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Asymptotic correlation functions in the Q-state Potts model: A universal form for point group C4v
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Reexamining algebraic curves found in the eight-vertex model, we propose an asymptotic form of the
correlation functions for off-critical systems possessing rotational and mirror symmetries of the square lattice,
i.e., the C4v symmetry. In comparison with the use of the Ornstein-Zernike form, it is efficient to investigate
the correlation length with its directional dependence (or anisotropy). We investigate the Q-state Potts model on
the square lattice. Monte Carlo (MC) simulations are performed using the infinite-size algorithm by Evertz and
von der Linden. Fitting the MC data with the asymptotic form above the critical temperature, we reproduce the
exact solution of the the anisotropic correlation length (ACL) of the Ising model (Q = 2) within a five-digit
accuracy. For Q = 3 and 4, we obtain numerical evidence that the asymptotic form is applicable to their
correlation functions and the ACLs. Furthermore, we successfully apply it to the bond percolation problem
which corresponds to the Q → 1 limit. From the calculated ACLs, the equilibrium crystal shapes (ECSs) are
derived via duality and Wulff’s construction. Regarding Q as a continuous variable, we find that the ECS of the
Q-state Potts model is essentially the same as those of the Ising models on the Union Jack and 4-8 lattices, which
are represented in terms of a simple algebraic curve of genus 1.
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I. INTRODUCTION

For the past few decades, thermal evolution of the
equilibrium crystal shape (ECS) [1,2] has received consid-
erable attention [3–10]. This revived interest comes from
connections between the ECS and the roughening transi-
tion phenomena [2–7]. The first exact analysis of the ECS
was done for the square-lattice Ising model [3]; see also
Refs. [4,5].

Here we investigate the square-lattice Potts model [11,12].
To each site r one associates a Q-valued variable qr. The
Hamiltonian is given by

E (Q) = −
∑
〈r,r′〉

Jr,r′δ(qr, qr′ ), qr = 0, 1, . . . , Q − 1,

( 1.1)
where the sum runs over all nearest-neighbor pairs 〈r, r′〉.
Note that the Q = 2 Potts model is equivalent to the Ising
model. For general Q, the Potts model is exactly solvable at
the phase transition point [11,13–17]. The phase transition is
continuous for Q � 4 and first order for Q > 4.

In a previous study [8] we generalized the argument in
Refs. [3–5] to find the ECS of the Q-state Potts model. We
showed that the anisotropic correlation length (ACL) is re-
lated by duality [18–21] to the anisotropic interfacial tension.
For Q > 4, the ACL was exactly calculated at the first-order
transition (or self-dual) point. The ECS was obtained from the
ACL via the duality relation and Wulff’s construction [1,2]. It
was expressed as an algebraic curve in the αβ plane,

α2β2 + 1 + A3(α2 + β2) + A4αβ = 0, (1.2)

where α = exp[−λ(X + Y )/kBT ] and β = exp[−λ(X −
Y )/kBT ] with the position vector (X,Y ) of a point on the
ECS and a suitable scale factor λ; for definitions of A3 and
A4, see Sec. 3.2 of Ref. [8]. The algebraic curve (1.2) is quite
universal because it appears as the ECSs of a wide class of
lattice models including the square-lattice Ising model [3–10].

We note that Eq. (1.2) is not the only universal curve
[22,23]. For example, we considered the ACL of the eight-
vertex model in Ref. [24] and found another algebraic curve,

α2β2 + 1 + Ā2(αβ + 1)(α + β ) + Ā3(α2 + β2) + Ā4αβ = 0
(1.3)

(for definitions of Ā2, Ā3, and Ā4, see Eq. (4.7) of Ref. [24]).
The ACL represented by Eq. (1.3) is indeed the same as those
of the Ising models on the Union Jack and 4-8 lattices [25].
Some authors derived algebraic curves for the lattice models
possessing sixfold rotational symmetry [25–30], which are
also universal.

We expect that these algebraic curves are connected with
the symmetries of lattice models. How do they select the alge-
braic curves? This is the problem we shall consider. Also, we
expect that the same selection mechanism works regardless of
whether the lattice models are exactly solvable or not.

