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The general set of nonlocal M-component nonlinear Schrödinger (nonlocal M-NLS) equations obeying the
PT -symmetry and featuring focusing, defocusing, and mixed (focusing-defocusing) nonlinearities that has
applications in nonlinear optics settings, is considered. First, the multisoliton solutions of this set of nonlocal
M-NLS equations in the presence and in the absence of a background, particularly a periodic line wave
background, are constructed. Then, we study the intriguing soliton collision dynamics as well as the interesting
positon solutions on zero background and on a periodic line wave background. In particular, we reveal the
fascinating shape-changing collision behavior similar to that of in the Manakov system but with fewer soliton
parameters in the present setting. The standard elastic soliton collision also occurs for particular parameter
choices. More interestingly, we show the possibility of such elastic soliton collisions even for defocusing
nonlinearities. Furthermore, for the nonlocal M-NLS equations, the dependence of the collision characteristics
on the speed of the solitons is analyzed. In the presence of a periodic line wave background, we notice that
the soliton amplitude can be enhanced significantly, even for infinitesimal amplitude of the periodic line waves.
In addition to these solutions, by considering the long-wavelength limit of the obtained soliton solutions with
proper parameter constraints, higher-order positon solutions of the nonlocal M-NLS equations are derived. The
background of periodic line waves also influences the wave profiles and amplitudes of the positons. Specifically,
the positon amplitude can not only be enhanced but also be suppressed on the periodic line wave background of
infinitesimal amplitude.
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I. INTRODUCTION

Multiple coupled nonlinear Schrödinger (CNLS) equations
are a class of versatile nonlinear systems that appear in a wide
scope of research fields, spanning from atomic condensates
[1–4] to water waves [5], nonlinear optics [6–9], biophysics
[10], and plasma physics [11]. In particular, a set of multiple
CNLS equations is used to describe short-pulse propagation
in multimode fibers [12] and in fiber arrays [13]. In general,
these multiple CNLS equations are nonintegrable. However,
some of their variants can become integrable for particular
parametric choices that are of physical interest [14,15]. The
interesting experiments on the coherent [16] and incoherent
[17] beam propagation in photorefractive media, which can
exhibit high nonlinearity even with extremely low optical
power, experimental observation of the Manakov solitons [18]
and dark rogue waves [19] in optical waveguides lead to a
sustained intense study of integrable as well as nonintegrable
CNLS systems. Such CNLS equations find numerous physical
applications, for example, in wavelength division multiplex-
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ing high-bit-rate communication systems [20], multichannel
bit-parallel wavelength optical fiber networks [21], and ultra-
short pulse propagation in multimode fibers [22].

On the other hand, over the past two decades, the study
of parity-time (PT ) symmetry has attracted considerable
interest in various branches of physics because it provides
strong mathematical and physical insights to the underlying
dynamical system. In their seminal works [23,24], Bender
and Boettcher reported a surprising finding that, although
the Hamiltonian is non-Hermitian, it can possess real energy
eigenvalues if it obeys PT symmetry. Ultimately, the fasci-
nating properties of PT -symmetric systems find numerous
applications in the frontier topics like nonlinear optics, quan-
tum field theory, photonics, and Bose-Einstein condensates.
Particularly, the concept of PT symmetry has attained sig-
nificant developments in optics because it can act as a fertile
playground for realizing PT -symmetric physical settings. In
the realm of linear optics, complex-valued PT -symmetric po-
tentials have been studied in Refs. [25,26], followed by several
experimental works on different optical systems, including
coupled waveguide systems [27] and synthetic materials [28].

Being motivated by the theoretical and experimental stud-
ies of PT symmetry and the diverse applications of the
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famous nonlinear Schrödinger (NLS) equation, Ablowitz and
Musslimani [29] introduced in 2013 the following nonlocal
NLS equation:

0 = iut (x, t ) + uxx(x, t ) ± 2V (x, t )u(x, t ),

V = u(x, t )u∗(−x, t ), (1)

by employing a novel reduction of the well-known Ablowitz-
Kaup-Newell-Segur (AKNS) system [30]. In Eq. (1), “∗”
denotes complex conjugation. Equation (1) contains a self-
induced potential V that fulfils the PT -symmetry condi-
tion V ∗(−x, t ) = V (x, t ). Following this pioneering work,
the nonlocal NLS equation (1) has been intensively studied,
and its integrable properties as well as solution dynamics
have been investigated from different points of view. The
sophisticated inverse scattering transform scheme for the
system (1) has been developed to obtain soliton solutions
with nonzero boundary conditions [29,31–34]. A hierarchy
of nonlocal NLS equations that are completely integrable
with long-time asymptotic behavior of the solution obeying
decaying boundary conditions are found in Ref. [35]. Exact
solitons, breathers, and rogue-wave solutions of Eq. (1) have
been obtained by different analytical methods [29,31,32,36–
51], thereby exploring their dynamical features. Furthermore,
a connection between nonlocal and local NLS equations is
obtained through a variable transformation [52]. The above
nonlocal NLS equation (1) is gauge equivalent to an uncon-
ventional system of coupled Landau-Lifshitz equations [53].
Additionally, several integrable multidimensional versions of
Eq. (1) [54,55], and a physically significant nonlocal NLS
equation related to Eq. (1) [56], have been considered.

As mentioned above, the nonlinear optical systems are
promising candidates for visualizing PT -symmetry effects.
Furthermore, the multicomponent generalization of the NLS
equations arise in a systematic way from the Maxwell’s equa-
tions if we consider short-pulse propagation in birefringent
fibers [57], multimode optical fibers [58], and partially coher-
ent beam propagation in nonlinear media with Kerr-type non-
linearity [17], as mentioned before. Of course, for other types
of nonlinearities, such as cubic-quintic, saturable, and power-
law nonlinearities, similar types of multiple coupled nonlinear
evolution equations appear. Apart from these canonical inte-
grable CNLS-type equations, a lot of M-component nonlinear
Schrödinger (M-NLS) equations that are nonintegrable, with
instantaneous nonlinearities, appear in the physical settings of
coupled PT -symmetric optical waveguides [59–63] and mul-
ticore waveguide structures [64]. The next natural problem of
study in this direction is to consider the following nonlocal
M-component nonlinear Schrödinger (M-NLS) equations:

iu(�)
t (x, t )

+ u(�)
xx (x, t ) + 2u(�)(x, t )

M∑
k=1

δku(k)(x, t )u(k)∗(−x, t ) = 0,

(2)

where the nonlinearity coefficients δk are real. Equation (2)
can be viewed as describing the propagation of multiple fields
with u(�) being the complex envelope of the �th optical field
in a nonlocal nonlinear optical medium with a self-induced
potential V (x, t ) = ∑M

k=1 δku(k)(x, t )u(k)∗(−x, t ) that satisfies

the PT -symmetry condition V ∗(−x, t ) = V (x, t ). Here, x and
t represent the retarded time and the normalized distance,
respectively. In other physical contexts, like water waves and
atomic condensates, t denotes the temporal coordinate while
x represents the spatial coordinate. The above system (2) is
said to be of focusing (defocusing) type if all values of δ j

take positive (negative) values. When the parameters δ j admit
mixed values, i.e., some of them take positive values while
the remaining ones take negative values, then the system (2)
features mixed (focusing-defocusing) nonlinearities. Indeed,
the local multicomponent NLS system with all these three
types of nonlinearities, namely, focusing, defocusing, and
mixed types, have been well studied and several interesting
features have been explored. Recently, in addition to the above
integrable multicomponent nonlocal equation (2) and its local
counterpart, a few other multicomponent nonlocal systems
have been proposed in Ref. [65], starting from the Fordy-
Kulish equations [66].

In the nonlocal M-NLS equations (2) proposed above, the
evolution of the solution at location x depends not only on
the local solution at x, but also on the nonlocal solution at
a distant position (−x). This means that the solution states
at distinct locations x and (−x) are correlated, a property
reminiscent of quantum entanglement between pairs of quan-
tum particles. The nonlocal M-NLS equation (1) is integrable
since it possesses a Lax pair and admits an infinite number
of conserved quantities [67]. Thus, Eq. (2), being a natural
generalization of the corresponding standard nonlocal NLS
equation (1), is expected to be an important addition to the
list of integrable systems possessing potential applications in
optics, in the area of matter waves in atomic condensates, in
the study of water waves, etc. Regarding the nonlocal M-NLS
system (2), there exist only a few works in the literature
[68–72]. So far, the general bright multisoliton solutions of
Eq. (2) with arbitrary M and for general nonlinear coefficients
have not been reported, to the best of our knowledge, except
for two- and three-soliton solutions for the coupled nonlocal
NLS system with M = 2, δ1 = 1, δ2 = 1 and are given by
cumbersome algebraic expressions [71,72]. Thus, it is worth-
while to perform a detailed and complete investigation on
the dynamics of bright soliton collisions in the framework of
the nonlocal M-NLS system (2). The main objective of the
present work is to investigate the collision scenarios of bright
solitons and positons sitting on either a zero background
or on periodic line wave background. Although a number
of integrable systems admits solitons on constant and on
periodic line wave background, the effects of periodic line
waves on soliton collisions are yet to be investigated. Besides,
the positon solution was first found in the framework of the
Korteweg–de Vries equation by Matveev [73], and quickly
confirmed to exist in a lot of integrable systems [74–81]. We
report here the exact positon solutions in the multicomponent
nonlocal equations featuring a PT -symmetric potential.

The structure of this paper is as follows: In Sec. II, we
construct the general bright 2N-soliton solutions in terms of
determinants via the Kadomtsev-Petviashvili (KP) hierarchy
reduction method combined with the Hirota’s bilinear method.
In Sec. III, we discuss the soliton collision scenarios in
the absence of a background. In Sec. IV, we study soliton
collision scenarios on periodic line wave background, and
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discuss the role of periodic line waves in the collision process.
In Sec.V, we first obtain the higher-order positon solutions
on either zero background or on the periodic line wave
background by taking a long-wavelength limit of the bright
2N-soliton solution. Then we investigate the dynamics of the
positon solutions on zero background and on the periodic line
wave background, respectively. Our conclusions and a brief
discussion of the obtained results are given in Sec. VI.

