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Energy of the interacting self-avoiding walk at the θ point
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We perform a numerical study of a new microcanonical polymer model on a three-dimensional cubic lattice,
consisting of ideal chains whose range and number of nearest-neighbor contacts are fixed to given values. Our
simulations suggest an interesting exact relation concerning the internal energy per monomer of the interacting
self-avoiding walk at the θ point.
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I. INTRODUCTION

It is well known that a polymer chain can collapse from
an extended to a compact configuration if the temperature or
the solvent quality is lowered below some critical value. This
phenomenon, known as coil-to-globule (CG) transition [1–3],
arises when the attractive interaction between the monomers
overwhelms the excluded volume effect. At the transition
temperature (commonly called the θ point) these contributions
compensate, resulting in a phase where the chains behave
approximately as random walks [1,4–6].

Let ωN be an N-step simple random walk (SRW) on the
cubic lattice Zd :

ωN = {xt (ωN ) ∈ Zd : 0 � t � N}. (1)

By convention we fix the seed monomer at x0(ωN ) = 0. The
chain can be represented trough the locations of its monomers
xt (ωN ) or equivalently by the orientations of its steps:

xt (ωN ) − xt−1(ωN ) ∈ �1, (2)

where �1 is the set of possible orientations on Zd (for a cubic
lattice the number is |�1| = 2d). Then, we indicate with

�N = �N
1 � ωN (3)

the set of all possible chain configurations.
Here we present a microcanonical model where the number

of distinct lattice sites visited by the walk, R(ωN ), and the
number of nearest-neighbors monomer pairs, L(ωN ) (links),
are constrained to scale with the number of steps N , formally

R(ωN ) = �(1 − m)N�, L(ωN ) = �λN�, (4)

where we denoted by �z� the lower integer truncation of
z ∈ R (see Fig. 1). The model is controlled by the pair of
parameters m and λ, and the interacting self-avoiding walk
(ISAW, [7–15]) is recovered by taking m = 0.

We numerically investigated the microcanonical phase di-
agram on the plane (m, λ), formulating a conjecture on the
location of the transition line λ = �c(m) that is expected to
separate the SAW-like phase (where the scaling of the average
chain displacement is that of the SAW) from the clustered
phase (in which the chains configure into compact clusters).

Based on these computer simulations and some additional
theoretical arguments, our analysis suggests that at least in the
thermodynamic limit (TL) N → ∞ the critical link density is
a linear function of m,

�c(m) = λc + δcm, (5)

and the constant λc is expected to match the density of con-
tacts per monomer of the ISAW at the θ point in the TL.

Before going further we introduce the notation and state
some basic properties. Without loss of generality, instead of
R(ωN ) we will work with the related quantity

M(ωN ) = N + 1 − R(ωN ), (6)

which represents the number of intersections present in the
chain ωN . Our model is then defined by a partition of �N

into subsets �N (M, L) such that each walk has exactly M
intersections and L links:

�N (M, L) = {ωN ∈ �N : M(ωN ) = M, L(ωN ) = L}, (7)

we indicate with the symbol 〈 · 〉M,L the average at fixed N , M,
and L,

〈 · 〉M,L = 1

|�N (M, L)|
∑

ωN ∈�N (M,L)

( · ), (8)

while the dependence on N is kept implicit. Also, we can
define the probability of uniformly extracting a chain with M
intersections and L links,

p0(M, L) = |�N (M, L)|
(2d )N , (9)

that by definition sums to 1:
∑
M,L

p0(M, L) = 1. (10)

We remark that the link counter L(ωN ) also includes the links
between consecutive monomers, hence is always bounded by
the range R from below and by dR from above, for d = 3:

1 � L(ωN )

N + 1 − M(ωN )
< 3. (11)
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FIG. 1. Range and link count for a chain ω8 = {x0, x1, . . . , x8} of
N = 8 steps on Z2, shown on top. (a) shows the actual walk, while
(b) highlights the range points (black circles) and the links (dotted
segments) of ω8. The total range is R(ω8) = 7, the number of self-
intersections is then M(ω8) = 8 + 1 − R(ω8) = 2, occurring at the
sixth and seventh steps. The total number of links is L(ω8) = 8, as it
counts also the links imposed by the chain condition [in (a) the only
nontrivial link is that between monomers x0 and x3].