In this paper, we propose an asymptotic form of the correla-
tion functions of off-critical systems possessing rotational and
mirror symmetries of the square lattice (the C4v symmetry);
see Chap. 2 of Ref. [31]. The asymptotic form is brought about
by reexamining exact solutions of the eight-vertex model. We
apply it to the Q-state Potts model. Our method is a combined
use of the asymptotic form and Monte Carlo (MC) simulations
based on the Fortuin-Kasteleyn random-cluster representation
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FIG. 1. A schematic diagram of the principal regime in the eight-
vertex model. For a given x (0 < x < 1), there exist two cases with
respect to another parameter q: The ACL depends on q for x3 <

q < x2 and does not for 0 < q < x3. The latter region includes the
decoupling limit q = x4.

[32]. As we see below, the combined method is quite efficient
to calculate the correlation lengths with their anisotropy.

The format of the present paper is as follows: In Sec. II,
we introduce an asymptotic form for the C4v symmetry, i.e., a
form for the asymptotic correlation functions which together
with MC data enables us to evaluate the ACLs. In Sec. III, we
perform MC simulations. We investigate the Q = 2, 3, and 4
cases and also the bond percolation model which is, via the
cluster representation, realized in the Q → 1 limit. Section IV
is devoted to discussion and summary. From the evaluated
ACL we derive the ECS in the Q-state Potts model. Detailed
explanations on the exact calculation of the Ising model, the
methodology of MC simulations, and the fitting procedure are
given in the Appendices.

II. ASYMPTOTIC CORRELATION FUNCTIONS FOR C4v

Johnson, Krinsky, and McCoy (JKM) [33] calculated the
correlation length of the eight-vertex model along the vertical
direction; see also Ref. [34]. Their approach was the row-to-
row transfer matrix argument. They investigated the low-lying
excitations to determine the next-largest and next-to-next-
largest eigenvalues. In Ref. [24], using the shift operator, we
extended the analysis by JKM into general directions; see also
Refs. [35–37].

Because of the symmetry properties of the model, we can
restrict ourselves to an antiferroelectric ordered regime (the
principal regime) without loss of generality [11,38]. It was
shown that, for a given parameter x (0 < x < 1), there are two
cases with respect to another parameter q (see Fig. 1) [24]; for
definitions of x and q, see Chap. 10 of Ref. [11]. In the case
0 < q < x3 the ACL is independent of q. In the q → x4 limit
the eight-vertex model factors into two square-lattice Ising
models. For planar Ising models it was shown that the ECS
is determined by the Fourier transform (structure factor) of
the asymptotic correlation function [20,21,25]. In the square-
lattice Ising model the inverse of the structure factor above the
critical temperature corresponds to the left-hand side of Eq.
(1.2). We found that for 0 < q < x3 the asymptotic correlation
function of the eight-vertex model is related to the algebraic
curve (1.2). In the case x3 < q < x2 the ACL depends on
q. It was shown that the asymptotic correlation function is
connected with Eq. (1.3).

The correlation function in the square-lattice Ising model
(with ferromagnetic couplings) were investigated by many
authors; see, for example, Refs. [39–48]. The Pfaffian method
was used in Ref. [40]; see also Ref. [41]. Yamada [42,43]
showed that the results in Ref. [40] coincide with those of the
row-to-row transfer matrix. We note that the row direction of
the eight-vertex model corresponds to the diagonal direction
in the Ising model; transfer matrices of the two models have
complex eigenvalues. In the thermodynamic limit, due to their
continuous distribution, the summation over the eigenvalues
becomes contour integrals. JKM showed that analyticity of
the integrand (or eigenvalues) plays an important role: To
compare their results in the decoupling limit with those in
Ref. [40], JKM rewrote the latter by the use of elliptic func-
tions, which connect the structure factor with the eigenvalues
along the row direction. Then, using the analytic property,
they shifted the integration paths suitably to find equivalence
between the results along the row and diagonal directions; see
Eqs. (3.5) and (3.6) in JKM.

In Refs. [23] we discussed a close relation between the C4v

symmetry and the algebraic curves (1.2) and (1.3). The eight-
vertex model was defined on a square lattice rotated through
an arbitrary angle with respect to the coordinate axes [49].
Calculating eigenvalues of transfer matrices along various
directions, we showed that lattice rotations shift (or deform)
the integration paths. We pointed out that, to derive the equiv-
alence between the results by transfer matrices along various
directions, two further properties are needed in addition to (i)
the analytic property found by JKM: (ii) a functional equation
corresponding to the π -rotational invariance and (iii) dou-
bly periodic structure. We argued that the properties (i)–(iii)
essentially determine the asymptotic form of the correlation
function possessing the C4v symmetry.

