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Kuramoto model with additional nearest-neighbor interactions:
Existence of a nonequilibrium tricritical point
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A paradigmatic framework to study the phenomenon of spontaneous collective synchronization is provided
by the Kuramoto model comprising a large collection of phase oscillators of distributed frequencies that are
globally coupled through the sine of their phase differences. We study here a variation of the model by including
nearest-neighbor interactions on a one-dimensional lattice. While the mean-field interaction resulting from the
global coupling favors global synchrony, the nearest-neighbor interaction may have cooperative or competitive
effects depending on the sign and the magnitude of the nearest-neighbor coupling. For unimodal and symmetric
frequency distributions, we demonstrate that as a result, the model in the stationary state exhibits in contrast
to the usual Kuramoto model both continuous and first-order transitions between synchronized and incoherent
phases, with the transition lines meeting at a tricritical point. Our results are based on numerical integration of
the dynamics as well as an approximate theory involving appropriate averaging of fluctuations in the stationary
state.
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I. INTRODUCTION

Competing interactions are known to result in interest-
ing stationary and dynamical features in systems comprising
many interacting degrees of freedom. Here we explore this
theme within the ambit of a many-body system involving
phase oscillators of distributed natural frequencies interact-
ing via a mean-field and a nearest-neighbor interaction on a
one-dimensional periodic lattice. In the absence of the nearest-
neighbor interaction, the dynamics is that of the Kuramoto
model [1], well known in the field of nonlinear dynamics as a
paradigmatic framework to study the phenomenon of sponta-
neous synchronization abound in nature [2,3]. The model has
been extensively employed over the years to explain the emer-
gence of collective synchrony in a diverse range of scenarios,
from Josephson junction arrays [4] and chemical oscillators
[5] to power grids [6], rhythmic applause in concert halls [7],
and many more.

The dynamics of the Kuramoto model is strictly non-
Hamiltonian: it cannot be obtained as an overdamped
dynamics on a potential energy landscape, as is possible
when the natural frequencies are same for all the oscilla-
tors. For unimodal and symmetric frequency distributions,
the model in the limit of infinite system size shows as a
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function of the mean-field coupling a continuous phase tran-
sition between a synchronized and an incoherent phase [1,8].
The former phase is characterized by a macroscopic number
of oscillators having different phases but nevertheless shar-
ing a common frequency. In the incoherent phase, however,
there is no macroscopic cluster of coherent oscillators. The
Kuramoto model when considered with solely nearest-
neighbor interaction has been shown to not exhibit any
macroscopic phase locking and hence any synchronized phase
on a one-dimensional periodic lattice [9].

In the aforementioned backdrop, we explore in this work
the issue of what happens when one includes both a mean-
field and a nearest-neighbor interaction in the Kuramoto
setting. We show that as a result, the system in the station-
ary state exhibits both synchronized and incoherent phases;
thus, the scenario of nonexistence of a synchronized phase
with solely nearest-neighbor interaction is significantly mod-
ified on adding a mean-field interaction, in that the system
now does exhibit a synchronized phase. Moreover, a phase
transition occurs between the two phases as one tunes the
relevant dynamical parameters, with the transition being either
continuous (with continuous variation of the order parameter)
or first-order (showing jumps in the behavior of the order
parameter at the transition point). The two transition lines
meet at a so-called tricritical point, defined as the termination
of a continuous transition and a first-order transition point
[10]. While existence of such points has been demonstrated
earlier for Hamiltonian systems relaxing to equilibrium sta-
tionary states (see recent works, e.g., Refs. [11,12]), our work

2470-0045/2020/102(3)/032202(14) 032202-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3112-6530
https://orcid.org/0000-0002-6080-4890
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.032202&domain=pdf&date_stamp=2020-09-02
https://doi.org/10.1103/PhysRevE.102.032202


MRINAL SARKAR AND SHAMIK GUPTA PHYSICAL REVIEW E 102, 032202 (2020)

NN coupling

FIG. 1. Schematic diagram showing the coupling scheme for the
model (1) on a one-dimensional periodic lattice. The phase oscilla-
tors occupying the lattice sites (black filled circles) have a mean-field
and a nearest-neighbor coupling. For a representative site, we have
shown by black full lines (respectively, by blue dashed lines) the
mean-field [respectively, the nearest-neighbor (NN)] coupling.

is a demonstration of existence of a tricritical point in a non-
Hamiltonian dynamics relaxing to a nonequilibrium stationary
state, and is to the best of our knowledge a hitherto unreported
existence of such a point in the framework of the Kuramoto
model. An earlier demonstration of the existence of a tricrit-
ical point in a nonequilibrium setting has been in the context
of stochastic dynamics of interacting many-particle systems
[13], thus very much different from the setup considered in
this work. Our claims are supported by extensive numerical
integration results as well as an approximate theory valid in
the limit of large system size that considers an appropriate
averaging of fluctuations in the stationary state.

The layout of the paper is as follows. In Sec. II we define
our model of study. In Sec. III we discuss a reparametriza-
tion of the model convenient for further analysis, and list the
main queries addressed in this work. In Sec. IV we present
our results on the complete phase diagram of the model,
together with reporting on numerical results that demonstrate
the existence of both continuous and first-order transitions
in the stationary state of our model, and a discussion on how
to obtain numerically the lines of continuous and first-order
transitions in the parameter space. In Sec. V we discuss an
approximate theory to obtain the order parameter variation
in our model. The paper ends with conclusions in Sec. VI.
In Appendix A we motivate our model from a perspective
different from that of interacting phase oscillators, namely,
that of classical rotors interacting via a mean-field and a
nearest-neighbor interaction which arises as a reduced model
describing layered magnetic structures. Appendix B provides
a reminder of the scaling theory of continuous transitions in
equilibrium.

II. MODEL AND DYNAMICS

We consider a one-dimensional periodic lattice of L sites,
with sites labeled i = 1, 2 . . . , L. On each site resides a phase
oscillator interacting with oscillators on all other sites via a
mean-field coupling with strength J and also with oscillators
on its nearest-neighbor sites with strength K . Figure 1 shows
the coupling scheme. We take J to be positive, while K can be

of either sign. Denoting by θi ∈ [0, 2π ); θi+L = θi the angle
[14] of the oscillator on the ith site, the dynamics is defined
by L coupled nonlinear differential equations of the form

dθi

dt
= ωi + Jr sin(ψ − θi ) + K

∑
j∈nni

sin(θ j − θi ). (1)

Here, ωi is the natural frequency of the ith oscillator, while
the second term on the right-hand side (rhs) may be inter-
preted as a torque (in suitable units) arising from a mean-field
interaction and expressed in terms of the usual Kuramoto
synchronization order parameter [1,8]

reiψ ≡ 1

L

L∑
j=1

eiθ j . (2)

On the other hand, the third term on the rhs of Eq. (1) is
the torque due to a nearest-neighbor interaction, with the sum
over j restricted to the nearest neighbors of i. The ωi’s de-
note a set of quenched-disordered random variables sampled
independently from a common distribution G(ω) with finite
mean ω0 > 0 and width σ > 0. The quantity r; 0 � r � 1 in
Eq. (2) is a measure of the amount of synchrony present in the
system at a given time instant, while ψ measures the average
angle [8]. As is usual in studies of the Kuramoto model,
we consider G(ω) to be unimodal, i.e., symmetric about ω0

and decreasing monotonically and continuously to zero with
increasing |ω − ω0|. In view of rotational invariance of the
dynamics (1), the effect of ω0 can be gotten rid of from the
dynamics by effecting the transformation θi → θi + ω0t∀i.
On implementing such a transformation, one evidently has
ωi’s having zero mean in the resulting dynamics; we will from
now on consider such an implementation to have been made,
and consider instead of (1) the dynamics

dθi

dt
= σωi + Jr sin(ψ − θi ) + K

∑
j∈nni

sin(θ j − θi ). (3)

Here the ωi’s are now distributed according to a distribution
g(ω) that has zero mean and unit variance.