Also, notice that L(ωN ) can increase only if M(ωN ) does not
(the variables are anticorrelated).

In the simplest case, the CG transition can be modeled by
incorporating attractive nearest-neighbor interactions in the
self-avoiding walk (SAW) [14–22]. The canonical version of
our model is described by the Hamiltonian

H (ωN ) = εM(ωN ) + γ L(ωN ). (12)

The competition between the repulsive range term εM(ωN )
versus the attractive nearest-neighbor interaction γ L(ωN ) al-
lows for the CG transition.

Given the parameters β1/β = ε and β2/β = γ , the associ-
ated Gibbs measure is

μβ (ωN ) = e−β1M(ωN )−β2L(ωN )

Zβ

. (13)

Notice that the partition function can be expressed as a sum
over M and L using the formula

Zβ =
∑

ωN ∈�N

e−β1M(ωN )−β2L(ωN ) =
∑
M,L

|�N (M, L)|e−β1M−β2L,

(14)

and we can also define a pseudo-Gibbs measure

pβ (M, L) = |�N (M, L)|e−β1M−β2L

Zβ

(15)

that allows us to express the thermal averages

〈 · 〉β =
∑

ωN ∈�N

μβ (ωN )( · ) =
∑
M,L

pβ (M, L)〈 · 〉M,L (16)

in terms of the microcanonical averages 〈 · 〉M,L .
Based on the existing literature on the IDJ model [13–15],

the limit N → ∞ of our model should exist for any choice of
the parameters, and then we expect that for any β and any ratio
β1/β2 the probability measure pβ (�mN�, �λN�) concentrates
on some point of the (m, λ) plane.

We indicate with MN the average number of intersections
for a SRW of N steps,

MN =
∑
M,L

p0(M, L) · M, (17)

while LN is the average number of links,

LN =
∑
M,L

p0(M, L) · L. (18)

By standard SRW theory [13,18,22,23], the average densities
of intersections and links are given by the formulas

MN = m0N + u0

√
N + o(

√
N ), (19)

LN = λ0N + w0

√
N + o(

√
N ). (20)

The constants can be exactly computed (for example m0 = C3

Polya constant [24]). Also, the fluctuations

�M(ωN ) = M(ωN ) − MN , (21)

�L(ωN ) = L(ωN ) − LN (22)

are expected to satisfy a joint central limit theorem (CLT) cen-
tered at zero, and p0(M, L) should concentrate in a O(

√
N )

neighborhood of the point (m0N, λ0N ) on the (M, L) space.
As we shall see shortly, this fact is of central importance to
locate the critical line in three dimensions. We will discuss its
grounds when dealing with the conjectured phase diagram.

II. LOCATING THE TRANSITION LINE

It is easy to verify that the proposed Hamiltonian converges
to the ISAW in the limit ε → ∞ (if also β2 = 0 corresponds to
the SAW). Under the assumption that ln p0(0, �λN�) is convex
in λ at least in the SAW phase, we can expect that

lim
N→∞

lim
β1→∞

lim
β2→βc

〈L(ωN )〉β
N

= lim
N→∞

〈L(ωN )〉0,�λcN�
N

= λc,

(23)

i.e., that in the TL the critical energy densities should be the
same in both the canonical and microcanonical versions.

To present the essential features of the phase diagram we
will first discuss the quantity

ν(m, λ) = lim
N→∞

ln
〈
x2

N (ωN )
〉
�mN�,�λN�

2 ln N
, (24)

which represents the critical exponent of the squared end-
to-end distance when M and L are constrained to grow
proportionally to N .

