same
intensity profiles as the nonlocal integrable NLSE.

In conclusion, we have shown that the complex nature of
an optical potential (complex refractive index in photonics)
can provide us with an extra degree of freedom of controlling
the flow of light inside complex media. This unique class of
solutions exists only in non-Hermitian potentials, and we call
them equal-intensity waves (EI waves). The phase of these
waves affects the real part of the potential, whereas their
amplitude affects the imaginary part. By applying this con-
cept, we addressed three different physical problems, namely
transport of light in disordered media, nonlinear EI waves
at interfaces, and moving lattice solitons, by including the
appropriate imaginary part to the refractive index modulation
profile. Eliminating the reflections and connecting the wave
propagation inside complex media to free space diffraction
is also related to transformation optics related ideas in pho-
tonics and metamaterials. An important difference of our
approach is that instead of transforming the coordinate system
(transformation-cloaking optics), we transform instead the
medium by allowing our system to be non-Hermitian.
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