To ensure the argument in Ref. [23], and to show its
applicability to unsolvable models, we consider the Q-state
Potts model. Since the analysis in Ref. [23] was about the
correlation function between two arrow spins in the antiferro-
electric ordered regime, some ambiguity remained to clarify
the role of the C4v symmetry. We successfully applied the
same argument as in Ref. [23] to the square-lattice Ising model
and then found that the properties (i)–(iii) are actually satisfied
(see Appendix A).

Regarding Q as a continuous variable, we assume (i)–(iii).
We estimate the leading asymptotic behavior of the correlation
functions for general Q as follows (for clarity here we sum-
marize the discussion given in Appendix A 6): The property
(iii) shows that, choosing a suitable parametrization, we can
represent the asymptotic correlation function Fo,r as

Fo,r = const
∫ ω1

−ω1

d�Y (�) jX (�)i, (2.1)

with r = iex + jey. Y (�) corresponds to eigenvalues of the
row-to-row transfer matrix and X (�) those of the shift oper-
ator. Both X (�) and Y (�) are doubly periodic functions; see
Appendix A 6.

In the case Q = 2 the π rotation of the lattice corresponds
to shifting the integration path by ω2. The property (ii) sug-
gests the relations Y (� + ω2) = Y (�)−1 and X (� + ω2) =
X (�)−1. The property (i) indicates analyticity of Y (�) and
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X (�). It follows that Y (�) and X (�) must be of the form

Y (�) =
ν∏

l=1

k
1
2 sn(� + αl ),

(2.2)

X (�) =
ν ′∏

l=1

k
1
2 sn(� + v + βl ),

where k is the modulus corresponding to the modular parame-
ter τ = ω2/ω1. When the interactions do not depend on bond
directions, the Potts model possesses the fourfold rotational

symmetry. We can set v = ±ω2/2, ν = ν ′, and αl = βl . Since
the correlation function is real valued, we find that τ must
be purely imaginary, which ensures the C4v symmetry of the
system as well.

It follows from the case Q = 2 that the simplest form with
ν = 2 corresponding to the next-largest eigenvalues appears
above TC (Q), where we denote the phase transition tempera-
ture by TC (Q), regarding it as a function of Q. For parameters
α1 and α2, we find two possibilities: (α1 − α2)/ω1 is purely
imaginary or a real number. Since α1 − α2 = ω2/2 in the case
Q = 2, we assume it is a pure imaginary number. As a result,
we obtain for T > TC (Q)

Fo,r = const
∫ ω1

−ω1

d� [ksn(� + B)sn(� − B)] j[ksn(� + ω2/2 + B)sn(� + ω2/2 − B)]i. (2.3)

Since we cannot determine α1 − α2 to be ω2/2 solely from
the C4v symmetry, we have introduced a parameter B. The
structure factor of Eq. (2.3) is related to the algebraic curve
(1.3); we can regard Eq. (1.2) as a special limit of Eq. (1.3).
The asymptotic form (2.3) is expected to be one of general
forms for systems possessing the C4v symmetry. The algebraic
curve (1.3) is an elliptic curve, i.e., an algebraic curve of genus
1. Equation (2.3) is a differential form on the elliptic curve
(1.3) [50].

As mentioned at the end of Appendix A 6, for T < TC (Q)
almost the same argument holds: From the case Q = 2, it
follows that ν = 4, α1 − α2 = α3 − α4 = ω2/2, and α1 − α3

is a real number. The only difference from the case of T >

TC (Q) is expected to be that two elliptic curves are needed to
represent the asymptotic correlation function.

III. NUMERICAL ANALYSES FOR Q-STATE
POTTS MODEL

Following the results in Sec. II, we investigate the asymp-
totic correlation functions in the Q-state Potts model. For Q �
3 the phenomena in three or more phase systems have been at-
tracted much attention [51–53]; see also Refs. [15–17,54,55].
In Ref. [51] interface properties in Q = 3 were studied. As
mentioned in Sec. I, at the first-order transition point, the Potts
model possesses the same ACL and ECS as the Ising model
[8]. Although for Q � 3 we expect a deviation of the ECS
from the Q = 2 case, definite results on this subject have not
been obtained yet; see, for example, Refs. [56–58].

Also, numerical calculations of the correlation functions
and the correlation lengths have been frequently performed.
One typical way of doing them is to analyze the exponential
decay of correlation function data in a certain fixed direction
provided by MC simulations on finite-size systems [54,55].
However, it is recognized that such an approach cannot always
give an accurate estimation of the correlation lengths. Further,
the present analysis on the ACLs is expected to become more
difficult because of the following reasons: First, the finite-size
effects in the MC data can affect the analysis of anisotropy
in an unexpected manner. Second, because the patterns of
the ACLs observed in different models, but sharing the C4v

symmetry, are similar to each other [56,57], they possess only
slight differences (see also Appendix B).