The dynamics (3) is intrinsically non-Hamiltonian. This
may be understood as follows: although the torque due to
the mean-field and the nearest-neighbor interaction may
be obtained from a potential V ({θi}) ≡ (J/2L)

∑L
i, j=1[1 −

cos(θi − θ j )] − K
∑L

i=1[cos(θi+1 − θi ) + cos(θi−1 − θi )], a
similar procedure cannot be implemented for the frequency
term. This is because an ad hoc potential ∼ − ∑L

i=1 σωiθi

that would nevertheless allow us to obtain the frequency
term in the dynamics (3) would not be periodic in the angle
variables and thus cannot be regarded as a bona fide potential
of the system. As a result of the foregoing, the dynamics
(3) cannot be interpreted as an overdamped dynamics on a
potential landscape, as is possible with ωi = 0 ∀ i [15]. In the
latter case, the dynamics may be written as

dθi

dt
= −∂V ({θi})

∂θi
, (4)

and then the long-time stationary solution corresponds to
values of θi’s that minimize the potential V ({θ j}) [16]. A
consequence of the non-Hamiltonian nature of the dynamics
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(3) is that the stationary state it relaxes to is not an equilibrium
but rather a nonequilibrium stationary state [15].

Setting K to zero in Eq. (3) recovers the usual Kuramoto
model that has only mean-field interaction [1,15,17–19],
while setting J to zero reduces the dynamics to the version
of the Kuramoto model with only nearest-neighbor interaction
[9]. In the former case, it is known in the limit L → ∞ that
in the stationary state, attained as t → ∞, the model shows
a continuous phase transition from a low-J incoherent phase
(zero value of the stationary r) to a high-J synchronized
phase (a nonzero value for the stationary r) across the critical
point Jc = 2σ/(πg(0)) [8,15]. Study of the model with only
nearest-neighbor interaction has established that in the limit
L → ∞, no angle locking and consequently a nonzero value
for stationary r is possible [9].

III. REPARAMETRIZATION OF THE DYNAMICS
AND QUERIES

For further analysis, we reduce the dynamics (3) to a
dimensionless form. To this end, implementing for J �= 0
the transformations t → Jt, σ → σ/J, K → K/J , one ob-
tains the dimensionless form as

dθi

dt
= σωi + r sin(ψ − θi ) + K

∑
j∈nni

sin(θ j − θi ). (5)

The aforementioned transformations are tantamount to con-
sidering the dynamics (3) with J = 1. We will show later
in this section that the relevant parameters to obtain phase
transitions in the dynamics (3) are the ratios σ/J and K/J ,
and hence, the results on the order parameter variation when
plotted, e.g., as a function of K/J and for a fixed σ/J , with
different values of J �= 0, all coincide. The latter fact jus-
tifies the transformations that have been invoked to rewrite
the dynamics in the form (5). From now on, we will study
the dynamics (5) in the parameter space (σ, K ). In obtaining
numerical results reported later in the paper, we employ as
representative examples of the frequency distribution a Gaus-
sian and a Lorentzian g(ω); σ is identified with the variance
of the Gaussian distribution, and with the half-width at half-
maximum of the Lorentzian distribution.

In the dimensionless dynamics (5), the continuous transi-
tion of the usual Kuramoto model is observed as one tunes
σ across the critical value σc = πg(0)/2, with the system
existing in the synchronized phase at low σ and in the in-
coherent phase at high σ . In this backdrop, we ask: How
does the inclusion of nearest-neighbor interaction modify the
stationary-state phase diagram? Do new phases emerge? What
is the order of transition between the different phases? We
may anticipate new features in view of the fact that for K < 0,
the mean-field and nearest-neighbor interactions have compet-
ing tendencies: while the former favors global synchrony, the
latter would like to make oscillator angles get out of phase on
nearest-neighbor sites. For K > 0, however, we expect both
the mean-field and the local interaction to have cooperative
effect in establishing global synchrony. In both the scenarios,
an essential role will be played also by the parameter σ . In
view of the foregoing, it is evidently pertinent to embark on
a detailed analysis of the dynamics (5), an issue we take up
in this work. The results presented in the whole of Sec. IV
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FIG. 2. The complete phase diagram of the model (5) in the
(σ -K) plane, showing synchronized and incoherent phases separated
by a line of transition that is either first-order (blue squares) or
continuous (red circles). The two lines meet at a tricritical point,
shown by a green star. The frequency distribution g(ω) is a Gaussian
with zero mean and unit variance. Exact results are obtained for
(1) K = 0, yielding the critical point (σc = √

π/(2
√

2), 0), and (2)
σ = 0, yielding the critical point (Kc = −0.25, σ = 0).

correspond to Gaussian g(ω), while the case of Lorentzian
g(ω) is discussed in Sec. VI.

IV. PHASE DIAGRAM OF THE
MODEL (5) IN (σ − K) PLANE

The stationary-state phase diagram of the model (5) in the
(σ − K) plane is shown in Fig. 2 for Gaussian g(ω), where
the circles in red constitute the line of continuous transi-
tion, while the line of first-order transition is represented by
squares in blue. The tricritical point is located at (σTricritical ≈
0.23, KTricritical ≈ −0.19) and is denoted by a green star. We
discuss below how we obtain the phase diagram in Fig. 2 from
numerical integration results of the dynamics (5) for large but
finite L. For the system sizes scanned, we did not observe any
appreciable dependence of the transition points on L.

From the phase diagram (Fig. 2), we see that for K > 0,
when both the mean-field and the nearest-neighbor interaction
favor global synchrony, one has a continuous phase transition
from a low-σ synchronized phase to a high-σ incoherent
phase. For negative values of K , there is instead a competition
between the two types of interaction. One has a continuous
transition as long as K > KTricritical and otherwise a first-order
transition. As stated earlier, for K = 0, we recover the transi-
tion point of the usual Kuramoto model.

For σ = 0, we now discuss how one may obtain exact
results for the critical value Kc. In this case, the dynamics (5)
takes the form of Eq. (4), with the potential in dimensionless
form given by

V ({θi}) = −r
L∑

i=1

cos(ψ − θi )

− K
L∑

i=1

[cos(θi+1 − θi ) + cos(θi−1 − θi )]. (6)
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As mentioned in Sec. II, the stationary solution then cor-
responds to values of θi’s that minimize the potential V .
Consider first the incoherent phase, which has by definition a
zero value for stationary r, and the potential is minimized by
having angles of oscillators on nearest-neighbor sites differing
by an amount equal to π (since K is here negative; see Fig. 2).
The corresponding minimum value of the potential (6) is given
by

Vinc = 2KL. (7)

On the other hand, the potential can also be minimized by
having all the angles equal to one another (which is the
favored state for σ = 0), yielding unity for the stationary r
(maximally synchronized phase) and the potential having the
corresponding value

Vsync = −L − 2KL. (8)

It is then evident that equating Vinc with Vsync defines Kc such
that on either side of this critical value, it is the incoherent
or the synchronized phase that minimizes the potential and
is consequently observed in the stationary state. The equal-
ity 2KcL = −L − 2KcL yields the exact critical value Kc =
−0.25.