II. BRIGHT SOLITON SOLUTIONS TO THE NONLOCAL
M-NLS EQUATIONS ON ZERO AND PERIODIC LINE

WAVE BACKGROUNDS

In this section, we give the bright 2N-soliton solution of
the nonlocal M-NLS equations (2), with arbitrary N and M, by
employing the KP hierarchy reduction combined with Hirota’s
bilinear method [82]. To this end, first we bilinearize the
nonlocal M-NLS equations into the following forms:(

D2
x + iDt

)
g(�)(x, t ) f (x, t ) = 0,

D2
x ( f (x, t ) f (x, t )) = 2c

M∑
j=1

δ jg
( j)(x, t )g( j)∗(−x, t ),

(3)
through a dependent-variable transformation

u(�) = g(�)(x, t )

f (x, t )
, (4)

for � = 1, 2, . . . , M, with c = ±1, D is the Hirota’s bilinear
differential operator, and g(�)(x, t ) and f (x, t ) are complex
functions. Here the function f (x, t ) is subject to the following
nonlocal symmetry and complex-conjugated condition:

f ∗(−x, t ) = c f (x, t ). (5)

Below, we present the general bright 2N-soliton solutions
on the zero and periodic line wave backgrounds in terms
of the determinants to the nonlocal M-NLS equation (2). A
detailed derivation of the bright soliton solutions is given in
the Appendix.

The nonlocal M-NLS equations (2) admit the following
bright 2N-soliton solution on zero or periodic line wave
backgrounds:

u(�) = g(�)(x, t )

f (x, t )
, � = 1, 2, . . . , M, (6)

where

f (x, t ) = |M|, g(�)(x, t ) =
∣∣∣∣ M �T

−�(�) 0

∣∣∣∣, (7)

and the elements of the matrix M are

ms, j = 1

ps + pj
eξs+ξ j −

M∑
�=1

δ�

ps + pj
eη

(�)
s,0+η

(�)
j,0 ,

ξs = psx + ip2
st + ξs,0, (8)

ξ j = pjx − ip2
j t + ξ j,0,

for s, j = 1, 2, . . . , K , and the superscript T represents the
transpose, � and �(�) are row vectors defined by

� = (eξ1 , eξ2 , . . . , eξK ), �(�) = (
eη

(�)
1,0 , eη

(�)
2,0 , . . . , eη

(�)
K,0

)
,

(9)
for � = 1, 2, . . . , M. The complex parameters ps, ξs,0, ps, ξ s,0,
η

(�)
s,0, and η

(�)
s,0 obey the following two different parametric

constraints for different boundary conditions:
(a) In the absence of background, the conditions are

K = 2N, pμ = p∗
μ, η

(�)
μ,0 = η

(�)
μ,0, ξμ,0 = ξμ,0,

pN+s = −ps, ξN+s,0 = ξ ∗
s,0, η

(�)
N+s,0 = η

(�)∗
s,0 , (10)

for μ = 1, 2, . . . , 2N , s = 1, 2, . . . , N .
(b) For a periodic line wave background, the constraints

read

K = 2N + 1, pμ = p∗
μ, ξμ,0 = ξμ,0, η

(�)
μ,0 = η

(�)
μ,0,

ξ 2N+1,0 = ξ ∗
2N+1,0, η

(�)
2N+1,0 = η

(�)∗
2N+1,0,

pN+s = −ps, p2N+1 = ip, p2N+1 = ip,

ξN+s,0 = ξ ∗
s,0, η

(�)
N+s,0 = η

(�)∗
s,0 , (11)

for μ = 1, 2, . . . , 2N , s = 1, 2, . . . , N , and p a real parameter.

III. SOLITON COLLISION ON ZERO BACKGROUND

In this section, we mainly consider the soliton collisions in
the absence of background. Bright two-soliton solutions of the
nonlocal M-NLS equation (2) can be obtained from Eq. (6) by
putting N = 1 [i.e., K = 2 in Eq. (10)] and the parameters are
satisfying the constraints given in Eq. (10). The determinant
forms of functions f and g(�) can be written explicitly as

f =
∣∣∣∣m1,1 m1,2

m2,1 m2,2

∣∣∣∣,
g(�) =

∣∣∣∣∣∣∣
m1,1 m1,2 ep1x+ip2

1t+ξ1,0

m2,1 m2,2 e−p1x+ip2
1t+ξ∗

1,0

−eη
(�)
1,0 −eη

(�)∗
1,0 0

∣∣∣∣∣∣∣, (12)

where

m1,1 = e(p1+p∗
1 )x+i(p2

1−p∗2
1 )t+2ξ1,0

p1 + p∗
1

−
∑M

k=1 δke2η
(k)
1,0

p1 + p∗
1

,

m1,2 = e(p1−p∗
1 )x+i(p2

1−p∗2
1 )t+ξ1,0+ξ∗

1,0

p1 − p∗
1

−
∑M

k=1 δkeη
(k)
1,0+η

(k)∗
1,0

p1 − p∗
1

,

and m2,1 = m∗
1,2(x, t ), m2,2 = −m∗

1,1(−x, t ). This bright two-
soliton solution of the nonlocal M-NLS equation (2) is char-
acterized by (M + 2) arbitrary complex parameters, p1, ξ1,0,
and η

(�)
1,0, � = 1, 2, . . . , M. In addition to these soliton pa-

rameters, one can also tune the system parameters, namely,
the nonlinearity coefficients δ�. The velocities of the two
solitons are 2p1I and −2p1I , respectively, which indicate that
the two solitons undergo head-on collisions. Here and in the
following, R and I appearing in the subscript represent the
real and imaginary parts of a given parameter or a function,
respectively. This bright two-soliton solution is regular when
the parameters fulfill

∑M
k=1 δke2θkR sin(2θkI ) �= 0.
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To investigate the collision scenarios of the bright two-
soliton solutions in the nonlocal M-NLS equation (2), first
we analyze the asymptotic properties of these solitons. To this
end, we assume p1,R > 0, pI,I > 0, and for convenience we
define the right-moving soliton along the line ξ̂1 = x − 2p1I t
as soliton 1 and the left-moving soliton along the line ξ̂2 =
x + 2p1I t as soliton 2, then the bright two-soliton solution has
the following asymptotic forms:

(a) Before collision (t → −∞)
Soliton 1 (̂ξ1 ≈ 0, ξ̂ 2 → −∞):

u(�)−
1 � c�e− â+b̂+îc

2 +iR1

1
p1R

+ 1
ip1I

sinh
(
p1Rξ 1 + â−b̂−îc

2

) . (13)

Soliton 2 (̂ξ2 ≈ 0, ξ̂1 → +∞):

u(�)−
2 � c∗

�e− â+b̂−îc
2 +iR2

1
p1R

+ 1
ip1I

sinh
(
p1Rξ 2 + b̂−â−îc

2

) . (14)

(b) After collision (t → +∞)
Soliton 1 (̂ξ1 ≈ 0, ξ̂2 → +∞):

u(�)+
1 � c�eiR1− â0+b̂−îc

2

∑M
k=1 δkc∗2

k
p1R

− c∗
�

∑M
k=1 δk |ck |2
ic� p1I

sinh
(
p1Rξ 1

+ b̂−â0−îc
2

) . (15)

Soliton 2 (̂ξ2 ≈ 0, ξ̂1− → ∞):

u(�)+
2 � c∗

�eiR2− â0+b̂+îc
2

∑M
k=1 δkc2

k
p1R

− cl
∑M

k=1 δk |ck |2
ic∗

k p1I

sinh
(
p1Rξ 2

+ â0−b̂−îc
2

) . (16)

The auxiliary functions and quantities in the above expres-
sions are defined by

R1 = p1Rx + (
p2

1R − p2
1I

)
t, R2 = −p1Rx + (

p2
1R − p2

1I

)
t,

ck = eθk , â = ln

(
p2

1R + p2
1I

p2
1R p2

1I

)
, eb̂+îc = 1

p2
1R

M∑
k=1

δkc2
k ,

b̂ = ln

(
1

p2
1R

∣∣∣∣∣
M∑

k=1

δkc2
k

∣∣∣∣∣
)

,

â0 = ln

(∣∣∑M
k=1 δkc2

k

∣∣2

p2
1R

+
( ∑M

k=1 δk|ck|2
)2

p2
1I

)
. (17)

The above asymptotic analysis shows that the changes in the
amplitudes of the soliton 1 and soliton 2 after collision can be
related to those before collision in the �th component of the
nonlocal M-NLS through the following relation:

A(�)+
j = T (�)

j A(�)−
j , j = 1, 2, � = 1, 2, . . . , M, (18)

where A(�)−
j and A(�)+

j are the amplitudes of the jth soliton
in the u(�) component before and after collision, respectively.
Their expressions read as

T (�)
1 = κ

(�)
1

κ2
, A(�)−

1 =
√

2|c�|
(
√

b2 + c2 − b)1/2
,

T (�)
2 = κ̂

(�)
1

κ2
, A(�)−

2 =
√

2|c∗
� |

(
√

b2 + c2 − b)1/2
, (19)

where

b = 1

p2
1R

M∑
k=1

δk
(
c2

kR − c2
kI

)
,

c = 2

p2
1R

M∑
k=1

δkckRckI ,

κ
(�)
1 =

∣∣∣∣∣
∑M

k=1 δkc∗2
k

p1R
− c∗

�

∑M
k=1 δk|ck|2
ic� p1I

∣∣∣∣∣, (20)

κ̂
(�)
1 =

∣∣∣∣∣
∑M

k=1 δkc2
k

p1R
− c�

∑M
k=1 δk|ck|2
ic∗

� p1I

∣∣∣∣∣,
κ2 =

√√√√ 1

p2
1R

∣∣∣∣∣
M∑

k=1

δkc2
k

∣∣∣∣∣
2

+ 1

p2
1I

(
M∑

k=1

δk|ck|2
)2

.

From the above expressions of A(�)−
j , the bright two-soliton

solution possesses three features: (i) |A(�)−
1 | = |A(�)−

2 | indi-
cates that the bright two-soliton solution possesses equal
amplitudes before collision in each component, which may
be the result of the parameter constraint defined in Eq. (10).
(ii) |A(�)−

1 | and |A(�)−
2 | are independent of the parameter p1I ,

and the velocities of the two solitons are ±2p1I , hence the
velocity and amplitude of the bright two-soliton solution do
not depend on each other before collision. (iii) |A(�)−| is
proportional to p1R, so the bright two-soliton solution has
a higher amplitude with a larger value of p1R. Importantly,
transition amplitudes T (�)

j obey the following identity:

T (�)2
1 + T (�)2

2 = 2, � = 1, 2, . . . , M. (21)

Since T (�)
j > 0, the above identity indicates that the values of

T (�)
j only admits two types of values; namely, T (�)

1 = T (�)
2 =

1, and T (�)
1 > 1, T (�)

2 < 1 (or T (�)
1 < 1, T (�)

2 > 1). When the
transition amplitude T (�)

j = 1, the collision between the bright
solitons is elastic. This occurs only for parameters meeting

the constraints κ
(�)
1

κ̂
(�)
1

= 1. Furthermore, the bright two-soliton

solution for the nonlocal M-NLS equation would reduce to the
two-soliton solution of the standard nonlocal NLS equation
[M = 1 in Eq. (2)] when ck = y(k)c1, k = 2, 3, . . . , M, where
y(k) is a nonzero real constant. Indeed, ck = y(k)c1 results in

u(k) = y(k)u(1) and κ
(�)
1
κ2

= κ̂
(�)
1
κ2

= 1, which further yields T (�)
j =

1. Thus the collision is purely elastic for this case as in
the standard nonlocal NLS equation. Additionally, in a more
general setting, the bright two-soliton solution undergoes the
shape-changing (energy-exchanging or energy-sharing) col-
lisions as T (�)

1 > 1, T (�)
2 < 1 (or T (�)

1 < 1, T (�)
2 > 1), where

the amplitude of one soliton is enhanced (suppressed) after
collision, while the amplitude of the remaining soliton gets
suppressed (enhanced). From the expressions of the transition
amplitudes T (�)

j , one can infer that the nature of energy
switching is also determined by the sign (strength) of the
nonlinearity coefficients δ� as well as the soliton parameters
p1R, p1I , and ck . Additionally, the soliton 1 and soliton 2 suffer
phase shifts �1 and �2, respectively. These phase shifts for
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the bright two-soliton solution are given by the expression

�1 = −�2 = b̂ − â0 + â

2
= − ln λ̂

2
, (22)

where

λ̂ =
(

1 + p2
1R

p2
1I

)(
1 + p2

1R

p2
1I

( ∑M
k=1 δk|ck|2

)2∣∣∑M
k=1 δkc2

k

∣∣2

)
.