For γ → 0 we obtain the so-called Stanley model for
ε > 0, of Hamiltonian H0(ωN ) = εM(ωN ), while for ε < 0 it
is the Rosenstock trapping model. The corresponding micro-
canonical model is

�N (M ) =
⋃

L

�N (M, L) (25)

and has been studied in [24,25], where numerical simulations
and additional theoretical arguments support the conjecture
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that the displacement exponent of the set �N (�mN�),

ν(m) = lim
N→∞

ln
〈
x2

N (ωN )
〉
�mN�

2 ln N
, (26)

has a drop around mc = C3, with a drop band slowly nar-
rowing as O(1/Nα ) and α = 0.29 ± 0.1 ([24]; an independent
scaling analysis, not shown, gave 0.31 ± 0.1).

Based on these preliminary studies we conjecture that for
any value of m there is some critical link density �c(m) such
that if λ < �c(m) the exponent ν(m, λ) matches the critical
exponent ν3 of the SAW. The conjectured phase diagram
is then

ν(m, λ) =
⎧⎨
⎩

ν3, λ < �c(m),

1/2, λ = �c(m),

1/3, λ > �c(m),

(27)

where ν3 is the critical exponent of the SAW governing the
end-to-end distance [14,20,21]. If the link density is exactly
λ = �c(m), the energy contributions from range and links
should balance, giving a SRW-like critical behavior with ex-
ponent ν(m, �c(m)) = 1/2, while for λ > �c(m) we expect to
be in the cluster phase, then ν(m, λ) = 1/3. Notice that for
m → 0 we must have �c(0) = λc energy density of the ISAW
at the θ point.

Although an investigation of the parameter ν(m, λ) should
be carried out to verify the phase exponents (as is done in [24]
for the range problem), we believe that the existing literature
on IDJ-like models [4–9,11–15,17] already supports the exis-
tence of a nontrivial transition line, and we decided to locate
�c(m) by computing the level lines of the estimator,

ρN (m, λ) =
〈
x2

N (ωN )
〉
�mN�,�λN�

N
, (28)

that by previous considerations satisfy

ρN (m, λ) =
⎧⎨
⎩

O(N2ν3−1), λ < �c(m),

O(1), λ = �c(m),

O(N−2/3), λ > �c(m).

(29)

We computed the set �N (m, r) that satisfies

ρN (m, �N (m, r)) = r (30)

by numerical simulations using a pruned-enriched Rosenbluth
method (PERM) algorithm [26–29]. For very short chains
(N � 100) we were able to explore a large portion of the space
(m, λ), with r ranging from small values up to the scale of
ρN (0, 1). We found that, for very short chains,

N�N (m, r) = �λN (r)N + δN (r) · mN� (31)

is verified with extremely high accuracy at any observed r.
For small chains we observe that the level curves of ρN (m, λ)
appears to be straight lines (see Fig. 2).

Given the small size of the chains we cannot conclude
much from this observation, but driven by this preliminary
experiment we decided to fix r = 1, that is, the diffusion
behavior of the SRW, and perform an intensive investigation
of the curve �N (m, 1),

ρN (m, �N (m, 1)) = 1, (32)

FIG. 2. Surface ρN (m, λ) for an ISAW of N = 50. In (a) the
surface ρN (m, λ) is computed for a large part of the parameter space
using a PERM algorithm [gray area in (b)]. (b) shows some level
lines ρN (m, λ) = r as scatter points, the line ρN (m, λ) = 1, and the
boundaries of the allowed parameter space are highlighted by solid
lines. Although the considered chains are very small, the linear
behavior of the level lines in (b) is still surprising. A simulation of a
larger chain of N = 100 steps (not shown) gave the same picture.

that by Eq. (29) is expected to converge to the critical line in
the thermodynamic limit [30]:

lim
N→∞

�N (m, 1) = �c(m). (33)

The PERM algorithm, which is very efficient in simulating
θ -point chains, allowed us to evaluate �N (m, 1) up to chains
with N = 500 in a macroscopic portion of the (M, L) space,
see Fig. 3. We found stronger evidence that at least the curve
�N (m, 1) is still a line up to integer truncation,