The rest of this section is devoted to a detailed discussion
of how one may obtain the phase diagram in Fig. 2 from an
analysis of the dynamics (5).

A. Continuous versus first-order transitions

In order to gain preliminary insights into possible dynam-
ical behavior, one may start off with performing numerical
integration of the dynamics (5) by employing a fourth-order
Runge-Kutta algorithm with integration time step dt = 0.01
and for Gaussian g(ω). Figure 3(a) shows for several values
of σ the variation of the order parameter r with K in the
stationary state on a lattice of size L = 3200 [20]. In obtain-
ing the results depicted in the figure, we initiate, for every
individual pair of values of σ and K , the dynamics (5) in
a state in which all the oscillators have the same angle; we
then let the system relax to stationarity, signaled by a time-
independent value of r, and record the latter value. Unless
stated otherwise, the results for the order parameter presented
here and elsewhere in the paper have been obtained by taking
time average of the data in the stationary state for a given
frequency realization {ωi} and considering a further average
over different frequency realizations. The figure suggests the
existence of both synchronized and incoherent phases and
a phase transition between them. The latter appears to be
continuous (continuous variation) for high values of σ , and
to be first-order-like (sharp jump) for low σ .

Figure 2 clearly shows that varying K at a fixed σ lets
us reveal the nature of the phase transition in a way that is
completely equivalent to varying σ at a fixed K . That this
is indeed the case is evident from the results presented in
Fig. 3(b) that shows for several values of K the variation of
the order parameter r with σ in the stationary state on a lattice
of size L = 3200 [20]. Again, we see both synchronized and
incoherent phases, with a phase transition between them that
appears to be continuous for positive and low negative values
of K , and to be first-order-like for large negative K .
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= 0.7
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K = 0.04
= 0
= −0.04
= −0.10
= −0.16
= −0.21
= −0.23

FIG. 3. Variation of order parameter r with K for several values
of σ (a) and that with σ for several values of K (b) in the stationary
state of the dynamics (5) on a lattice of size L = 3200. The frequency
distribution g(ω) is a Gaussian with zero mean and unit variance.
The data have been averaged, first over dynamical evolution in the
stationary state for a given frequency realization {ωi}, and then
over different frequency realizations. Both the figures suggest the
existence of both synchronized and incoherent phases and a phase
transition between them. The latter appears to be continuous (con-
tinuous variation of r) for high values of σ , and to be first-order-like
(sharp jump of r) for low σ , as shown in panel (a). Similarly, panel
(b) shows that the transition from the synchronized to the incoherent
phase appears continuous for positive and low negative values of K
and first-order-like for large negative K . The data are obtained from
numerical integration of the dynamics (5). In obtaining the results
depicted, we initiate, for every individual pair of values of σ and
K , the dynamics (5) in a state in which all the oscillators have the
same angle; we then let the system relax to stationarity, signaled by
a time-independent value of r, and record the latter value.

Since a clear distinguishing feature between first-order and
continuous transitions is the occurrence of hysteresis in the
former [21], we now proceed to report on results of such a
study. Numerical results reported in Fig. 4 correspond to the
situation in which for a fixed value of σ , we let the system
relax to the stationary state at σ = 0 while starting from an
initial state in which all the oscillators have the same angle,
and then tune σ adiabatically to high values and back in a
cycle, while recording concomitantly the value of the order
parameter r. Adiabatic tuning ensures that the system is at
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FIG. 4. Variation of order parameter r with adiabatically tuned
σ in the stationary state of the dynamics (5) on a lattice of size L =
3200 and for four values of K , namely, K = 0.04 (a), K = −0.1 (b),
K = −0.21 (c), and K = −0.23 (d). The frequency distribution g(ω)
is a Gaussian with zero mean and unit variance. The results corre-
spond to a typical realization of the frequencies. Hysteresis behavior
is observed only in panels (c) and (d). The data are obtained from
numerical integration of the dynamics (5).

every instant of time close to a stationary state as σ is tuned
in time. Figures 4(a) and 4(b) show the variation of r with
adiabatically tuned σ , for K = 0.04 and K = −0.1, respec-
tively. In both cases, the curves corresponding to forward and
backward variation of σ coincide up to numerical precision,
and consequently, we do not observe any hysteresis behav-
ior, thereby hinting at the corresponding transition from the
synchronized to the incoherent phase being a continuous one.
On the other hand, results displayed in Figs. 4(c) and 4(d)
for K = −0.21 and −0.23, respectively, show the existence
of a hysteresis loop, thereby bearing a clear signature of a
first-order transition. It may be noted from the results for the
backward variation of σ shown in Figs. 4(c) and 4(d) that r
does not attain the value of unity as σ is reduced to zero,
but instead has a value close to zero. We understand this as
due to the system being stuck in long-lived metastable states
during relaxation to a synchronized state for K negative and
large in magnitude. To illustrate this point, consider the plots
in Fig. 5 for a large negative value of K and at a fixed σ

at which an initial synchronized state is stable. The figure
shows time evolution of r for several realizations of an initial
incoherent state. It may be seen that only a fraction η of
these realizations relax to the synchronized state over the time
window of observation, with the fraction decreasing fast with
the increase of system size L (inset of Fig. 5). This result
implies that in the limit of large L, the system does not exhibit
relaxation to the synchronized state but remains close to the
initial incoherent state, consistent with the results displayed
in Figs. 4(c) and 4(d).

Figure 6 shows the variation of the order parameter r with
adiabatically tuned K in the stationary state of the dynamics
(5) for two values of σ , namely, σ = 0.1 [Fig. 6(a)] and
σ = 0.5 [Fig. 6(b)]. Hysteresis behavior is observed only in
Fig. 6(a) and not in Fig. 6(b), consistent with the fact that
for σ = 0.1 (respectively, σ = 0.5), one has a first-order (re-
spectively, a continuous) transition; see Fig. 2. As claimed

0 500 1000 1500 2000 2500
t

0.5

1.0

r

L = 100
L = 400

0 200 400
L

10−1

100

η

FIG. 5. Considering the dynamics (5) for a large negative value
of K (namely, K = −0.21) and at a fixed σ at which an initial
synchronized state is stable (we have taken σ = 0.05), the main
figure shows for two system sizes the time evolution of r for five
realizations of an initial incoherent state. The frequency distribution
g(ω) is a Gaussian with zero mean and unit variance. It may be
seen that with increase of L, a smaller number of initial realizations
relax to the synchronized state over the time window of observation.
The inset shows this fraction η as a function of L, indicating fast
decrease with increase of L. This result implies that in the limit of
large L, the system does not exhibit relaxation to the synchronized
state but remains close to the initial incoherent state, consistent with
the results displayed in Figs. 4(c) and 4(d). The data are obtained
from numerical integration of the dynamics (5).

following Eq. (5), Fig. 7 demonstrates that the relevant param-
eters to obtain our observed phase transitions for the model
(3) are the ratios σ/J and K/J , as a result of which r when
plotted as a function of K/J and for a fixed σ/J , with different
values of J �= 0, all coincide. This justifies the transformations
invoked in reducing the dynamics (3) to (5).