The phase shifts experienced by the two colliding solitons
give rise to a change in the separation distance between the
two solitons. The relative separation distance between the two
colliding solitons before interaction is d−

12 = b̂−â
p1R

, and after

interaction is d+
12 = â0−b̂

p1R
. Thus the exact form of the change

in relative reparation distance reads

� = d+
12 − d−

12 ≡ 1

p1R
�2. (23)

To analyze soliton collision in the nonlocal M-NLS equa-
tion in detail, we consider the nonlocal 2-NLS equation [i.e.,
M = 2 in Eq. (2)] with alternate nonlinear coefficients δ� as
an example. We mainly show the collision scenario and study
the role of complex soliton parameters (i.e., c� and p1) on the
collision process. The transition amplitudes of the nonlocal
2-NLS equation are obtained from Eq. (21) as

T (1)
1 =

√
1 − δ2γ

κ̃
(�)
2

, T (1)
2 =

√
1 + δ2γ

κ̃
(�)
2

,

T (2)
1 =

√
1 + δ1γ

κ̃
(�)
2

, T (2)
2 =

√
1 − δ1γ

κ̃
(�)
2

, (24)

where

γ = 4p1R p1I (c1Rc2R + c1I c2I )(c1Rc2I − c1I c2R)

×
M∑

k=1

δk
(
c2

kR + c2
kI

)
and

κ̃
(�)
2 = |c�|2

⎡⎣p2
1I

∣∣∣∣∣
M∑

k=1

δkc2
k

∣∣∣∣∣
2

+ p2
1R

(
M∑

k=1

δk|ck|2
)2

⎤⎦
is given by Eq. (20). As discussed above, the two-soliton
solution of the 2-NLS equation would reduce to the two-
soliton solution of the standard nonlocal NLS equation when
c1Rc2I − c1I c2R = 0. To avoid this case, we choose c1Rc2I −
c1I c2R �= 0, c1Rc2R + c1I c2I = 0 (i.e., γ = 0 or T (�)

j = 1) in
order to generate an elastic collision in the nonlocal 2-NLS
equation, which will be discussed here. The phase shifts and
relative separation distance are derived from Eqs. (22) and
(23) as

�1 = −�2 = − ln λ

2
, � = ln λ

2p1R
, (25)

where

λ =
(

1 + p2
1R

p2
1I

)(
1 + p2

1R

p2
1I

( ∑2
k=1 δk|ck|2

)2∣∣∑2
k=1 δkc2

k

∣∣2

)
.

FIG. 1. The intensity profiles of bright two-soliton solution in the
nonlocal 2-NLS equation with c1 = 3

2 + i, c2 = 2 − 3i, p1 = 1 + i
and different positive nonlinear coefficients: The blue line represents
the case of the positive nonlinear coefficients δ1 = 3, δ2 = 3 at time
t = −2. The red line represents the case of the positive nonlinear
coefficients δ1 = 2, δ2 = 2 at time t = −3. The green line represents
the case of the positive nonlinear coefficients δ1 = 1, δ2 = 1 at time
t = −4. We point out that we choose different time values to avoid
soliton coincidences, so that we can better observe the corresponding
intensity profiles.

In what follows, we discuss the role of nonlinear coeffi-
cients δ1 and δ2 in the elastic collision. As discussed above, the
elastic collision occurs under parameter condition c1Rc2I −
c1I c2R �= 0, c1Rc2R + c1I c2I = 0. Then, the expressions of A(�)

j
in Eq. (19) can be represented as

A(�) =
√

c2
�R + c2

�I

(
√

b̃2β2 + c̃2β2 − b̂β )1/2
, (26)

where b̃ = c2
1I

p2
1R

(c2
1R − c2

1I ), c̃ = c1Rc1I

p2
1R

, β = δ1 − δ2
c2

2R

c2
1I

. Here we

have denoted A(�)+
j and A(�)−

j as A(�) for convenience, since

A(�)−
j = A(�)+

j and A(�)−
1 = A(�)−

2 . For simplicity, we assume
c2

1R − c2
1I > 0, without loss of generality, and take the absolute

value of nonlinear coefficients as |δ j | = δ̃. The bright two-
soliton solution develops singularity for β = 0. So we exclude
the choice β = 0. For arbitrarily given parameters c1R and
c1I , A(�) in Eq. (26) can be regarded as a monotonically
increasing function of β when β < 0, and a monotonically
decreasing function of β when β > 0. Hence, for the nega-
tive coefficients (δ j = −̃δ) or positive coefficients (δ j = δ̃),
A(�) (̂δ2) > A(�) (̂δ1) implies that larger nonlinearity generates
lower soliton amplitude, where δ̂1, δ̂2 (̂δ1 > δ̂2) are two dif-
ferent values of δ. Figure 1 shows the intensity profiles of the
bright two-soliton solution with different positive nonlinear
coefficients. We can observe that the case of δ1 = 3, δ2 = 3
results in soliton with lower amplitude than the case of δ1 = 2,
δ2 = 2 (see the blue line and red line), while the case of δ1 =
2, δ2 = 2 leads to a soliton with amplitude lesser than that of
the choice δ1 = 1, δ2 = 1 (see the red line and green line).
Besides, since A(�)(−|β|) < A(�)(|β|) for any given nonzero
value of β, we can obtain another two features: (i) For the
mixed nonlinear coefficients, the case of δ1 = δ̃1, δ2 = −̃δ2

has higher soliton amplitude A(�)
j than the case of δ1 = −̃δ1,

δ2 = δ̃2. This feature is displayed in Fig. 2, where we can
see that, with the same soliton parameters c jR, c jI ( j = 1, 2),

032201-5



RAO, HE, KANNA, AND MIHALACHE PHYSICAL REVIEW E 102, 032201 (2020)

FIG. 2. The intensity profiles of bright two-soliton solution in the
nonlocal 2-NLS equation with c1 = 3

2 + i, c2 = 2 − 3i, p1 = 1 + i
and different values of mixed nonlinear coefficients: The blue line
represents the case of the mixed nonlinear coefficients δ1 = 1, δ2 =
−1 at time t = −2. The red line represents the case of the mixed
nonlinear coefficients δ1 = −1, δ2 = 1 at time t = −3.

the mixed nonlinear coefficients δ1 = 1, δ2 = −1 (blue line)
possess soliton with larger amplitude than that of the case
δ1 = −1, δ2 = 1 (red line). (ii) The case of positive coeffi-
cients δ j = δ̃ j results in higher soliton amplitude A(�)

j than that

of negative coefficients δ j = −̃δ j when c2
2R

c2
1I

< 1, while the case
of positive coefficients gives rise to lower soliton amplitudes

than that of negative nonlinear coefficients when c2
2R

c2
1I

> 1. This
feature is shown in Fig. 3, in which the blue line and red
line represents the soliton amplitudes of positive coefficients

FIG. 3. The intensity profiles of bright two-soliton solution in
the nonlocal 2-NLS equation with p1 = 1 + i, c1R = 3

2 , c1I = 1: The
blue line represents the case of the positive negative coefficients
δ1 = 1, δ2 = 1 at t = −2, the red line represents the case of the
negative coefficients δ1 = −1, δ2 = −1 at time t = −4, and with
c2R = 1

3 , c2I = − 1
2 i in the upper row and c2R = 2, c2I = −3i in the

lower row.

δ j = δ̃ j and negative coefficients δ j = −̃δ j , respectively. We
can see that the height of the blue line is greater than that of

the red line when c2
2R

c2
1I

< 1, while it is lower for c2
2R

c2
1I

> 1.
Below, we consider the shape-changing or energy-sharing

(inelastic) collision process of bright solitons in this multi-
component nonlocal M-NLS system. To this end, we have
to constrain c1Rc2R + c1I c2I �= 0 (T (�)

j �= 1). In this case, it
is difficult to directly find the role of nonlinear coefficients
δ j on soliton amplitude A(�)

j . We try to explore the role of
nonlinear coefficients δ j on the amplitude-velocity relations.
Since A(�)+

j = A(�)−
j T (�)

j and A(�)−
j is independent of p1I , and

the velocity of the soliton denoted as v is 2p1I , we can
discuss the relation betweens T (�)

j and v to indicate the tran-
sition amplitude-velocity relations. The transition amplitude-
velocity relations can be obtained from Eq. (24) as

T (1)
1 =

√
1 − δ2γ̃

|c1|2
(
κ21v + κ22

v

) ,

T (1)
2 =

√
1 + δ2γ̃

|c1|2
(
κ21v + κ22

v

) ,

T (2)
1 =

√
1 + δ1γ̃

|c1|2
(
κ21v + κ22

v

) ,

T (2)
2 =

√
1 − δ1γ̃

|c1|2
(
κ21v + κ22

v

) , (27)

where

γ̃ = 2p1Rκ0(c1Rc2R + c1I c2I )
M∑

k=1

δk
(
c2

kR + c2
kI

)
,

κ0 = c1Rc2I − c1I c2R,

κ21 = 1

4

∣∣∣∣∣
M∑

k=1

δkc2
k

∣∣∣∣∣
2

,

κ22 = p2
1R

(
M∑

k=1

δk|ck|2
)2

.