N�N (m, 1) = �λN (1)N + δN (1) · mN�, (34)
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FIG. 3. Transition line ρN (m, λ) = 1 for chains up to N = 500
for a large portion of the parameter space using a PERM algorithm.
The lines from different N are shown on the same graph to allow
comparison. The lengths of the chains vary from N = 25 to 500. The
linear behavior of the critical level line seems present also for longer
chains. The intercepts at M = 0, extrapolated from linear fits, are
shown as white squares in Fig. 4(a).

suggesting the conjecture that the critical line may remain
a line in the thermodynamic limit, with critical coefficients
eventually satisfying

lim
N→∞

λN (1) = λc, lim
N→∞

δN (1) = δc. (35)

This property can be explained as follows. As in [25], let
us partition the chain ωN into a number n of subchains,

ωN = {
ω0

T , ω1
T , . . . , ωn

T

}
, (36)

each of size T = N/n. The subchains are indicated with

ωi
T = {

xi
0, xi

1, . . . , xi
T

} ⊂ ωN (37)

and satisfy the chain constraint xi
T = xi+1

0 . If we neglect the
self-intersections between the blocks, as is expected in a SRW-
like chain [14], we can approximate the probability measure
conditioned on the transition line with a product measure.

Now, as in [25] we assume that each subchain can be either
a critical ISAW, with local densities (0, λ0), or a SRW, with
average local densities (m0, λ0). Then we could write

p0(�mN�, ��c(m)N�)

�
n∏

i=1

p0(0, �λcN�)ϕiT p0(�m0N�, �λ0N�)(1−ϕi )T (38)

with ϕi ∈ {0, 1} keeping record of the subchain type. One in
the end finds that under the above product measure condition
the averages of M(ωT ) and L(ωT ) satisfy the relation

〈L(ωN )〉�mN�,��c (m)N�

� λcN −
(λc − λ0

m0

)
〈M(ωN )〉�mN�,��c (m)N�. (39)

Notice that three-dimensional θ polymers should include
logarithmic corrections to the simple mean-field factorization

[4]. Even if these corrections are important in the usual range
problem [25,31], here the constraint to stay on the transition
line forces the chains to behave like SRWs, and we are per-
suaded that neglecting these correlations should not affect the
shape of the line in the thermodynamic limit.

III. A CONSEQUENCE FROM SRW THEORY

An important consequence of the previous conjecture is
that the critical energy density of the ISAW λc would be
computable in terms of SRW measurable quantities.

In fact, we remark that the p0(�mN�, �λN�) is expected to
concentrate on (m0, λ0). Since the average squared end-to-end
distance in the SRW is exactly N , we can conclude that also
this point must lie on the transition line

�c(m0) = λ0. (40)

Then, by the previous linearity conjecture we should be able
to conclude that the ratio

δ∗
N = 〈L(ωN )〉β − 〈L(ωN )〉0

〈M(ωN )〉β − 〈M(ωN )〉0
(41)

converges to the actual δN (and then to the angular coefficient
of the critical line in the TL) under the constraint of constant
end-to-end distance,

〈
x2

N (ωN )
〉
β

= 〈
x2

N (ωN )
〉
0. (42)

To compute this estimator we expand the Boltzmann factor in
the limit of infinite temperature, i.e., for small β,

e−β1M−β2L = 1 − β1M − β2L + O(β2) (43)

and then compute the averages. It can be shown after some
algebra that in the limit of infinite temperature the differences
are approximated by the expressions

〈L(ωN )〉β − 〈L(ωN )〉0 = −β2�L2
N − β1�QN ,

〈M(ωN )〉β − 〈M(ωN )〉0 = −β2�QN − β1�M2
N ,

(44)

where in order to simplify the formulas we introduced a nota-
tion for the variances of links and intersections,

�L2
N = 〈�L2(ωN )〉0, �M2

N = 〈�M2(ωN )〉0, (45)

and one for the the correlations between M(ωN ) and L(ωN )
under the SRW measure,