In this situation, we employ an algorithm for the MC sim-
ulations proposed by Evertz and von der Linden [59]. Since
it is a method for infinite-size systems, an extrapolation of
data to the thermodynamic limit is not necessary. For a system
in a disordered phase, we generate the random clusters by
taking the center site as a seed site and expand the thermally
equilibrated area outward (see Appendix C). Then we measure
the correlation functions in the area well equilibrated, which
are free of the finite-size effects. Typically O(1014) random
clusters are generated at each temperature to attain the high
accuracy of MC data [32].

Our method is a combined use of the MC data with the
result in Sec. II, which is expected to be quite efficient to
investigate the ACLs. In Sec. III A, we shall introduce an
asymptotic form for the correlation functions in the Q-state
Potts model, which includes three parameters. To determine
them, fitting calculations are performed for the MC data. In
Sec. III B, we calculate the ACL in the Q = 2 Potts model
to demonstrate an accuracy of our numerical analysis. In
Sec. III C, we investigate the cases Q = 3, 4. In Sec. III D
we also apply the method to the bond percolation process
corresponding to the Q → 1 limit.

A. A form for asymptotic correlation functions in Q-state
Potts model

As mentioned at the end of Sec. II, since the analysis for
T > TC (Q) is more fundamental, we shall restrict ourselves to
the case T > TC (Q) below. Suppose a square lattice �sq. We
denote the position vector of a site on �sq as r = iex + jey.
The definition of the correlation function for the Q-state Potts
model is

〈σoσ
∗
r 〉 =

〈
exp

[2π i(qo − qr )

Q

]〉
=

〈Qδ(qo, qr ) − 1

Q − 1

〉
, (3.1)

where σr = exp(2π iqr/Q). It was rigorously proven that the
correlation function decays exponentially above the tran-
sition temperature and at the first-order transition point
[12,19,60].

We shall concentrate on the case of Jr,r′ = 2J , where
the transition point is simply given by kBTC (Q)/J =
2/ ln (1 + √

Q). Based on the observation in Sec. II, we shall
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employ the inferred form in Eq. (2.3). The C4v symmetry
permits the inclusion of one fitting parameter B other than
the elliptic modulus and a normalization factor. We take the

Ising model in Appendix A as a reference. We replace ω1 and
ω2 by I and I ′, respectively. In terms of elliptic functions, our
form is rewritten as

Fsq(i, j; A, k, b) = A

π
(1 − k2)

1
4

∫ I

−I
dφ

[
ksn

(
φ + b

iI ′

4

)
sn

(
φ − b

iI ′

4

)] j{
ksn

[
φ + (2 + b)

iI ′

4

]
sn

[
φ + (2 − b)

iI ′

4

]}i

, (3.2)

where b is introduced by B = biI ′/4, and the normalization
factor is represented using a parameter A; these refer to the
exact values A = 1 and b = 1 in the Q = 2 case.

We denote MC data of Eq. (3.1) with r = iex + jey ∈ �sq

by {c(i, j)}. In an asymptotic region of large R, we perform a
fitting of MC data to determine the three parameters A, k, b.
Using the extracted values Ā, k̄, b̄, the asymptotic correlation
function is represented as

〈σoσ
∗
r 〉 ∼ Fsq(i, j; Ā, k̄, b̄). (3.3)

We can find the ACL from Eq. (3.3) by the method of steepest
descent, as shown in Appendix A. For example, the inverse
correlation length in the diagonal direction is determined as

1

ξdiag
= − 1√

2
ln

{
sn

[
I + (1 + b̄) iI ′

4

]
sn

[
I + (3 + b̄) iI ′

4

] sn
[
I + (1 − b̄) iI ′

4

]
sn

[
I + (3 − b̄) iI ′

4

]
}

.

(3.4)
Note that, when b̄ = 1, Eq. (3.4) reduces to

1

ξdiag
= − 1√

2
ln k̄, (3.5)

which coincides with the exact result in Q = 2. If we succeed
in calculating the ACL with a sufficient accuracy, then it gives
strong numerical evidence that the elliptic curve (1.3) appears
in the structure factor of the asymptotic correlation function.