To discuss the dependence of functions T (�)
j on the speed v, we

assume (c1Rc2R + c1I c2I )κ0 > 0 for simplicity. The behavior
of functions T (�)

j by varying v, as given by Eq. (27) for
different nonlinear coefficients, are listed in Table I. The
table shows that (i) the functions T (�)

j of the mixed nonlinear
coefficients [δ1 > 0, δ2 < 0] depend on the condition (S >

0 or S < 0) in addition to the v-dependence. Contrary to
this, the positive [δ1 > 0, δ2 > 0] and negative nonlinearity
coefficients [δ1 < 0, δ2 < 0] do not depend on the nature of
S. (ii) The behavior of T (�)

j ( j, � = 1, 2) is similar for positive
(focusing) and negative (defocusing) nonlinearities. (iii) For
the mixed nonlinear coefficients with S < 0, the amplitude
transition T (1)

j has a similar dependence of v with those in the
cases of positive or negative nonlinear coefficients, whereas
the v dependence of T (2)

j is exactly opposite. The dependence
of transition amplitudes of v for S < 0 is reversed when
S < 0.
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TABLE I. The transition amplitude-velocity behavior for (c1Rc2R + c1I c2I )κ0 > 0. Here “De” denotes a decreasing function, “In” denotes
an increasing function, and S = δ1|c1|2 + δ2|c2|2.

Velocity Nonlinear coefficients Parametric condition T (1)
1 T (1)

2 T (2)
1 T (2)

2

0 < v <
√

κ22
κ11

δ1 > 0, δ2 > 0 De In In De

δ1 > 0, δ2 < 0 S > 0 In De In De
S < 0 De In De In

δ1 < 0, δ2 < 0 De In In De

v >
√

κ22
κ11

δ1 > 0, δ2 > 0 In De De In

δ1 > 0, δ2 < 0 S > 0 De In De In
S < 0 In De In De

δ1 < 0, δ2 < 0 In De De In

Figure 4 shows the transition amplitude-velocity re-
lations of the bright two-soliton solutions for positive
nonlinear coefficients. The blue solid lines represent soliton
1, and the red dash lines stand for soliton 2, for the two
components u(1) (left panel) and u(2) (right panel). For the
u(1) component (see left panel), T (1)

1 (stands for soliton 1) de-
creases monotonically on the interval 0 < v <

√
κ22/κ21 and

increases monotonically on the interval v >
√

κ22/κ21, while
T (2)

1 (stands for soliton 2) increases monotonically on the
interval 0 < v <

√
κ22/κ21 and decreases monotonically for

v >
√

κ22/κ21. T (2)
j have opposite behavior to those of T (1)

j .
This feature indicates that soliton 1 moving faster gains en-
ergy during the collision while it losses energy when it moves
with less speed, which is in the range 0 < v <

√
κ22/κ21. The

reverse scenario takes place for the second soliton. Thus the
velocities of the two solitons influence the energy exchange
here.

In the u(1) component, there exists a critical value of the ve-
locity, v = √

κ22/κ21, at which soliton 1 (soliton 2) possesses
the minimum (maximum) value for the transition amplitude
value. But, for this velocity in the u(2) component, soliton
1 possesses maximum transition amplitude while soliton 2
has minimum value. One can also notice that the amplitude
change of the two solitons in the u(1) component is relatively
smaller than that in the u(2) component. Figure 5 shows the
shape-changing collision of the bright two-soliton solution

FIG. 4. The transition amplitude-velocity relations for positive
nonlinear coefficients δ1 = 1, δ2 = 1 with parameters p1I = 33

119

√
17,

c1 = 2 + i, c2 = 1 + 5i. The left and right panel show the amplitude-
velocity relations of u(1) and u(2) components, respectively. The
blue solid line stands for soliton 1 and the red dash line stands for
soliton 2.

of the nonlocal 2-NLS equation (2) for focusing nonlinearity
δ1 = 1, δ2 = 1 with p1I = 33

119

√
17, c1 = 2 + i, c2 = 1 + 5i.

Here we have taken v = √
κ21/κ11. In the u(1) component,

the amplitudes of soliton 1 and soliton 2 before collision are
0.465, and they are 0.030 and 0.657 after collision. Thus the
soliton 1 gets suppressed and the soliton 2 gets enhanced after
the collision. In the u(2) component, the amplitudes of soliton
1 and soliton 2 before collision are 1.060, and they are 1.158
and 0.954 after collision. Thus soliton 1 gets enhanced and
soliton 2 gets suppressed after collision. Hence, the shapes of
the two solitons in the u(1)

1 component changes significantly,
while they alter moderately in the u(2) component. We note
that the two solitons possess the same amplitude value before
collision, which has been discussed below Eq. (20).

Figure 6 shows the shape-changing two-soliton collision
in the nonlocal 2-NLS equation for negative nonlinear coef-
ficients δ1 = −1, δ2 = −1 and mixed nonlinear coefficients
δ1 = 1, δ2 = −1. It is quite interesting to note that, even for
defocusing nonlinearity, one can have bright solitons in the
nonlocal M-NLS system. This could be a consequence of
the nonlocal and multicomponent nature of the underlying
system (2). We take the soliton parameters to be the same as

FIG. 5. The shape-changing collision of bright two solitons
in the nonlocal 2-NLS equation with δ1 = 1, δ2 = 1, p1 = 1 +
33
119

√
17i, c1 = 2 + i, c2 = 1 + 5i.
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FIG. 6. The shape-changing collision of bright two solitons in
the nonlocal 2-NLS equation with negative (defocusing) nonlin-
ear coefficient (δ1 = −1, δ2 = −1, top row) and mixed nonlinear
coefficients(δ1 = 1, δ2 = −1, bottom row) and p1 = 1 + 33

119

√
17i,

c1 = 2 + i, c2R = 1 + 5i. (a) Two-soliton collision in the 2-NLS
equation with negative coefficients δ1 = −1, δ2 = −1. (b) Two-
soliton collision in the 2-NLS equation with mixed coefficients δ1 =
1, δ2 = −1.

those in Fig. 5 except for the nonlinear coefficients. It is seen
that, during the evolution process, the amplitude values of
the two solitons alter. For the negative nonlinear coefficients
(see the panels in the top row), the magnitudes of amplitudes
of soliton 1 and soliton 2 change from 1.536 to 0.0983 and
2.170, in the u(1) component, respectively, and from 3.502
to 3.823 and 3.149 in the u(2) component, respectively. This
shape-changing collision even for a defocusing nonlinearity is
a special one because the local counterpart of Eq. (2) supports
only an elastic collision for such a type of nonlinearity. For
the mixed nonlinear coefficients (see the panels in the bottom
row), the magnitude of amplitudes of soliton 1 and soliton 2
change from 3.897 to 1.560 and 5.285 in the u(1) component,
respectively, and from 8.885 to 8.136 and 9.576 in the u(2)

component, respectively. The intensity redistribution of the
two solitons is caused by the collision, but the total ampli-

FIG. 7. The bright two-soliton solution of the nonlocal 2-NLS
equation, which features the positon profile with δ1 = 1, δ2 = 1,
p1 = 1 + 10−3i, c1 = 1 + i, c2 = −3i.

tude values are conserved, i.e., A(�)+
1

2 + A(�)+
2

2 = A(�)−
1

2 +
A(�)−

2
2 = 2A(�)−

1
2
, where A(�)−

j represents the amplitude of the

jth soliton in the �th component before collision, and A(�)+
j

represent the amplitude of the jth soliton in the �th component
after collision. Additionally, from Figs. 5 and 6, the magnitude
of amplitudes of the two solitons before collision are affected
predominantly by the nonlinear coefficients.

Apart from these, the resonant soliton is a special type of
multisoliton solution, which features a localized wave that
appears in the interaction regime and can be viewed as an
intermediate state during soliton interaction and is different
from the standard interacting solitons. Usually, the resonant
solitons are achieved by appropriately choosing the soliton
parameters such that the phase shift due to collision becomes
infinity. Additionally, the quasiresonant soliton, a type of
soliton possessing similar behavior as the resonant solitons,
can be acquired by achieving the phase shifts as large as
possible but within a finite regime. The present bright two-
soliton solution of the nonlocal 2-NLS equation given by
Eq. (12) does not support resonant solitons, since the soliton
parameters do not satisfy the infinity phase shifts [i.e., |�1| =
∞ in Eq. (25)]. When the phase shifts are as large as possible,
the bright two-soliton solution features another interesting
class of soliton solutions, namely, the so-called positons that
exist in several integrable systems. The localization of such
positons are not along straight lines as are the conventional
solitons; see Fig. 7. We investigate such particular solitons in
the present nonlocal M-NLS equation (2) in Sec. V. Figure 7
shows that the particular bright two-soliton solution, which
shows the wave structure of positons with parameters δ1 =
1, δ2 = 1, p1 = 1 + 10−3i, c1 = 1 + i, c2 = −3i. However,
we find that the quasiresonant soliton can be obtained when
the phase shifts |�1| → 0, which can be realized by taking
the parameters p1R and p1I as p1R

p1I

 1. Figure 8 shows the

quasiresonant solitons, in which we can observe that the
localized resonant patterns arise in the phase shift regime.
The quasiresonant soliton has been studied in Ref. [72] by
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FIG. 8. The quasiresonant solitons in the nonlocal 2-NLS equa-
tion with δ1 = 1, δ2 = 1, p1 = 1

10 + i, c1 = 1 + i, c2 = −3i.

requiring the phase shifts to be as large as possible. Here we
obtain that particular soliton with phase shifts tending to zero,
thus the present bright two-soliton solutions of the nonlocal
2-NLS with δ1 = 1, δ2 = 1 are different from the two-soliton
solutions reported in Ref. [72].

IV. SOLITON COLLISION ON THE PERIODIC
LINE WAVE BACKGROUND

In this section, we consider the solitons to be sitting on
a background of periodic line waves. Actually, that type of
soliton can be regarded as solitons colliding with a periodic
line wave background, and the collision process results in
the solitons’ shape changing, and energy exchange between
them and the periodic line waves. Below, we mainly discuss
the bright two-soliton solution on the periodic line wave
background.