One may wonder as to why the plots in Fig. 3 correspond-
ing to first-order transitions do not show hysteresis, while the
ones in Figs. 4 and 6 do show hysteresis. To understand this,
attention may be called to the fact the plots in Fig. 3 do not

−0.4 −0.2 0.0
K

0.0

0.5

1.0

r

(a)
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Backward

−0.4 0.0 0.4
K

0.0

0.5

1.0
(b)

Forward
Backward

FIG. 6. Variation of order parameter r with adiabatically tuned
K in the stationary state of the dynamics (5) on a lattice of size L =
3200 and for two values of σ , namely, σ = 0.1 (a) and σ = 0.5 (b).
The frequency distribution g(ω) is a Gaussian with zero mean and
unit variance. The results correspond to a typical realization of the
frequencies. Hysteresis behavior is observed only in panel (a) and not
in panel (b), consistent with the fact that for σ = 0.1 (respectively,
σ = 0.5), one has a first-order (respectively, a continuous) transition;
see Fig. 2. The data are obtained from numerical integration of the
dynamics (5).
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FIG. 7. Variation of order parameter r with adiabatically tuned
K , rescaled by J , in the stationary state of the dynamics (3) on a
lattice of size L = 3200. The values of J and σ are mentioned in the
individual panels for both forward (F) and backward (B) variation
of K in time. The frequency distribution g(ω) is a Gaussian with
zero mean and unit variance. The results correspond to a typical
realization of the frequencies. The data are obtained from numerical
integration of the dynamics (3). The results are a clear demonstration
of the fact that the relevant parameters to obtain phase transitions for
the model (3) are the ratios σ/J and K/J , as a result of which r when
plotted as a function of K/J and for a fixed σ/J , with different values
of J �= 0, all coincide. This justifies the transformations invoked in
reducing the dynamics (3) to (5).

correspond to adiabatic tuning of the parameter plotted in the
x axis. For example, the plots of r versus K at a given value
of σ correspond of several independent numerical runs at the
given σ for each of which K is fixed at given values, letting
each run relaxing the system to stationarity and recording the
corresponding stationary value of r. In contrast, the plots in,
e.g., Fig. 6 correspond to a single numerical run in which
in the stationary state and for a fixed σ , the parameter K is
continuously and adiabatically tuned in time and the corre-
sponding value of r is recorded. As follows from the theory of
first-order phase transitions [21], it is only in the latter case of
adiabatic tuning that one should observe hysteresis and not in
the case of Fig. 3.

On the basis of the foregoing, we may conclude the exis-
tence of both continuous and first-order phase transitions in
the stationary state of the dynamics (5). Our next task would
be to explain how we obtain numerically the phase-transition
lines in the (σ, K ) plane, as shown in Fig. 2, and to explain
in particular how we locate the tricritical point, defined as the
point at which the first-order and continuous transition lines
meet. In the following, we will discuss the phase diagram
and the phase transitions presented therein by varying σ at
a fixed K , though we emphasize that this way of uncovering
the nature of the phase transition is completely equivalent to
varying K at a fixed σ , with the latter being perhaps more
amenable to experimental implementation; the equivalence is
evidently true from Fig. 2.

B. Obtaining the line of continuous transition

In order to locate numerically the line of continuous tran-
sition, we proceed as follows. At values of K at which no
hysteresis is observed in the variation of r with adiabatically
tuned σ , our aim is to estimate the value of σc ≡ σc(K ),
namely, the value of σ at the critical point of transition at fixed
K . To this end, we analyze the finite-L data for stationary r
by resorting to the finite-size scaling theory for equilibrium

critical phenomena briefly summarized in Appendix B. By
drawing an analogy with Eq. (B1), we write scaling forms for
the order parameter r(L) obtained in a system of size L and the
stationary-state temporal fluctuations of the order parameter
defined as

χ (L) ≡ L 〈r2(L)〉 − 〈r(L)〉2, (9)

where the angular brackets and the overbar denote, re-
spectively, time average in the stationary state for a given
frequency realization {ωi} and average over frequency real-
izations. The scaling forms are

r(L) ∼ L−β/ν f (|ε|L1/ν ),

χ (L) ∼ Lγ /νg(|ε|L1/ν ), (10)

with β, ν, γ being the critical exponents, and

ε ≡ σ − σc

σc
. (11)

As discussed in Appendix B, the scaling functions f (x) and
g(x), defined with x > 0, behave in the limit x → ∞ as
f (x) ∼ xβ and g(x) ∼ x−γ . In the limit x → 0, both the func-
tions behave as constants.

Now, following the procedure detailed in Appendix B to
obtain the critical point, σc ≡ σc(K ) is estimated from the plot
of the maximum of χ (L) as a function of L and fitting it to a
power law. Using the value of σc estimated this way, and re-
quiring for large L scaling collapse of the finite-L data for r(L)
and χ (L) according to the forms in Eq. (10) allow us to obtain
values for the critical exponents β, γ , ν. In Fig. 8 we show for
two values of K the behavior of r [Figs. 8(a) and 8(c)] and χ

[Figs. 8(b) and 8(d)] as a function of σ and scaling collapse
in the corresponding insets. We have K = 0.04 for Figs. 8(a)
and 8(b) and K = −0.1 for Figs. 8(c) and 8(d). The values of
the critical exponents that yielded scaling collapse are the fol-
lowing: for K = 0.04, we have β ≈ 0.52, ν ≈ 2.0, γ ≈ 0.76,
while for K = −0.1, we have β ≈ 0.78, ν ≈ 3.13, γ ≈ 1.06.
We note that one requires data for larger L in order to estimate
more reliably the critical exponent values. Our focus here is
primarily on establishing the existence of a continuous phase
transition in the dynamics (5) for a range of values of K , and
in this regard, a confirmation, in addition to the no-hysteresis
data presented in Fig. 4, is provided by the very good scaling
collapse for large L demonstrated in Fig. 8 for which the
underlying theory invoked is that of finite-size scaling for
continuous transitions. That we have been able to estimate σc

accurately is evident from the quality of scaling collapse seen
in Fig. 8.

The aforementioned procedure of obtaining σc(K ) from the
data of χ (L) is repeated for several values of K at which
one does not observe any hysteresis in the behavior of r as
a function of adiabatically tuned σ . In this way, we obtain the
values of σc(K ) as a function of K , which we use to construct
the phase diagram in the (σ, K )-plane, that is, draw the line of
continuous transition; see Fig. 2.