�QN = 〈�M(ωN )�L(ωN )〉0. (46)

The ratio β1/β2 is obtained from the constraint of having a
constant average end-to-end distance applied to the first-order
expansion in β,

〈
x2

N (ωN )
〉
β

− 〈
x2

N (ωN )
〉
0 � −β1�PN − β2�TN = 0, (47)

where we again simplified the notation by introducing a sym-
bol for the correlation between M(ωN ) and x2

N (ωN ),

�PN = 〈
�M(ωN )�x2

N (ωN )
〉
0, (48)

and another symbol for the correlation between L(ωN ) and
x2

N (ωN ), which is

�TN = 〈
�L(ωN )�x2

N (ωN )
〉
0. (49)
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Finally, substituting the ratio β2/β1 obtained from the last
formula into the approximate expression for δ∗

N , we obtain the
relation

δ∗
N = �QN + (

�PN
�TN

)
�L2

N

�M2
N + (

�PN
�TN

)
�QN

(50)

that, assuming our conjecture is true, would allow us to com-
pute the critical energy density of the ISAW in the TL from
the formula

λ∗
N N = LN + δ∗

N MN . (51)

We generated SRW samples with an unbiased algorithm
and compared the above estimators with the critical energy
from PERM simulations of the ISAW. Our simulations up to
N = 1000 support the hypothesis that the estimator λ∗

N does
eventually converge to λc (see Fig. 4). We remark that such
relation is due to the fact that both the extended phase and
the clustered phase scale differently from the SRW. In higher
dimensions we cannot rely on this property because for d > 4
the SAW is expected to scale like the SRW.

IV. CONCLUSIONS AND OUTLOOK

Concerning the form of the transition line, it is important
to remark that the conjecture in Eq. (51) would open inter-
esting analytic possibilities. In fact, the quantity δ∗

N does not
depend on β and all the averages are taken with respect to
the SRW measure. We expect that, apart from messy algebra,
the asymptotics of the necessary correlation functions can be
computed using the very same techniques developed by Jain
and Pruitt to compute the variance of the SRW range [18,32–
35]. This would be a nice result, since to the best of our
knowledge no exact expression is known or even conjectured
for the ISAW critical energy.

Another interesting fact is that the model can be described
by a generalized urn model. Since L(ωN ) can increase only if
M(ωN ) does not, it holds that

L(ωN+1) − L(ωN ) =
2d π (ωN+1){1 − [M(ωN+1) − M(ωN )]} (52)

where we used the symbol

π (ωN ) = 〈M(ωN+1) − M(ωN )|ωN 〉0 (53)

to indicate the atmosphere of the chain (see [25]). Given the
urn kernels

π
(k)
N (M, L) = 〈I (L(ωN ) − L(ωN−1) = k)〉M,L (54)

for 0 � k � 2d we conjecture that

π (k)(m, λ) = lim
N→∞

π
(k)
N (�mN�, �λN�) (55)

exists for all considered k, and that it would be possible to
extend the urn techniques presented in [25,36] to deal with the
urn model controlled by the kernels π (k)(m, λ). Notice that for
k = 0 one would have

π
(0)
N (M, L) = 〈I (L(ωN ) − L(ωN−1) = 0)〉M,L

= 〈I (M(ωN ) − M(ωN−1) = 1)〉M,L (56)

FIG. 4. Comparison between the critical ISAW energy from in-
dependent PERM simulations with the estimator of Eq. (51) up to
N = 1000 computed with an unbiased algorithm. In (a), semilog-
arithmic scale, the black line is the estimator λ∗

N with its error
(standard deviation), obtained from an unbiased simulation, while
the black dots are values obtained with an independent PERM sim-
ulation. Finally, the white squares are the intercepts at M = 0 from
linear fits of Fig. 3. (b) shows the difference λ∗

N − λN between ISAW
critical energy and Eq. (51) in log-log scale. The difference is fitted
with a power law K0 x−c, with K0 = 0.1124 ± 0.0005 and exponent
c = −0.38 ± 0.01.