The bright two-soliton solution sitting on a background
of periodic line waves can be obtained from Eq. (6) with
K = 3 [i.e., N = 1 in Eq. (11)] and parameters meeting the
constraint condition defined in Eq. (11). The functions f and
g of solutions (6) are

f =
∣∣∣∣∣∣
m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

∣∣∣∣∣∣,

g(�) =

∣∣∣∣∣∣∣∣∣
m1,1 m1,2 m1,3 ep1x+ip2

1t+ξ1,0

m2,1 m2,2 m2,3 e−p1x+ip2
1t+ξ∗

1,0

m3,1 m3,2 m3,3 eipx−ip2t+ξ3,0

−eη
(�)
1,0 −eη

(�)∗
1,0 −eη

(�)∗
3,0 0

∣∣∣∣∣∣∣∣∣, (28)

where the matrix elements m1,1, m1,2, m2,1, and m2,2 are given
below Eq. (12), and the remaining matrix elements are

m1,3 = e(p1+ip)x+i(p2
1+p2 )t+ξ1,0+ξ∗

3,0

p1 + ip
−

∑M
k=1 δkeη

(k)
1,0+η

(k)∗
3,0

p1 + ip
,

m2,3 = e(−p1+ip)x+i(p2
1+p2 )t+ξ∗

1,0+ξ∗
3,0

−p1 + ip
−

∑M
k=1 δkeη

(k)∗
1,0 +η

(k)∗
3,0

−p1 + ip
,

m3,1 = e(ip+p∗
1 )x−i(p2−p2

1 )t+ξ3,0+ξ1,0

ip + p∗
1

−
∑M

k=1 δkeη
(k)
3,0+η

(k)
1,0

ip + p∗
1

,

m3,2 = e(ip−p∗
1 )x−i(p2−p2

1 )t+ξ3,0+ξ∗
1,0

ip − p∗
1

−
∑M

k=1 δkeη
(k)
3,0+η

(k)∗
1,0

ip − p∗
1

,

m3,3 = e2ipx+ξ3,0+ξ∗
3,0

2ip
−

∑M
k=1 δkeη

(k)
3,0+η

(k)∗
3,0

2ip
,

where p is a real parameter and p1, ξ1,0, η
(�)
1,0, ξ3,0, η

(�)
3,0 are

complex parameters. This solution is a mixture of a bright
two-soliton solution and periodic line waves, in which the
two-soliton solution corresponds to Eq. (12) [or deleting the
third row and the third column of determinant functions f and
g in Eq. (28)] and has been investigated in Sec. II. The periodic
line waves provide a periodic line wave background and can
be obtained from Eq. (28) by deleting the first and the second
rows and the first and second columns of the determinant
expression of f and g. Before investigating the dynamics
of the bright two-solitons solutions on the background of
periodic line waves, we first consider the dynamical features
of periodic line waves solution, which reads

u(�) = 2ipeipx−ip2t+η
(�)∗
3,0 −ξ∗

3,0

e2ipx − ∑M
k=1 δkeη

(�)
3,0−ξ3,0+η

(�)∗
3,0 −ξ∗

3,0

, l = 1, 2, . . . , M.

(29)
This periodic solution is regular when∣∣∣∣∣

M∑
k=1

δke2(η(�)
3,0R−ξ3,0R

∣∣∣∣∣ > 1,

and whose module (i.e., |u(�)|) is independent of t and the
period is 2π

|p| along x. The amplitude of the periodic line waves
is

|u(�)|p = |p|eη
(�)
3,0R−ξ3,0R∣∣∑M

k=1 δke2(η(k)
3,0R−ξ3,0R ) − 1

∣∣ . (30)

The parameters in the solution given by Eq. (28) can be
classified into two types: soliton parameters p1, ξ1,0, η

(�)
1,0

(� = 1, 2, . . . , M), and periodic line wave parameters p, ξ3,0,
and η

(�)
3,0. The role of soliton parameters p1, ξ1,0, η(�)

1,0 in soliton
collision on zero background has been discussed in Sec. II. In
the bright two-soliton collision on zero background, a typical
feature is that, for a given set of parameters p1, ξ1,0, η

(�)
1,0, the

amplitudes of the solitons before collision are the same [see
the discussions below Eq. (20)]. However, this feature does
not hold in the case of the periodic line wave background even
though the amplitude of the periodic line waves is infinitesi-
mal. To show this distinct change in the two-soliton collision
in the case of the periodic line wave background comparing
with that in the case of zero background, we consider the
two-soliton collision on the periodic line waves whose am-
plitude is infinitesimal in the nonlocal 2-NLS equation [i.e.,
M = 2 in Eq. (2)]. Figure 9 shows the interaction of two
solitons given by Eq. (28), with δ1 = −1, δ2 = −1 and the
soliton parameters p1 = 1 + i, ξ1,0 = 0, η

(1)
1,0 = 3, η

(2)
1,0 = 10i

in the presence of a periodic line wave background with an
infinitesimal-amplitude |u(�)|p = 5.153 × 10−10 and parame-
ters p = 1

2 , ξ3,0 = 0, η
(2)
3 = 10 as well as in the absence of
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FIG. 9. The bright two-soliton solution on the infinitesimal-
amplitude periodic line waves and on zero background in the non-
local 2-NLS equation with nonlinear coefficients δ1 = −1, δ2 =
−1 and p1 = 1 + i, ξ1,0 = 0, η

(1)
1,0 = 3, η

(2)
1,0 = 10i, p = 1

2 , ξ3,0 = 0,
η

(2)
3 = 10. The blue solid line and red dashed line represent the

intensity profiles of the bright two-soliton solution before collision
(t = −8) and after collision (t = 8), respectively. (a) The two-soliton
collision on the infinitesimal-amplitude periodic line wave back-
ground. (b) The two-soliton collision on zero background.

this background. One can infer from the figure that, even
though the amplitude of the periodic line wave background
is infinitesimal, the collision behavior of the bright two-
soliton solutions on that periodic line wave background is
quite different from that occurring on zero background. The
corresponding differences are discussed below.

The amplitudes of the two solitons before collision are un-
equal even in the presence of infinitesimal-amplitude periodic
line wave background [see the blue lines of the second rows
of Fig. 9(a)]. But they are equal on zero background [see the
blue lines of the fourth rows of Fig. 9(b)]. In the absence
of background, from Eq. (19) we can obtain the amplitudes
of the two solitons before and after collision in the u(1)

and u(2) components as A(1)−
1 = A(1)−

2 = 1.000 81, A(1)+
1 =

1.001 76, A(1)+
2 = 0.999 87, and A(2)−

1 = A(2)−
2 = 0.049 83,

FIG. 10. The bright two-soliton solution on the periodic line
wave background in the nonlocal 2-NLS equation with nonlinear
coefficients δ1 = −1, δ2 = −1, periodic line waves parameters p =
− 1

2 , ξ3,0 = 0, η
(1)
3,0 = −2 + 10i, η

(1)
3,0 = 2 + 10i, and the same soliton

parameters as in Fig. 9.

A(2)+
1 = 0.024 510, A(2)+

2 = 0.066 07, where A(�)−
j and A(�)+

j
denote the amplitudes of the jth soliton in the �th compo-

nent and they satisfy A(1)+
1

2 + A(1)+
2

2 = 2A(1)−
1

2 = 2A(1)−
2

2 ≈
2, and A(2)+

1
2 + A(2)+

2
2 = 2A(1)−

2
2 = 2A(2)−

2
2 ≈ 0.0006. How-

ever, for the infinitesimal-amplitude periodic line wave
background, Ã(1)−

1 = 0.861 61, Ã(1)−
2 = 1.375 31, Ã(1)+

1 =
0.870 245, Ã(1)+

2 = 1.361 46, and Ã(2)−
1 = 0.287 67, Ã(2)−

2 =
0.420 10, Ã(2)+

1 = 0.260 03, Ã(2)+
2 = 0.462 12, which are ob-

tained by numerical calculations. From these calculations, we

can get Ã(�)−
1 �= Ã(�)−

2 , and Ã(�)−2
1 + Ã(�)−2

2 > 2A(�)−
2

2
, which

indicates that the soliton amplitude increases on the periodic
line wave background even for a very low amplitude (5.153 ×
10−10) of the periodic line waves. Besides, from Ã(1)−

1 < A(1)−
1

and Ã(1)−
1 > A(1)−

1 we obtain that the soliton on the periodic
line wave background of infinitesimal-amplitude can be either
enhanced or suppressed.

For the periodic line waves with larger amplitude back-
ground than that of Fig. 9 but still very small, the bright
two-soliton solution on the periodic line wave background
can exhibit very interesting wave patterns with the same
soliton parameters as in Fig. 9. For example, with parameter
choices ξ3,0 = 0, η

(1)
3,0 = −2 + 10i, η

(2)
3,0 = 2 + 10i, the ampli-

tude of the periodic line waves for the u(1) component and
u(2) component are |u(1)|p = 0.002 43 and |u(2)|p = 0.132 86,
respectively. The bright two solitons on that periodic line
wave background are shown in Fig. 10. In that figure, we see
that the two-soliton solution in the u(2) component features
an interesting bright-dark breather on the periodic line wave
background, while the solitonic profile in the u(1) component
does not change much, as in the case of the infinitesimal-
amplitude periodic line wave background. For other periodic
line wave parameters, the two-soliton solution possesses other
interesting wave structures. Figure 11 shows one of them with
different periodic line waves parameters and the same soliton
parameters as in Fig. 9. We see that the waveforms of the
two-soliton solution are quite different [see the plots of the
third row of Fig. 9]. In the u(1) component the two-soliton
solutions generate periodic localized waves, while in the u(2)

component the two-soliton waveforms completely immerse
into the periodic line wave background. Comparing Figs. 10
and 11 that were plotted for the same soliton parameters
but for different types of backgrounds, we note that the
characteristics of background waves play an important role
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FIG. 11. The bright two-soliton solution on the finite-amplitude
periodic line wave background in the nonlocal 2-NLS equation
with nonlinear coefficients δ1 = −1, δ2 = −1, periodic line waves
parameters p = − 1

2 , ξ3,0 = 0, η
(1)
3,0 = − 1

2 + 10i, η
(1)
3,0 = 1

2 + 10i, and
the same soliton parameters as in Fig. 9. The bottom row shows
the intensity profiles of the bright two-soliton waveforms on the
finite-amplitude periodic line wave background at time t = 10.

in determining the wave profile of the solitons. Importantly,
on the finite-amplitude periodic line wave background shown
in Fig. 11, both the amplitude values of the two-bright soliton
and the amplitude values of the periodic line waves are larger
than zero (see the bottom panels in Fig. 11), an interesting
result in itself. This parametric choice corresponds to zero
minimum amplitude values for both the bright solitons on
zero background as given in Eq. (12) and on the periodic
line wave background as given in Eq. (29). However, when
we consider the soliton solution on a finite-amplitude periodic
line wave background as in the bottom panels of Fig. 11, the
minimum amplitude values of solitons can be larger than zero.
Ultimately, the collision of the bright soliton and the periodic
line waves is inelastic, and energy transfer occurs between the
bright two-soliton waveform and the finite-amplitude periodic
line wave background. Thus in such multicomponent nonlocal
setup there is a nontrivial energy exchange between the back-
ground and the propagating (as well as colliding) solitons.

V. POSITONS ON ZERO AND PERIODIC
LINE WAVE BACKGROUNDS

This section is devoted to the discussion of the higher-order
positon solution of the nonlocal M-NLS equation (2) on zero
background and on a periodic line wave background.