C. Obtaining the line of first-order transition

Having obtained in the preceding section the line of con-
tinuous transition, we now proceed to obtain the line of
first-order transition. In the absence of a scaling theory akin
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FIG. 8. For two values of K is shown the variation with σ of the finite-L order parameter r ≡ r(L) and the quantity χ ≡ χ (L) [see Eq. (9)]
in the stationary state of the model (5), for five values of the system size L. In the insets, we show scaling collapse of the data according
to Eq. (10). The frequency distribution g(ω) is a Gaussian with zero mean and unit variance. We have K = 0.04 for panels (a) and (b) and
K = −0.1 for panels (c) and (d). The data involve time averaging in the stationary state for a given frequency realization {ωi} as well as over
different frequency realizations. The critical point σc ≡ σc(K ) is obtained by plotting the maximum of χ (L) as a function of L and fitting it
to a power law, while the values of the critical exponents β, ν, γ are obtained from the scaling collapse of the data for r and χ . The data are
obtained from numerical integration of the dynamics (5).

to the one that exists on general grounds for continuous tran-
sitions, we proceed to obtain the first-order transition point
as follows. At a first-order phase transition, the order param-
eter as a function of time shows bistability, with the system
switching back and forth between two phases. For our system
(5), we show in Fig. 9(a) the behavior of r versus time in
the stationary state and at a value of K at which we have
observed hysteresis (cf. Fig. 4). Such a bistable behavior may
be characterized by drawing the probability distribution P(r)
of stationary r. When bistable, P(r) is bimodal with two
peaks of equal heights. Contrarily, while on either side of
the transition point when the system is no more bistable, the
distribution P(r) is bimodal, but the peaks are not of equal
heights. Considering our model (5), when one is at a value
of σ smaller (respectively, greater) than the critical value of
first-order transition, P(r) will have a higher peak at a value of
r corresponding to the synchronized (respectively, incoherent)
phase. Then, in order to locate the transition point, we adopt
the following strategy. For a fixed K and a given (large) system
size L, we scan the range of σ , obtaining for each value the
distribution P(r) from the time variation of r in the stationary
state, and estimate the transition point as the value of σ at

which P(r) has two peaks of equal heights. An example is
shown in Fig. 9(b). Note that unlike a first-order transition
point that is characterized by two equally likely values of the
order parameter, a continuous transition is characterized by a
distribution P(r) that is single peaked, with the peak shifting
continuously from nonzero to zero values as σ is tuned from
below to above the transition point.

The above background on how to locate first-order and
continuous transition points in the (σ, K )-plane armed us to
draw in Fig. 2 the corresponding transition lines and to locate
the tricritical point at which the two lines meet.

In the following section, we embark on an analysis of the
dynamics (5) based on an approximate theory that allows us
to obtain the behavioral trend of the order parameter in the
stationary state.

V. THEORETICAL ANALYSIS

In this section, we discuss a suitably modified version of
an approximate time-averaged theory proposed in Ref. [22]
(see also Ref. [19]), which allows to obtain quite accurately
the behavior of the order parameter in the stationary state of
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FIG. 9. Time variation of the order parameter r (a) and the corre-
sponding distribution P(r) (b) in the stationary state of the dynamics
(5) and at a value of K (namely, K = −0.20) at which one has a
first-order transition. The system size is L = 3200. The frequency
distribution g(ω) is a Gaussian with zero mean and unit variance.
The results correspond to a typical realization of the frequencies.
Exactly at the transition point, the distribution has two peaks of equal
height, while on either side, the peaks have different heights. Note
that the switching time between the two bistable states, as in panel
(a), becomes with increasing L so prohibitively large that one does
not observe enough switching within a reasonable time interval of
observation, and then, one does not have enough statistics to draw the
distribution P(r). The data are obtained from numerical integration
of the dynamics (5).

our model (5) in parameter regimes of continuous transitions.
To proceed, let us define a weighted adjacency matrix as

Wi j ≡ 1

L
(1 − δi j ) + Kδi, j±1; i, j = 1, 2, . . . , L, (12)

in terms of which we rewrite Eq. (5) as

dθi

dt
= σωi + Im

⎡
⎣e−iθi

L∑
j=1

Wi je
iθ j

⎤
⎦. (13)

Let us now consider the above dynamics in the stationary state
and express it as

dθi

dt
= σωi + r (T )

i sin(ψi − θi ) + hi(t ), (14)

where we have defined a time-averaged local order parameter
for the ith site as

r (T )
i eiψi ≡

L∑
j=1

Wi j〈eiθ j 〉

= reiψ + K (〈eiθi+1〉 + 〈eiθi−1〉) − 1

L
〈eiθi〉, (15)

with the angular brackets denoting as usual time average over
dynamics in the stationary state for a given frequency real-
ization {ωi}, while hi(t ) denotes stationary-state fluctuations:

hi(t ) ≡ Im

⎡
⎣e−iθi

L∑
j=1

Wi j (e
iθ j − 〈eiθ j 〉)

⎤
⎦. (16)

In obtaining the first term on the rhs of Eq. (15), we have
used the fact that since we are in the stationary state, we
have 〈reiψ 〉 = reiψ . Note that the quantities r (T )

i and ψi are
by definition time independent.

The time-averaged theory aims to study the synchronized
phase by neglecting for large L the fluctuations hi(t ) in the
dynamics (14) [19,22], which therefore reads

dθi

dt
= σωi + r (T )

i sin(ψi − θi ). (17)

Considering the dynamics (17), it is well known from the
study of a similar equation occurring in the usual Kuramoto
model [8,15] that if the ith oscillator has r (T )

i having such
a value that σ |ωi| � r (T )

i , the quantity θi − ψi would have a
stable fixed point given by sin(θi − ψi ) = σωi/r (T )

i ; cos(θi −
ψi ) = +

√
1 − σ 2ω2

i /(r (T )
i )

2
, the latter determining the value

of θi − ψi in the stationary state. All such oscillators satisfying
σ |ωi| � r (T )

i are therefore called phase-locked or synchro-
nized oscillators. On the other hand, oscillators with σ |ωi| >

r (T )
i constitute the so-called drifting oscillators, for which the

dynamics (17) does not allow for a stable fixed point.
Let ρ j (θ )dθ denote the stationary probability that the jth

oscillator, with its natural frequency equal to ω j , has its angle
in the range (θ, θ + dθ ). If the jth oscillator is phase locked,
the normalized density is given by [15,17]

ρ locked
j (θ − ψ ) = r (T )

j cos(θ − ψ )δ
[
σω j − r (T )

j sin(θ − ψ )
]

×�[cos(θ − ψ )], (18)

with �(x) being the Heaviside step function. On the other
hand, the probability density in the case that the jth oscillator
is drifting is given by [15,17]

ρdrift
j (θ − ψ ) = 1

2π

√
σ 2ω j

2 − (
r (T )

j

)2

∣∣σω j − r (T )
j sin(θ − ψ )

∣∣ . (19)
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The value of r (T )
i may then be found self-consistently as

r (T )
i = r (T )

i

∣∣
locked + r (T )

i

∣∣
drift

=
∑

j; σ |ω j |�r(T )
j

Wi j
〈
ei(θ j−ψi )

〉

+
∑

j; σ |ω j |>r(T )
j

Wi j
〈
ei(θ j−ψi )

〉
. (20)

The contribution of the locked oscillators to the order param-
eter is calculated as follows:

r (T )
i

∣∣
locked =

∑
j; σ |ω j |�r(T )

j

Wi j
〈
ei(θ j−ψ j )ei(ψ j−ψi )

〉
. (21)