and that by definition it must hold that

1 − π
(0)
N (M, L) =

2d∑
k=1

π
(k)
N (M, L). (57)

We conclude with one last remark. Due to difficulties in
simulating long chains when m is close to 1, we were un-
able to directly check the behavior in this region. At first
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we where tempted to further push the conjecture and guess
that in the TL the critical line hits the value λ = 0 at m = 1,
but our PERM estimates seem to exclude this simple ansatz
because the observed λN (1) is always below the value λc =
λ0/(1 − C3) � 1.5238 for which a “linear” critical line can
pass through the point (m0, λ0), that must lie on the critical
line in any case (from SRW theory λ0 = 6C3/(1 + C3) �
1.005 and m0 = C3 � 0.3405 [13]), and then hit the boundary
3(1 − m) of the allowed parameter space at m = 1 exactly.

Then, if the linear behavior of �N (m) can be really extended
in the whole m range and λc < λ0/(1 − C3) this would imply
the existence of a second critical value for the intersection
density, i.e., m∗ = C3(λc − 3)/(λc − λ0 − 3C3), at which the
crossing between the critical line �c(m) and the boundary
3(1 − m) actually happens, and after this value the clustered
phase would not be possible anymore except for values of λ

concentrating on the boundary of the parameter range. For

example, the conjecture would imply that no CG transition
can occur for m < 1 in the �N (�mN�, �(1 − m)N�) model,
where the nearest-neighbor pairs are forbidden. This is likely
because in a clustered phase we necessarily have a partial
saturation of the nearest-neighbor sites of each monomer, and
such phase would be extremely unfavored by a small link
density.

ACKNOWLEDGMENTS

We would like to thank Giorgio Parisi (Sapienza Univeristá
di Roma) and Valerio Paladino (Amadeus IT) for interesting
discussions and suggestions. This project has received funding
from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program
(Grant Agreement No. 694925).

[1] P. J. Flory, Principles of Polymer Chemistry (Cornell University
Press, Ithaca, NY, 1971).

[2] I. Nishio, S.-T. Sun, G. Swislow, and T. Tanaka, Nature
(London) 281, 208 (1979).

[3] K. M. Y. Matsuzawa, K. Yoshikawa, A. R. Khokhlov and M.
Doi, Biopolymers 34, 555 (1994).

[4] P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell
University Press, Ithaca, NY, 1979).

[5] J. des Cloizeaux and G. Jannink, Polymers in Solutions: Their
Modelling and Structure (Clarendon, Oxford, 1990).

[6] A. Y. Grosberg and D. V. Kuznetsov, Macromolecules 25, 1970
(1992).

[7] P. P. Nidras, J. Phys. A: Math. Gen. 29, 7929 (1996).
[8] M. C. Tesi, E. J. J. van Rensburgd, E. Orlandini, and S. G.

Whittington, J. Phys. A: Math. Gen. 29, 2451 (1996).
[9] M. C. Tesi, E. J. J. van Rensburg, E. Orlandini, and S. G.

Whittington, J. Stat. Phys. 82, 155 (1996).
[10] S. Caracciolo, M. Gherardi, M. Papinutto, and A. Pelissetto, J.

Phys. A 44, 115004 (2011).
[11] C.-N. Chen, Y.-H. Hsieh, and C.-K. Hu, Europhys. Lett. 104,

20005 (2013).
[12] N. R. Beaton, A. J. Guttmann, and I. Jensen, J. Phys. A: Math.

Theor. 53, 165002 (2020).
[13] J. F. Douglas and T. Ishinabe, Phys. Rev. E 51, 1791 (1995).
[14] N. Madras and G. Slade, The Self-Avoiding Walk (Birkhauser,

Boston, 1996).
[15] C. Domb and G. S. Joyce, J. Phys. C: Solid State Phys. 5, 956

(1972).
[16] N. Clisby, J. Phys.: Conf. Ser. 921, 012012 (2017).
[17] G. Slade, Proc. R. Soc. A 475, 20181549 (2019).
[18] B. D. Hughes, Random Walks and Random Enviroments

(Clarendon, Oxford, 1995), Vol.1.
[19] D. C. Brydges and G. Slade, J. Stat. Phys. 159, 421 (2015).
[20] N. Clisby, Phys. Rev. Lett. 104, 055702 (2010).