A. Positons on zero background

In this section, we construct the high-order positon solu-
tion u(�) on zero background from the bright 2N-soliton on
zero background given by Eq. (6) with parameters fulfilling
Eq. (10) by taking a suitable long-wavelength limit: choosing

in Eq. (10) the parameters

eξs,0R = ξ̂s,0 psI , eη
(�)
s,0R = η̂

(�)
s,0 psI , ξ̂ 2

s,0 =
M∑

k=1

δk η̂
(k)2
s,0 , (31)

and then taking the limit as psI → 0 for s = 1, 2, . . . , N . By
this way we can construct the high-order positon solutions of
the nonlocal M-NLS equation equation.

The nonlocal M-NLS equations (2) admit the higher-order
positon solution u(�) as given by Eq. (4) on zero background
with

f =
∣∣∣∣ m̃s, j m̃s,N+ j

m̃N+s, j m̃N+s,N+ j

∣∣∣∣,
g(�) =

∣∣∣∣∣∣∣
m̃s, j m̃s,N+ j φ̃s

m̃N+s,N+ j m̃N+s,N+ j φ̃N+s

−η̂
(�)
j,0eiη(�)

j,0I −η̂
(�)
j,0e−iη(�)

j,0I 0

∣∣∣∣∣∣∣,
(32)

where

m̃s, j = ξ̂s,0ξ̂ j,0e(psR+p jR )x+i(p2
sR−p2

jR )t+i(ξs,0I +ξ j,0,I )

psR + p jR

−
∑M

k=1 δk η̂
(k)
s,0η̂

(k)
j,0ei(η(k)

s,0I +η
(k)
j,0I )

psR + p jR
,

m̃s,N+ j = ξ̂s,0ξ̂ j,0e(psR−p jR )x+i(p2
sR−p2

jR )t+i(ξs,0I −ξ j,0,I )

psR − p jR

−
∑M

k=1 δk η̂
(k)
s,0η̂

(k)
j,0ei(η(k)

s,0I −η
(k)
j,0I )

psR − p jR
,

when s �= j and

m̃s,N+s = ξ̂ 2
s,0(x + 2ips,Rt ),

mN+s,N+ j (x, t ) = −m∗
s, j (−x,−t ),

mN+s, j (x, t ) = −m∗
s,N+ j (−x,−t ),

φ̃s = ξ̂s,0epsRx+ip2
sRt+iξs,0I ,

φ̃N+s = ξ̂s,0e−psRx+ip2
sRt−iξs,0I

for s, j = 1, 2, . . . , N .
The simplest positon solution u(�) on zero background is

generated by taking N = 1 in Eq. (32). Then the functions g(�)

and f in Eq. (4) are defined by the following determinants:

f =
∣∣∣∣m̃1,1 m̃1,2

m̃2,1 m̃2,2

∣∣∣∣,
g(�) =

∣∣∣∣∣∣∣
m̃1,1 m̃1,2 ξ̂1,0ep1Rx+ip2

1Rt+iξ1,0I

m̃2,1 m̃2,2 ξ̂1,0e−p1Rx+ip2
1Rt−iξ1,0I

−η̂
(�)
1,0eiη(�)

1,0I −η̂
(�)
1,0e−iη(�)

1,0I 0

∣∣∣∣∣∣∣,
(33)

where

m̂1,1 = ξ̂ 2
1,0e2p1,Rx+2iξ1,0I

2p1,R
−

∑M
k=1 δk η̂

(k)2
1,0 e2iη(k)

1,0I

2p1,R
,

m̂1,2(x, t ) = (x + 2ip1,Rt )̂ξ 2
1,0, m̂2,1(x, t ) = −m̂∗

1,2(−x,−t ),

m̂2,2(x, t ) = −m̂∗
1,1(−x, t ).
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FIG. 12. The positon solution (4) of nonlocal 2-NLS equation
with functions g(�) and f given in Eq. (33) with parameters M = 2,
δ1 = 1, δ2 = 1, p1R = 1, ξ̂1,0 =

√
101
20 , η̂

(1)
1,0 = 1

2 , η̂
(1)
1,0 = 1

20 , ξ1,0I = 0,
η

(1)
1,0I = π

2 , η
(2)
1,0I = π

20 .

This positon solution is regular under the parameters’ con-
dition

∑M
k=1 δk η̂

(k)2
1,0 sin(2η

(�)
1,0I − 2ξ1,0I ) �= 0. Since this posi-

ton solution is derived from the bright two-soliton solution
given in Eq. (12) with the parameter choices as given in
Eq. (31) and in the soliton parameter limit p1I → 0, we
obtain the following key properties of the positon solution
from the intrinsic features of the associated bright two-soliton
solution:

(i) From Eq. (19), the soliton transition amplitude T (�)
j =

1 for parameter choices given by Eq. (31) and for p1I → 0.
Thus the positon amplitude after collision stay the same as
that before collision.

(ii) From Eq. (19), the positon amplitude is

|u(�)|po =
√

2|̃̃c�|

(

√̃
b̃

2 +˜̃c2 −˜̃b)1/2

,

where

˜̃b = 1

p2
1R

M∑
k=1

δk

[
η̂

(k)2
1,0

ξ̂ 2
1,0

cos2
(
η

(k)
1,0I − ξ1,0I

)
− η̂

(k)2
1,0

ξ̂ 2
1,0

sin2
(
η

(k)
1,0I − ξ1,0I

)]
,

˜̃c = 2

p2
1R

M∑
k=1

δk

η̂
(k)
1,0

ξ̂1,0
cos

(
η

(k)
1,0I − ξ1,0I

) η̂
(k)
1,0

ξ̂1,0

× sin
(
η

(k)
1,0I − ξ1,0I

)
.

(iii) From Eqs. (22) and (23), the positon shifts are �1 =
−∞ and �2 = +∞, and the change in the relative reparation
distance of soliton is � = +∞. From these properties, the
positon can be regarded as two solitons possessing the same
amplitudes and exhibiting elastic collision, resulting in infinite
soliton shifts and infinite relative reparation distance. Fig-
ure 12 shows the positon solution of the nonlocal 2-NLS equa-
tion (2) with the parameters M = 2, δ1 = 1, δ2 = 1, p1R = 1,

ξ̂1,0 =
√

101
20 , η̂

(1)
1,0 = 1

2 , η̂
(1)
1,0 = 1

20 , ξ1,0I = 0, η
(1)
1,0I = π

2 , η
(2)
1,0I =

π
20 . It is seen that, due to the collision, the wave structures of
the positon in the interaction region are different in the u(1)

component and in the u(2) one: the region of their intersection
acquires a higher amplitude in the u(1) component but it does
not in the u(2) component. The two interacting waves overlap
in the interaction region in the u(1) component while they
are completely separated in the u(2) component. The positon
amplitude values for the u(1) and the u(2) components are
|u(2)|po = 1.0050 and |u(2)|po = 0.1005, respectively.

Here we note that, in Eq. (31) the parameter condition
ξ̂ 2

1,0 = ∑M
k=1 δk η̂

(k)2
1,0 , when δ� < 0 for � = 1, 2, . . . , M, cor-

responds to negative (defocusing) nonlinearities for all u(�)

components in Eq. (2). This shows that the positon so-
lutions cannot exist for defocusing nonlinearities because
this parameter condition cannot be satisfied. When δ� > 0
or δkδ j < 0 (k �= j and k, j = 1, 2, . . . , M), which corre-
spond to positive nonlinear coefficients for all u(�) com-
ponents in Eq. (2) or mixed nonlinear coefficients for uk

and u j components in Eq. (2), the parameter condition can
very well be satisfied. Hence the positons can exist in the
nonlocal M-NLS system (2) with both focusing and mixed
nonlinearities.

B. Positon on periodic line wave background

Next, we consider the positons on the periodic line wave
background. By taking the same limiting procedure ex-
plained in the previous section, one can obtain the higher-
order positons on the periodic line wave background. In
this regard, we take the parameters as given by Eq. (31)
and insert them into Eq. (11). Then by taking the limit
p1I → 0 we obtain the higher-order positon solution on
the periodic line wave background to the nonlocal M-NLS
equation (2).

The nonlocal M-NLS equations (2) admit higher-order
positon solution u(�) given by Eq. (4) on the periodic line wave
background with functions g(�) and f defined by the following
determinants:

f =

∣∣∣∣∣∣∣
m̃s, j m̃s,N+ j m̃s,2N+1

m̃N+s, j m̃N+s,N+ j m̃N+s,2N+1

m̃2N+1, j m̃2N+1,N+ j m̃2N+1,2N+1

∣∣∣∣∣∣∣,

g(�) =

∣∣∣∣∣∣∣∣∣∣
m̃s, j m̃s,N+ j m̃s,2N+1 φ̃s

m̃N+s,N+ j m̃N+s,N+ j m̃N+s,2N+1 φ̃N+s

m̃2N+1, j m̃2N+1,N+ j m̃2N+1,2N+1 φ̃2N+1

−η̂
(�)
j,0eiη(�)

j,0I −η̂
(�)
j,0e−iη(�)

j,0I −eη
(�)∗
2N+1,0 0

∣∣∣∣∣∣∣∣∣∣
,

(34)
where

m̃s,2N+1 = ξ̂s,0e(psR+ip)x+i(p2
sR+p2 )t+iξs,0I +ξ∗

2N+1,0

psR + ip

−
∑M

k=1 δk η̂
(k)
1,0eiη(k)

s,0I +η
(k)∗
2N+1,0

psR + ip
,
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m̃N+s,2N+1 = ξ̂s,0e(−psR+ip)x+i(p2
sR+p2 )t−iξs,0I +ξ∗

2N+1,0

−psR + ip

−
∑M

k=1 δk η̂
(k)
s,0e−iη(k)

s,0I +η
(k)∗
2N+1,0

−psR + ip
,

m̃2N+1, j = ξ̂ j,0e(p jR+ip)x−i(p2
jR+p2 )t+iξ j,0I +ξ2N+1,0

p jR + ip

−
∑M

k=1 δk η̂
(k)
j,0eiη(k)

j,0I +η
(k)
2N+1,0

p jR + ip
,

m̃2N+1,N+ j = ξ̂ j,0e(−p jR+ip)x−i(p2
jR+p2 )t−iξ j,0I +ξ2N+1,0

−p jR + ip

−
M∑

k=1

δk η̂
(k)
j,0e−iη(k)

j,0I +η
(k)
2N+1,0−p jR + ip, (35)

and ms, j , ms,N+ j , mN+s, j , mN+s,N+ j , φ̃s, φ̃N+s are defined
below Eq. (32), and φ̃2N+1 = eipx−ip2t+ξ2N+1,0 .