These oscillators have θ j − ψ j taking up time-independent
values in the stationary state, so that the corresponding factor

may be taken out of the angular brackets in Eq. (21), More-
over, ψi and ψ j being time independent, we have 〈ei(ψ j−ψi )〉 =
ei(ψ j−ψi ). The time-independent values for θ j − ψ j are dis-
tributed according to the δ-function distribution (18), im-
plying that we have (θ j − ψ j ) = sin−1 (σω j/r (T )

j ); cos(θ j −
ψ j ) = +

√
1 − σ 2ω2

j/(r (T )
j )

2
. Putting all these together, we

have

r (T )
i

∣∣
locked =

∑
j; σ |ω j |�r(T )

j

Wi je
i(ψ j−ψi )

×
⎧⎨
⎩
⎡
⎣
√√√√1 − σ 2ω2

j(
r (T )

j

)2

⎤
⎦ + i

(
σω j

r (T )
j

)⎫⎬
⎭. (22)

Proceeding in the same manner as for the locked oscilla-
tors, we may obtain the contribution of the drifting oscillators:

r (T )
i

∣∣
drift =

∑
j; σ |ω j |>r(T )

j

Wi j
〈
ei(θ j−ψ j )ei(ψ j−ψi )

〉 = ∑
j; σ |ω j |>r(T )

j

Wi je
i(ψ j−ψi )

〈
ei(θ j−ψ j )

〉

=
∑

j; σ |ω j |>r(T )
j

Wi je
i(ψ j−ψi )[〈cos(θ j − ψ j )〉 + i〈sin(θ j − ψ j )〉]. (23)

Now, the drifting oscillators, unlike the locked ones, do not have time-independent values for their angle θ j − ψ j , but instead
have their values distributed according to the stationary distribution (19). Consequently, in computing the time average 〈ei(θ j−ψ j )〉,
we need to consider that (θ j − ψ j ) would take values following the distribution (19), so that we have

〈cos(θ j − ψ j )〉 =
∫ 2π

0
d (θ − ψ ) ρdrift

j (θ − ψ ) cos(θ − ψ ) = 0 (24)

and

〈sin(θ j − ψ j )〉 =
∫ 2π

0
d (θ − ψ )ρdrift

j (θ − ψ ) sin(θ − ψ ) = σω j

r (T )
j

⎡
⎢⎣1 −

√√√√1 −
(
r (T )

j

)2

σ 2ω j
2

⎤
⎥⎦, (25)

finally yielding

r (T )
i

∣∣
drift =

∑
j; σ |ω j |>r(T )

j

Wi je
i(ψ j−ψi )

⎧⎪⎨
⎪⎩i

σω j

r (T )
j

⎡
⎢⎣1 −

√√√√1 −
(
r (T )

j

)2

σ 2ω j
2

⎤
⎥⎦
⎫⎪⎬
⎪⎭. (26)

Using Eqs. (22) and (26) in Eq. (20), and then equating real and imaginary parts from both sides of it, we get

r (T )
i =

∑
j; σ |ω j |�r(T )

j

Wi j

⎧⎨
⎩cos(ψ j − ψi )

⎡
⎣
√√√√1 − σ 2ω2

j(
r (T )

j

)2

⎤
⎦ − sin(ψ j − ψi )

(
σω j

r (T )
j

)⎫⎬
⎭

−
∑

j; σ |ω j |>r(T )
j

Wi j

⎧⎪⎨
⎪⎩sin(ψ j − ψi )

σω j

r (T )
j

⎡
⎢⎣1 −

√√√√1 −
(
r (T )

j

)2

σ 2ω j
2

⎤
⎥⎦
⎫⎪⎬
⎪⎭, (27)

0 =
∑

j; σ |ω j |�r(T )
j

Wi j

⎧⎨
⎩sin(ψ j − ψi )

⎡
⎣
√√√√1 − σ 2ω2

j(
r (T )

j

)2

⎤
⎦ + cos(ψ j − ψi )

(
σω j

r (T )
j

)⎫⎬
⎭

+
∑

j; σ |ω j |>r(T )
j

Wi j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos(ψ j − ψi )
σω j

r (T )
j

⎡
⎢⎢⎢⎣1 −

√√√√√1 −
(

r (T )
j

)2

σ 2ω j
2

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (28)
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The above equations are solved with the choice ψi = ψ j ∀ i, j.
Equation (28) then reduces to

0 =
∑

j

Wi j

(
σω j

r (T )
j

)
−

∑
j; σ |ω j |>r(T )

j

Wi j
σω j

r (T )
j

⎡
⎢⎣
√√√√1 −

(
r (T )

j

)2

σ 2ω j
2

⎤
⎥⎦,

(29)

while Eq. (27) now reads

r (T )
i =

∑
j; σ |ω j |�r(T )

j

Wi j

⎡
⎣
√√√√1 − σ 2ω2

j(
r (T )

j

)2

⎤
⎦. (30)

Equations (29) and (30) are simultaneously satisfied by taking
all r (T )

i ’s to be even in {ω j}: r (T )
i ({ω j}) = r (T )

i ({−ω j})∀i and
satisfying Eq. (30). With our choice of ω j’s being sampled
from a symmetric g(ω): g(ω) = g(−ω), Eq. (29) is then au-
tomatically satisfied for large L, as the contributions in the
two sums for every pair of positive and negative ω j cancel
each other. The set of L coupled equations (30) when solved
numerically determines the set {r (T )

i }. Equation (15) then
allows to obtain the order parameter r for a given frequency
realization {ω j} as

r = 1

(1 + 2K )L − 1

∣∣∣∣∣
L∑

i=1

r (T )
i eiψi

∣∣∣∣∣
= 1

(1 + 2K )L − 1

∣∣∣∣∣
L∑

i=1

r (T )
i

∣∣∣∣∣, (31)

where in the last step we have used the fact that all the ψi’s
are equal. Finally, we average the value of r so obtained over
different frequency realizations.

We use Eq. (31) to obtain the behavior of the order pa-
rameter r versus σ for various values of K and compare
with that obtained from direct numerical integration of the
dynamics (5) for a lattice of size L = 3200; see Fig. 10.
The values of K are the following: K = 0.1 [Fig. 10(a)],
K = 0.04 [Fig. 10(b)], K = −0.04 [Fig. 10(c)], K = −0.1
[Fig. 10(d)], and K = −0.21 [Fig. 10(e)]. The data have been
averaged over several frequency realizations. Note that the
time-averaged theory described above is valid in the synchro-
nized phase. For positive as well as low negative K , the order
parameter behavior obtained from the theory is in very good
agreement with numerics; see Figs. 10(a), 10(b), and 10(c).
With K becoming more negative so that one approaches the
tricritical point (see Fig. 2), the deviation between theory
and numerics becomes evident, especially close to the phase
transition point; see Fig. 10(d). For K values for which one
has a first-order transition, the match between the theory and
numerical results worsens substantially, even somewhat deep
into the synchronized phase; see Fig. 10(e). Nevertheless, the
remarkable agreement in the case of continuous transitions
lets us conclude that there is good enough merit in using
the time-averaged theory in obtaining the behavioral trend
of stationary r in the synchronized phase. We anticipate that
in parameter regimes of first-order transitions, the local field
set up by the nearest-neighbor interaction competing with the
global mean-field leads to enhanced fluctuations neglected in
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FIG. 10. The variation with σ of the stationary order parameter r
obtained for the dynamics (5) on a lattice of size L = 3200, for five
values of K : K = 0.1 (a), K = 0.04 (b), K = −0.04 (c), K = −0.1
(d), and K = −0.21 (e). The frequency distribution is a Gaussian
with zero mean and unit variance. Data shown are obtained from
numerical integration of the dynamics and from the time-averaged
theory discussed in Sec. V.

our time-averaged theory. It would be interesting to formulate
a theory that would explain the variation of r for K values for
which r shows a first-order transition as well as for K values to
the right of the tricritical point as the latter is approached from
the side of continuous transition; see Fig. 2. One crucial issue
would then be to devise a suitable measure that is analytically
tractable and yet able to take into account local fluctuations.
A possibility is that the one-oscillator distribution function
that was employed in the time-averaged theory is dispensed
with, and one considers instead, e.g., a two-oscillator distri-
bution function that gives the joint probability density for two
consecutive-site oscillators to observe given angle values at a
given time instant.