[21] N. Clisby, J. Phys. A: Math. Theor. 46, 245001 (2013); A. L.
Owczarek and T. Prellberg, J. Phys. A: Math. Gen. 34, 5773
(2001).

[22] F. Spitzer, Principles of Random Walk (Springer, New York,
2001).

[23] W. Feller, An Introduction to Probability Theory and Its Appli-
cations (Wiley, New York, 1950), Vol. 1.

[24] S. Franchini, Phys. Rev. E 84, 051104 (2011).
[25] S. Franchini and R. Balzan, Phys. Rev. E 98, 042502 (2018).
[26] The pruned-enriched Rosenbluth method (PERM) is a classic

stochastic growth algorithm which combines the Rosenbluth-
Rosenbluth method with recursive enrichment. One starts by
building instances according to a biased distribution, then
corrects for this by cloning desired and killing undesired con-
figurations to contain the weights fluctuations; see [27–29] for
reviews and [27] for a pseudocode.

[27] P. Grassberger, Phys. Rev. E 56, 3682 (1997).
[28] T. Prellberg and J. Krawczyk, Phys. Rev. Lett. 92, 120602

(2004).
[29] H.-P. Hsu and P. Grassberger, J. Stat. Phys. 144, 597 (2011).
[30] Although the choice r = 1 smoothly connects with the SRW, we

remark that by Eq. (29) the level lines �N (m, r) will eventually
converge to the critical line for any fixed r.

[31] See for example the �N (M ) model of [25], where the product
measure condition is likely to give only approximate results for
any d < ∞ due to excluded volume effects.

[32] N. C. Jain and W. E. Pruitt, J. Analyse Math. 24, 369
(1971).

[33] N. C. Jain and S. Orey, Isr. J. Math. 6, 373 (1968).
[34] A. Dvoretzky and P. Erdos, in Proceedings of the Second Berke-

ley Symposium on Mathematical Statistics and Probability, 1950
(University of California Press, Berkeley, 1951), p. 353.

[35] F. Den Hollander, J. Stat. Phys. 37, 331 (1984).
[36] S. Franchini, Stoch. Proc. Appl. 127, 3372 (2017).

032143-6

https://doi.org/10.1038/281208a0
https://doi.org/10.1002/bip.360340410
https://doi.org/10.1021/ma00033a022
https://doi.org/10.1088/0305-4470/29/24/017
https://doi.org/10.1088/0305-4470/29/10/023
https://doi.org/10.1007/BF02189229
https://doi.org/10.1088/1751-8113/44/11/115004
https://doi.org/10.1209/0295-5075/104/20005
https://doi.org/10.1088/1751-8121/ab7ad1
https://doi.org/10.1103/PhysRevE.51.1791
https://doi.org/10.1088/0022-3719/5/9/009
https://doi.org/10.1088/1742-6596/921/1/012012
https://doi.org/10.1098/rspa.2018.0549
https://doi.org/10.1007/s10955-014-1163-z
https://doi.org/10.1103/PhysRevLett.104.055702
https://doi.org/10.1088/1751-8113/46/24/245001
https://doi.org/10.1088/0305-4470/34/29/303
https://doi.org/10.1103/PhysRevE.84.051104
https://doi.org/10.1103/PhysRevE.98.042502
https://doi.org/10.1103/PhysRevE.56.3682
https://doi.org/10.1103/PhysRevLett.92.120602
https://doi.org/10.1007/s10955-011-0268-x
https://doi.org/10.1007/BF02790380
https://doi.org/10.1007/BF02771217
https://doi.org/10.1007/BF01011838
https://doi.org/10.1016/j.spa.2017.02.010