The simplest positon solution on the periodic line wave
background can be obtained from Eq. (34) with N = 1, and
the corresponding functions g(�) and f are given by the
following determinants:

f =
∣∣∣∣∣∣
m̃1,1 m̃1,2 m̃1,3

m̃2,1 m̃2,2 m̃2,3

m̃3,1 m̃3,2 m3,3

∣∣∣∣∣∣,

g(�) =

∣∣∣∣∣∣∣∣∣
m̃1,1 m̃1,2 m̃1,3 ξ̂1,0ep1Rx+ip2

1Rt+iξ1,0I

m̃2,1 m̃2,2 m̃2,3 ξ̂1,0e−p1Rx+ip2
1Rt−iξ1,0I

m̃3,1 m̃3,2 m3,3 eipx−ip2t+ξ3,0

−η̂
(�)
1,0eiη(�)

1,0I −η̂
(�)
1,0e−iη(�)

1,0I −eη
(�)∗
3,0 0

∣∣∣∣∣∣∣∣∣, (36)

where m̃1,1, m̃1,2, m̃2,1, m̃2,2 are defined below Eq. (33), and m3,3 is defined below Eq. (28), and

m̃1,3 = 1

p1R + ip

[̂
ξ1,0e(p1R+ip)x+i(p2

1R+p2 )t+iξ1,0I +ξ∗
3,0 −

M∑
k=1

δk η̂
(k)
1,0eiη(k)

1,0I +η
(k)∗
3,0

]
,

m̃2,3 = 1

−p1R + ip

[̂
ξ1,0e(−p1R+ip)x+i(p2

1R+p2 )t−iξ1,0I +ξ∗
3,0 −

M∑
k=1

δk η̂
(k)
1,0e−iη(k)

1,0I +η
(k)∗
3,0

]
,

m̃3,1 = 1

p1R + ip

[̂
ξ1,0e(p1R+ip)x−i(p2

1R+p2 )t+iξ1,0I +ξ3,0 −
M∑

k=1

δk η̂
(k)
1,0eiη(k)

1,0I +η
(k)
3,0

]
,

m̃3,2 = 1

−p1R + ip

[̂
ξ1,0e(−p1R+ip)x−i(p2

1R+p2 )t−iξ1,0I +ξ3,0 −
M∑

k=1

δk η̂
(k)
1,0e−iη(k)

1,0I +η
(k)
3,0

]
,

where the parameters ξ3,0 and η
(k)
3,0 are complex, and the

remaining parameters are real.
The above positon solution on a periodic line wave back-

ground is characterized by 4M + 5 arbitrary parameters con-
taining 2M + 3 positon parameters (i.e., ξ̂1,0, ξ1,0I , η̂

(�)
1,0, η

(�)
1,0I ,

p1R, � = 1, 2, . . . , M) and 2M + 2 periodic line wave back-
ground parameters (i.e., ξ3,0, η

(�)
3,0, p). In the following, we

mainly consider the role of the periodic line background on
this positon solution. For this purpose, we take the nonlocal
2-NLS equation [i.e., M = 2 in Eq. (2)] as an example, and
adopt the same positon parameters as those in Fig. 12. We
study the dynamics of positons on two different types of
periodic line wave backgrounds, namely, the infinitesimal-
amplitude periodic line wave background and the finite-
amplitude periodic line wave background. The amplitudes
of periodic line wave backgrounds in the u(1) and u(2) com-
ponents are |u(1)|p = |u(2)|p = 8.2446 × 10−9 (which are ap-
proximately equal to zero) for the background parameters
p = −2, ξ3,0 = 0, η

(�)
3,0 = η

(2)
3,0 = 10 + i. The corresponding

positon on that periodic line wave background is shown

in Fig. 13, in which the periodic line wave background is
visually the same as zero background in Fig. 12. However,
comparing with the positon on zero background shown in
Fig. 12, we note that in spite of the positon parameters
being same in these two figures, their wave profiles are
quite different. For the u(2) component, the two waves over-
lap in the interaction region on the infinitesimal-amplitude
periodic line wave background while they are completely
separated on zero background (see right panels in Figs. 12
and 13). In the interaction region, the u(1) component does
not acquire a higher amplitude as on zero background (see
left panels in Figs. 12 and 13), while the u(2) component
attains a much higher amplitude than that in the case of zero
background case (see right panels in Figs. 12 and 13). The
positon amplitude of the u(1) component on the infinitesimal-
amplitude periodic line wave background is slightly lower
than that in the case of zero background, while the positon am-
plitude of the u(2) component on the infinitesimal-amplitude
periodic line wave background is much higher than that in the
case of zero background (see the lower panels in Fig. 13). This
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FIG. 13. The upper row shows the positon solution (4) on the
infinitesimal-amplitude periodic line wave background of the nonlo-
cal 2-NLS equation with δ1 = −1, δ2 = −1, and functions g(�) and
f given in Eq. (36) and the same positon parameters as in Fig. 12
and background parameters p = −2, ξ3,0 = 0, η

(�)
3,0 = 10 + i, η

(2)
3,0 =

10 + i. The lower row shows the intensity profile of the positon at
time t = −10 on the zero background shown in Fig. 12 and on the
infinitesimal-amplitude periodic line wave background: the red solid
line represents the intensity profile in the case of zero background,
whereas the blue dashed line represents the intensity profile in the
case of the infinitesimal-amplitude periodic line wave background.

demonstrates that the amplitude of the positon can not only be
enhanced but also be suppressed in the presence of a periodic
line wave background. It further shows that the indirect inter-
action in the form of a superposition of a bright soliton with
periodic line waves does not always generate higher soliton
amplitude in the system (2). This behavior is different from
the so-far reported superposition of antidark (dark) solitons

FIG. 14. The positon solution (4) on the finite-amplitude periodic
line wave background of the nonlocal 2-NLS equation with δ1 = −1,
δ2 = −1, and functions g(�) and f given in Eq. (33). We choose the
same positon parameters as in Fig. 12 and the background parameters
are p = −2, ξ3,0 = 0, η

(�)
3,0 = 3

2 − i, η
(2)
3,0 = 1 + 2i.

and periodic line waves, which would always generate higher
(deeper) soliton amplitude [51]. Additionally, on the finite-
amplitude periodic line wave background, the positon features
a peculiar periodic waves structure, which is much different
from that obtained in the case of an infinitesimal-amplitude
periodic line wave background, shown in Fig. 13. Figure 14
shows the positon waveform on the finite-amplitude periodic
line wave background with the same positon parameters as in
the case of zero background (see Fig. 12) and for periodic
line wave background parameters p = −2, ξ3,0 = 0, η

(�)
3,0 =

3
2 − i, η

(2)
3,0 = 1 + 2i. The amplitude of the periodic line wave

background is |u(1)|p = 0.458 50, |u(2)|p = 0.168 67. It is seen
that the wave profiles of the positon are quite different from
those appearing in the case of zero background (see Fig. 12)
or in the case of the infinitesimal-amplitude periodic line wave
background (see Fig. 13).

VI. CONCLUSION

In this paper, we consider a general form of nonlocal M-
component NLS equation featuring all types of nonlinearities,
namely, focusing, defocusing, and mixed nonlinearities in a
nonlocal physical setting and with a self-induced potential
respecting PT symmetry. By employing the Hirota’s bilinear
method in conjunction with the KP hierarchy reduction proce-
dure, bright 2N solitons in the absence of background and in
the presence of periodic line wave background are constructed
in terms of determinants. Then, by taking the long-wavelength
limit of the bright two-soliton solution with proper parameter
choices, positon solutions sitting on either zero background
or on periodic line wave background are obtained. First, we
consider the soliton collision in the M-NLS equation in the
case of zero background and we identify that there exist
two types of collision scenarios: elastic collision and shape-
changing (inelastic) collision. To facilitate the understanding
of collision features, we consider the nonlocal 2-NLS equation
as an example, and we analyze the role played by the nonlinear
coefficients of the nonlocal 2-NLS equation and by the soliton
parameters on the interacting bright solitons. In particular, we
demonstrate that the Manakov-type energy sharing collision,
where the interacting bright solitons undergo a nontrivial
energy redistribution along with preserving the energy in the
individual components as well as the total energy, can take
place in the nonlocal M-NLS system (2) even with fewer
parameters. Surprisingly, such a collision takes place for the
defocusing nonlinearity too, and this interesting problem has
to be studied further. Also, the intricate dependence of the
transition amplitudes that characterize such collisions, on the
speed of the interacting solitons, is analyzed in detail. Then,
we investigate the soliton collision scenarios for solitons sit-
ting on the periodic background, and we compare the collision
features with those that occur in the case of zero background.
We find that, even though the amplitude of the periodic line
wave background is infinitesimal, the shape of the soliton
changes significantly as compared with that of the soliton
sitting on zero background. The obvious difference is that
the amplitudes of the two solitons before collision are equal
in the case of zero background, but they are not equal in
the case of the periodic line waves infinitesimal background.
Another important difference is that both the minimum values
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of the bright two-soliton solution on zero background and
the minimum amplitude values of the periodic line waves are
zero, but for the two-soliton solution on the finite-amplitude
periodic line wave background, both the minimum values of
the bright two-soliton waveform and the minimum amplitude
values of the periodic line waves are larger than zero. Thus,
energy transfer happens between the two-soliton waveform
and the periodic line wave background, which induces an
upward shift in the periodic background. Finally, we also
construct the general higher-order positon solutions on zero
background and on periodic line wave background by taking
the long-wavelength limit of the 2N-soliton solution on the
corresponding background, and then we investigate the key
role of the background in the collision process.

Here we have to note that general bright-bright, bright-
dark, and dark-dark N-soliton solutions to the local M-NLS
equation with constant background have been constructed by
Feng [83] by using the Kadomtsev-Petviashvili hierarchy-
reduction method in conjunction with the Hirota’s bilineariza-
tion procedure.
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APPENDIX

In this Appendix we present the derivation of the bright
2N-soliton solutions given in Eq. (6) to the nonlocal M-NLS
equation (2) via the KP hierarchy-reduction method.

Referring to Sato theory [84–86], the bilinear equations in
the multicomponent KP hierarchy(

D2
x1

− Dx2

)
τ1(�)τ0 = 0,

Dx1 Dy�
τ0τ0 = −2τ1(�)τ−1(�), (A1)

where � = 1, 2, . . . , M, admit the following tau functions
expressed in Gram-type determinant form:

τ0 =∣∣M∣∣, τ1(�) =
∣∣∣∣ M �T

−�(�) 0

∣∣∣∣,
τ−1(�) =

∣∣∣∣ M �T (�)
−� 0

∣∣∣∣, (A2)

where the elements of the matrix M are

ms, j = 1

ps + pj
eξs+ξ j +

M∑
�=1

1

q(�)
s + q(�)

j

eη(�)
s +η

(�)
j , (A3)

with

ξs = psx1 + p2
sx2 + ξs,0, ξ j = pjx1 + p2

j x2 + ξ j,0,

η
(�)
j = q(�)

j y� + η
(�)
s,0, η

(�)
j = q(�)

j y� + η
(�)
s,0, (A4)

for 1 � s, j � K , K is a positive integer, the superscript T
represents the transpose, and �, �(�), �, and �(�) are row
vectors defined by

� = (eξ1 , eξ2 , . . . , eξK ), �(�) = (
eη

(�)
1 , eη

(�)
2 , . . . , eη

(�)
K

)
,

� = (eξ 1 , eξ 2 , . . . , eξK ), �(�) = (
eη

(�)
1 , eη

(�)
2 , . . . , eη

(�)
K

)
,

(A5)
for � = 1, 2, . . . , M.