VI. CONCLUSIONS

In this work, we studied a variation of the celebrated Ku-
ramoto model of spontaneous collective synchronization, by
including in the dynamics a nearest-neighbor interaction on
a one-dimensional lattice with periodic boundary conditions.
For unimodal and symmetric frequency distributions, we
demonstrated that the resulting dynamics exhibits a rich phase
diagram in the stationary state, with the system exhibiting
synchronized and incoherent phases separated by transition
lines that could be either continuous or first-order. The first-
order and continuous transition lines meet at a tricritical point.
For such frequency distributions, the usual Kuramoto model
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FIG. 11. Variation of order parameter r with adiabatically tuned
σ in the stationary state of the dynamics (5) on a lattice of size
L = 3200 and for four values of K : K = 0.04 (a), K = −0.1 (b),
K = −0.23 (c), and K = −0.24 (d). The frequency distribution g(ω)
is a Lorentzian with zero mean and unit width. The results corre-
spond to a typical realization of the frequencies. Hysteresis behavior
is observed only in panels (c) and (d). The data are obtained from
numerical integration of the dynamics (5).

that has only mean-field interaction exhibits continuous transi-
tions and the model with solely nearest-neighbor interactions
exhibits the incoherent phase with no transitions. Our work
highlights that a competition between the two types of in-
teractions brings in new features, namely, that the system
in contrast to the only-nearest-neighbor case does exhibit
global synchrony, and moreover, that transitions between the
synchronized and the incoherent phase can be either continu-
ous or first-order depending on parameter regimes. Although
we have studied in detail the case of Gaussian frequency
distributions, we have verified for another choice of the distri-
bution, namely, a Lorentzian, the existence of continuous and
first-order transitions; see Fig. 11. In the light of the results
presented here in the context of the model (1) that is a special
case of the dynamics (A6) discussed in Appendix A, it would
be interesting to study the phase diagram of the latter model
that is more general. Investigations in these directions will be
reported elsewhere.
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APPENDIX A: MOTIVATING THE FORM OF THE
DYNAMICS (1)

The dynamics (1) may be motivated from a completely
different perspective than that of coupled oscillators, which
serves to rationalize the physical setting of the model. To this
end, consider a system of interacting rotors occupying the

sites of a one-dimensional periodic lattice of L sites, with sites
labeled i = 1, 2, . . . , L. Let (θi, pi ) be the canonically conju-
gate variables for the ith rotor; here, the angle θi ∈ [0, 2π ),
with θi+L = θi, is the generalized coordinate, while pi is the
corresponding conjugate momentum. The Hamiltonian of the
system is given by [23–25]

H =
L∑

i=1

p2
i

2I
+ J

2L

L∑
i, j=1

[1 − cos(θi − θ j )]

− K
L∑

i=1

[cos(θi+1 − θi ) + cos(θi−1 − θi )], (A1)

which models two kinds of interactions between the rotors:
a nearest-neighbor interaction with coupling K that can be
either positive or negative, and a mean-field ferromagnetic
interaction with coupling J > 0. Here, I is the common
moment of inertia of the rotors. The model (A1) naturally
arises in the context of a class of layered magnets [such as
(CH3NH3)2CuCl4] that in specific temperature ranges and for
certain sample shapes is faithfully described by a microscopic
Hamiltonian reducible to a Hamiltonian of classical rotators
on a one-dimensional lattice with both a nearest-neighbor
and a mean-field interaction, namely, of the form (A1), see
Refs. [24,26–28]. Such a reduction is supposed to be generic
for systems dominated by dipolar forces [29,30], and so the
Hamiltonian (A1) is not just a model of academic interest
but is strongly grounded in the physics of layered magnetic
structures.

The dynamics of the system (A1) is generated by the
Hamilton’s equations of motion derived from the Hamiltonian
(A1), as

dθi

dt
= pi

I
,

d pi

dt
= J

L

L∑
j=1

sin(θ j − θi ) + K
∑
j∈nni

sin(θ j − θi ). (A2)

With K = 0, the model (A1) reduces to a paradigmatic model
of long-range interactions, the so-called Hamiltonian mean-
field (HMF) model, which has been extensively studied over
the years to exemplify a number of peculiar static and dynamic
properties exhibited by long-range interacting systems [25].
The dynamics (A2) conserves total energy of the system and
as such models time evolution within a microcanonical en-
semble. In order to mimic the interaction of the system with
the external environment modeled as a heat bath at a constant
temperature T , one introduces in the spirit of Langevin dy-
namics a suitable friction term in the dynamics resulting in
the following time evolution within a canonical ensemble:

dθi

dt
= pi

I
,

d pi

dt
= −γ

pi

I
+ J

L

L∑
j=1

sin(θ j − θi )

+ K
∑
j∈nni

sin(θ j − θi ) + ηi(t ). (A3)
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Here γ > 0 is the friction constant, while ηi(t ) is a Gaussian,
white noise with properties

〈ηi(t )〉 = 0, 〈ηi(t )η j (t
′)〉 = 2γ kBT δi jδ(t − t ′), (A4)

where angular brackets denote averaging with respect to noise
realizations, and kB is the Boltzmann constant.

From the form of the Hamiltonian (A1), it is clear that
the interaction terms may induce (depending on the relative
magnitudes of J and K) a clustering of rotor angles and conse-
quently a macroscopic order in the system. It is then natural to
define the so-called (complex) magnetization order parameter

meiψ ≡ 1

L

L∑
j=1

eiθ j , (A5)

with m denoting the magnetization or the amount of clustering
present in the system at any time instant. Both the dynamics
(A2) and (A3) allow a stationary state that is an equilibrium
one, namely, microcanonical equilibrium for the former and
canonical equilibrium for the latter. The phase diagram of the
model in both microcanonical and canonical equilibrium has
been studied in the past, and it has been found that the model
with K = 0 exhibits a continuous phase transition between a
magnetized (m �= 0) and a nonmagnetized (m = 0) phase at
the critical temperature kBTc = J/2 in canonical equilibrium
and at the corresponding critical energy εc = 3J/4 in micro-
canonical equilibrium. With K �= 0, the model exhibits a very
rich phase diagram with both first-order and continuous phase
transitions and a tricritical point [23,24].