In what follows, we show the procedure of how to reduce
the bilinear equation (A1) to the bilinear equation (3). The
bilinear equations in Eq. (A1) are (2 + M ) dimensional and
the bilinear equations in Eq. (3) are (1 + 1) dimensional. So,
we have to perform dimension reduction. To this end, we
rewrite the tau function (A2) as

τ0 =
K∏

s=1

eξs+ξ s |m′
s, j |, (A6)

where

m′
s, j = 1

ps + pj
+

M∑
�=1

1

q(�)
s + q(�)

j

eη(�)
s −ξs+η

(�)
j −ξ j . (A7)

Since (
∂x1 −

M∑
�=1

δ�∂y�

)
m′

s, j

=
M∑

�=1

(
δ� + ps + pj

q(�)
s + q(�)

j

)
eη(�)

s −ξs+η
(�)
j −ξ j , (A8)

and if the parameters ps, qs satisfy the following parameter
constraints

q(�)
s = − ps

δ�

, q(�)
j = − pj

δ�

, (A9)

for s, j = 1, 2, . . . , K and � = 1, 2, . . . , M, then one can ob-
tain

∂x1 m′
s j =

M∑
�=1

δ�∂y�
m′

s, j . (A10)

This leads to the following dimension reduction:

∂x1τ0 =
M∑

�=1

δ�∂y�
τ0. (A11)

Under the above dimension reduction, the bilinear equations
in Eqs. (A1) give rise to the following bilinear equation:

D2
x1
τ0τ0 = −2

M∑
�=1

δ�τ1(�)τ−1(�). (A12)

Therefore, under the parameter constraint (A9), the bilinear
equations in Eqs. (A1) could reduce to the following bilinear
equations:

0 = (
D2

x1
− Dx2

)
τ1(�)τ0,

D2
x1
τ0τ0 = −2

M∑
�=1

δ�τ1(�)τ−1(�). (A13)
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The variable y� appearing in the tau functions given by
Eq. (A2) satisfying the bilinear equations (A13) is a
dummy variables and is chosen to be zero. By further
assuming x1 = x, x2 = it , and taking f = τ0, g(�) = τ1(�),
g∗(−x, t ) = −τ−1(�) when the tau functions of 2N × 2N
determinant form [i.,e., K = 2N × 2N in Eq. (A2)] sat-
isfy the nonlocal symmetry reduction τ ∗

0 (−x, t ) = τ0(x, t ),
τ ∗

1 (�)(−x, t ) = −τ−1(�)(x, t ). Also by taking f = τ0, g(�) =
τ1(�), g∗(−x, t ) = τ−1(�) when the tau functions of (2N +
1) × (2N + 1) determinant form [i.e., K = 2N + 1 × 2N +
1 in Eq. (A2)] satisfy the nonlocal symmetry reduction
τ ∗

0 (−x, t ) = −τ0(x, t ), τ ∗
1 (�)(−x, t ) = τ−1(�)(x, t ). Then the

tau functions defined in Eq. (A2) would reduce to the tau func-
tions of the bilinear equations of nonlocal M-NLS equations
(3), for these two choices which would generate, respectively,
bright soliton solutions (6) to the nonlocal M-NLS equations
(2) with zero or periodic line wave boundary conditions.

In the following step, we first perform the nonlo-
cal symmetry reduction τ ∗

0 (−x, t ) = τ0(x, t ), τ ∗
1 (�)(−x, t ) =

−τ−1(�)(x, t ) with variable transformations x1 = x, x2 = it .
To this end, we consider K = 2N × 2N matrices for the tau
functions τ0, τ1(�), and τ−1(�) defined in Eq. (A2) and take
the parameters satisfying the following constraint condition:

pN+s = −ps, pN+s = −ps, ps = p∗
s , ξ s,0 = ξs,0,

η
(�)
j,0 = η

(�)
j,0, ξN+s,0 = ξ ∗

s,0, ξN+s,0 = ξ
∗
s,0, (A14)

η
(�)
N+s,0 = η

(�)∗
j,0 , η

(�)
N+s,0 = η

(�)∗
j,0 ,

for s = 1, 2, . . . , N . In this case, one can directly obtain

(ξs + ξ j )(x, t ) = (ps + p∗
j )x + i

(
p2

s − p∗2
j

)
t + 2ξs,0,

(ξN+s + ξN+ j )(x, t ) = −(ps + p∗
j )x + i

(
p∗2

s − p2
j

)
t + 2ξ ∗

s,0,

ξ s(x, t ) = p∗
s x − ip∗

s t + ξs, 0,

ξN+s(x, t ) = −psx + ip2
st + ξ ∗

s,0, (A15)

which implies
(ξs + ξ j )

∗(−x, t ) = (ξN+s + ξN+ j )(x, t ),

ξ
∗
s (−x, t ) = ξN+s(x, t ). (A16)

Similarly,

(ξs + ξK+ j )
∗(−x, t ) = (ξ j + ξK+s)(x, t ),

(ξK+s + ξ j )
∗(−x, t ) = (ξK+ j + ξ s)(x, t ),

(ξK+ j + ξK+s)∗(−x, t ) = (ξs + ξ j )(x, t ),

ξN+s(x, t ) = ξ ∗
s (−x, t ). (A17)

Therefore,

m∗
K+s,K+ j (−x, t ) = −mj,s(x, t ),

m∗
K+s, j (−x, t ) = −mK+ j,s(x, t ),

m∗
s,K+ j (−x, t ) = −mj,K+s(x, t ),

m∗
s, j (−x, t ) = −mK+ j,K+s(x, t ), (A18)

which gives rise to

τ ∗
0 (−x, t ) =

∣∣∣∣ m∗
s, j (−x, t ) m∗

s,N+ j (−x, t )
m∗

N+s, j (−x, t ) m∗
N+s,N+ j (−x, t )

∣∣∣∣
=

∣∣∣∣m∗
N+s,N+ j (−x, t ) m∗

N+s, j (−x, t )
m∗

s,N+ j (−x, t ) m∗
s, j (−x, t )

∣∣∣∣
= (−1)2N

∣∣∣∣ mj,s(x, t ) mN+ j,s(x, t )
mj,N+s(x, t ) mN+ j,N+s(x, t )

∣∣∣∣
= τ0(x, t ), (A19)

and

τ ∗
1 (�)(−x, t ) =

∣∣∣∣∣∣∣
m∗

s, j (−x, t ) m∗
s,N+ j (−x, t ) eξ∗

s (−x,t )

m∗
N+s, j (−x, t ) m∗

N+s,N+ j (−x, t ) eξ∗
N+s (−x,t )

−eη
(�)∗
j −eη

(�)∗
N+ j 0

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
m∗

N+s,N+ j (−x, t ) m∗
N+s, j (−x, t ) eξ∗

N+s (−x,t )

m∗
s,N+ j (−x, t ) m∗

s, j (−x, t ) eξ∗
s (−x,t )

−eη
(�)∗
N+ j −eη

(�)∗
j 0

∣∣∣∣∣∣∣
= (−1)2N+1

∣∣∣∣∣∣∣∣
mj,s(x, t ) mN+ j,s(x, t ) −eξ s (x,t )

mj,N+s(x, t ) mN+ j,N+s(x, t ) −eξN+s (x,t )

eη
(�)
j eη

(�)
N+ j 0

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
ms, j (x, t ) ms,N+ j (x, t ) eη

(�)
j

mN+ j, j (x, t ) mN+ j,N+ j (x, t ) eη
(�)
N+ j

−eξ j (x,t ) −eξN+ j (x,t ) 0

∣∣∣∣∣∣∣∣
= −τ−1(�)(x, t ). (A20)
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Hence the bilinear equations (A13) reduce to the bilinear
equations (3) of the nonlocal M-NLS equation with f =
τ0, g(�) = τ

(�)
1 , g(�)∗(−x, t ) = −τ

(�)
−1 , and c = 1. Then the

tau functions defined in Eq. (A2) with variable transforma-
tions x1 = x, x2 = it and under the parametric constraints in
Eqs. (A9) and (A14) reduce to tau functions of the bilinear
equations of the nonlocal M-NLS equations (3), which would
generate bright soliton solutions (6) to the nonlocal M-NLS
equations (2) with zero boundary condition.

Finally, we perform the nonlocal symmetry reduction
τ ∗

0 (−x, t ) = −τ0(x, t ), τ ∗
1 (�)(−x, t ) = τ−1(�)(x, t ) with vari-

able transformations x1 = x, x2 = it . Then, we consider
K = (2N + 1) × (2N + 1) matrices for the tau functions τ0,
τ1(�), and τ−1(�) defined in Eq. (A2) and take some pa-
rameters meeting the constraint condition in Eq. (A14) and
the remaining parameters following the parameter constraint
condition

p2N+1 = p2N+1 = ip,

ξ 2N+1,0 = ξ ∗
2N+1,0, (A21)

η
(�)
2N+1,0 = η

(�)∗
2N+1,0.

Therefore, the matrix elements ms, j still verify the identities
in Eq. (A18) for s, j = 1, 2, . . . , N , and the remaining ma-
trix elements m2N+1, j , m2N+1,N+ j , mN+s,2N+1, ms,2N+1, and
m2N+1,2N+1 meet the following relations:

m∗
2N+1, j (−x, t ) = −mN+ j,2N+1(x, t ),

m∗
s,2N+1(−x, t ) = −m2N+1,N+s(x, t ), (A22)

m∗
2N+1,2N+1(−x, t ) = −m2N+1,2N+1(x, t ),

similarly as Eqs. (A19) and (A20), one can obtain

τ ∗
0 (−x, t ) = −τ0(x, t ), τ ∗

1 (�)(−x, t ) = τ−1(�)(x, t ).
(A23)

Hence the bilinear equations (A13) reduce to the bilinear
equations (3) of the nonlocal M-NLS equation with f = τ0,
g(�) = τ

(�)
1 , g(�)∗(−x, t ) = τ

(�)
−1 , c = −1, and the tau functions

defined in Eq. (A2) with variable transformations x1 = x,
x2 = it and under the parameter constraints in Eqs. (A9) and
(A21). Finally, the bright soliton solutions (6) to the nonlocal
M-NLS equations (2) on the periodic line wave background
are thus obtained.
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