Being rotors, it is natural that they may be subject to exter-
nal torques that vary from one rotor to the other. To model this
situation, we may modify the dynamics (A3) to read

dθi

dt
= pi

I
,

d pi

dt
= ωi − γ

pi

I
+ J

L

L∑
j=1

sin(θ j − θi )

+ K
∑
j∈nni

sin(θ j − θi ) + ηi(t ), (A6)

where ωi is a quenched random variable denoting the external
torque acting on the ith rotor. We may consider all the ωi’s to
be sampled from a common distribution. The dynamics (A6)
does not derive from an underlying Hamiltonian, since the
presence of ωi’s does not allow an interparticle potential to be
defined that is periodic in the θi’s [see the discussion preceding
Eq. (4)], and this is but natural as the ωi’s represent after
all torques applied externally to the system. An immediate
consequence is that the dynamics (A6) has a stationary state
that is generically a nonequilibrium one, in contrast to the
case with ωi = 0 ∀ i when as argued above the stationary state
is an equilibrium one. As opposed to equilibrium stationary
states that are time-reversal invariant, encoded in the so-called
principle of detailed balance that such states satisfy, nonequi-
librium stationary states (NESSs) manifestly violate detailed
balance leading to nonzero loops of probability current in the
configuration space, and offer an active area of research in
the arena of modern day statistical mechanics [31]. Unlike
equilibrium states that may all be characterized in terms of

the well-founded Gibbs-Boltzmann ensemble theory encom-
passing microcanonical and canonical ensembles, a general
tractable framework built in the same vein that allows to
study NESSs on a common footing is as yet lacking, implying
that NESSs need to be studied on a case-by-case basis. It is
then evidently of interest to study model systems with NESSs
which are simple enough to allow for detailed analytical char-
acterization and yet are general enough to capture the essential
features of observed physical phenomena.

Now, we may imagine a situation in which the friction
constant has such a high value that the ration I/γ → 0, and
the dynamics (A6) needs to be considered in the overdamped
limit. The resulting dynamics in this limit is obtained from
Eq. (A6) as

γ
dθi

dt
=ωi + J

L

L∑
j=1

sin(θ j − θi ) + K
∑
j∈nni

sin(θ j − θi ) + ηi(t ).

(A7)

Dividing throughout by γ , and redefining the couplings as
J/γ → J , K/γ → K and the torque as ωi → ωi/γ , one
obtains

dθi

dt
= ωi + J

L

L∑
j=1

sin(θ j − θi ) + K
∑
j∈nni

sin(θ j − θi ) + ζi(t ),

(A8)

where ζi(t ) ≡ ηi(t )/γ satisfies 〈ζi(t )〉 = 0, 〈ζi(t )ζ j (t ′)〉 =
(2kBT/γ )δi jδ(t − t ′). Noting that the magnetization order
parameter (A5) is exactly identical to the Kuramoto syn-
chronization order parameter (2), the dynamics (A8) may be
rewritten in terms of the quantities r and ψ , as

dθi

dt
= ωi + Jr sin(ψ − θi ) + K

∑
j∈nni

sin(θ j − θi ) + ζi(t ).

(A9)

It is then evident that the dynamics (1) is a special case of the
dynamics (A9) with T set to zero. We have thus provided a
concrete rationale for the model (1) from a perspective other
than that of Kuramoto oscillators.

APPENDIX B: SCALING THEORY OF CONTINUOUS
TRANSITIONS IN EQUILIBRIUM

Equilibrium continuous phase transitions are associated
with a singularity in the second derivative of the free energy
and are observed strictly in an infinite system [32]. While
the limit of an infinite system can be achieved in theoreti-
cal analysis, experiments and numerical analysis invariably
involve systems of finite size. Finite-size scaling theory al-
lows to estimate the phase transition point, i.e., the parameter
value at which a singularity occurs in an infinite system,
by analyzing the data for large but finite systems. For our
discussions of the finite-size scaling theory, consider a system
with two different phases characterized by a real scalar order
parameter �, and a continuous phase transition occurring as
a function of temperature T with the system existing in an or-
dered phase with |�| > 0 (respectively, in a disordered phase
with � = 0) at temperatures below a critical temperature Tc

(respectively, at and above Tc). Defining t ≡ (T − Tc)/Tc and

032202-12



KURAMOTO MODEL WITH ADDITIONAL … PHYSICAL REVIEW E 102, 032202 (2020)

considering a system with linear dimension L (so that N ,
the number of degrees of freedom, scales as N ∼ Ld , with d
being the dimension of the embedding space), let us denote
the correlation length as ξ (L), the order parameter as �(L),
and consider the quantity χ (L) ≡ Ld{〈[�(L)]2〉 − 〈�(L)〉2},
measuring stationary-state fluctuations of the order parameter
and related to the zero-field susceptibility. Here 〈·〉 denotes
time average in the stationary state. Then, a continuous phase
transition, observed as L → ∞, is characterized by the diver-
gence of the correlation length ξ (∞) at temperatures around
the critical point as ξ (∞) ∼ |t |−ν ; t → 0, where ν is a criti-
cal exponent [32]. The critical exponent β characterizes the
behavior of �(∞) close to the critical point, as �(∞) ∼
(−t )β ; t → 0−. The quantity χ (∞) is on the other hand
known to diverge as χ (∞) ∼ |t |−γ ; t → 0, where γ is an-
other critical exponent. For large but finite L and at a given
|t | → 0, if one has L � ξ (∞), no significant finite-size ef-
fects should be observed. On the other hand, for L � ξ (∞),
the system size will cut-off long-distance correlations, and
hence, finite-size rounding off of critical-point singularities
is expected. It is then reasonable to expect for small |t | that
the ratio ξ (∞)/L (or, equivalently, the ratio |t |L1/ν) controls
the behavior of χ, �, etc., so that one may write under the
assumptions of the finite-size scaling theory the following
scaling forms [33]:

�(L) ∼ L−β/ν f (|t |L1/ν ),

χ (L) ∼ Lγ /νg(|t |L1/ν ). (B1)

The scaling functions f (x) and g(x), defined with x > 0,
behave in the limit x → ∞ as f (x) ∼ xβ and g(x) ∼ x−γ .
In the limit x → 0, the functions behave as f (x)|x→0 →
constant and g(x)|x→0 → constant. Such forms ensure that
as required, in the limit L → ∞ at a fixed and small
|t |, we have �(∞) ∼ tβ and χ (∞) ∼ |t |−γ . On the other
hand, at a fixed L, as |t | → 0, one has �(L) ∼ L−β/ν and
χ (L) ∼ Lγ /ν .

In order to estimate the critical point of a continuous tran-
sition, one proceeds as follows. For finite L, the infinite-L
divergence in χ is rounded and shifted over a finite range of
temperature around a pseudocritical point Tc(L); in the limit
L → ∞, the region shrinks to zero and Tc(L) converges to
infinite-L value Tc as [34]

Tc(L) − Tc ∝ L−1/λT , (B2)

with λT a phenomenological exponent to characterize the
shifting of Tc(L) with L. In numerics, one uses the data for the
maximum of χ (L) for different L to obtain Tc(L) as a function
of L. Fitting the plot to a power law of the form (B2) then
allows to estimate Tc. Using this value of Tc and the scaling
forms (B1), one then plots the finite-L data (Lβ/ν�(L) vs.
|t |L1/ν and L−γ /νχ (L) versus |t |L1/ν) and obtains estimates
of the critical exponents by requiring that the data for large L
collapse onto each other.
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