There are two possible sources of errors in our analysis:
One is the statistical errors in {c(i, j)}, which are inherent in
the MC sampling procedures and become larger for longer
distances. The other is systematic errors in Eq. (3.2). Note that
contributions from the eigenvalues with ν > 2 are not taken
into account in Eq. (3.2). They are small corrections to the
asymptotic form but can be important for short distances; see
Appendix A; although the accuracy of MC data is higher for
shorter distances, the fitting results can be worse due to the
systematic errors.

We point out that essentially the same situations occur in
methods along fixed directions and that these methods are not
efficient to control the two kinds of errors; see, for example,
[54,55]. On the other hand, for the analysis of ACLs, it is
rather natural to fit the MC data in an annular region. We do
this with the help of Eq. (3.2). We found that, by optimizing
a mean radius of the annular region, we can obtain reliable
fitting results under a well-controlled condition of two kinds
of errors. We provide details of our fittings below and in
Appendix C.

B. Q = 2 case

We start with the Q = 2 Potts model and demonstrate an
accuracy of our numerical analysis. We performed extensive

MC simulations to achieve a demanded accuracy and fitting
the MC data in a suitable annular region. To make it ex-
plicit, let us denote an annular region centered at the origin
as D(cmax, cmin) = {(i, j)|cmin < c(i, j) < cmax} and the num-
ber of included sites as |D(cmax, cmin)|. For instance, at the
reduced temperature t = [T − TC (2)]/TC (2) = 0.24, we em-
ployed |D(10−3, 3 × 10−4)| = 308 with a mean radius 
 16,
as given by blue cells in Fig. 2. The second column of Table I
summarizes the results of Q = 2. Then, one can find that, at
all temperatures t , our results coincide with the exact values,
ξexact along the diagonal direction, A = 1, and b = 1 within, at
least, five-digit accuracy.

As explained in Appendix A, the systematic errors for the
Q = 2 Potts model stem from the eigenvalues with ν = 6 and
r = −1, which form the third band and thus should be smaller
than those in other cases. This permits us to use Eq. (3.2) for
inner annuli. We have checked a very weak dependence of
fitting results on radii of inner annuli (see Appendix C). In
outer regions the statistical errors become larger. However, we
have also checked that their accuracy is improved by increas-
ing the MC steps. If we increase the MC steps further, then the
same results are expected to appear in outer annuli. Thus, as
mentioned at the end of previous section, we can successfully
control the two kind of errors, which is the main advantage in
our method over calculations based on the Ornstein-Zernike
form.

FIG. 2. Annular regions. The origin (0,0) is denoted by the black
cell. The annular region D(10−3, 3 × 10−4) is employed for the
fitting of correlation function data of Q = 2 at t = 0.24 (308 blue
cells). The annulus for Q = 3 at t = 0.15 and that for Q = 4 at
t = 0.1 are indicated by green cells and red cells, respectively. The
annulus for Q = 1 at t = 0.50 are given by crosses overwritten on
the cells.
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TABLE I. The temperature dependence of extracted values of the fitting parameters in Eq. (3.2). In addition, the correlation length ξdiag is
enumerated; its exact values are given in the Q = 2 case for comparison. The parenthesized digits indicate errors. The geometries of annular
regions employed for fittings are summarized (see text).

Q t cmax cmin |D| Ā k̄ b̄ ξdiag ξexact

1 0.50 1 × 10−4 3 × 10−5 436 1.024825(6) 0.593506 1.018407(2) 2.750569(1) n/a
0.65 1 × 10−4 2 × 10−5 348 1.018603(5) 0.507724(4) 1.01635(2) 2.113499
1.00 1 × 10−4 1 × 10−5 252 1.01061(1) 0.365381(1) 1.012548(5) 1.418417(1)
1.50 1 × 10−3 1 × 10−4 104 1.00565 0.245847 1.008724(3) 1.014686(1)
2.00 1 × 10−3 1 × 10−4 68 1.00331(1) 0.176466 1.006455 0.819234(1)
3.00 1 × 10−3 1 × 10−4 44 1.001351(1) 0.103562 1.003900 0.625435
5.00 1 × 10−2 1 × 10−4 36 1.000544(2) 0.0481419 1.001796 0.466765

14.00 1 × 10−2 1 × 10−5 32 1.000040(5) 0.00817343(5) 1.000275 0.294259

2 0.24 1 × 10−3 3 × 10−4 308 1.000006(5) 0.596242(1) 0.999987(7) 2.734823(4) 2.734823
0.30 1 × 10−2 1 × 10−3 272 1.000000(3) 0.534544 1.000006 2.257906(2) 2.257906
0.50 1 × 10−2 1 × 10−3 132 0.999998(2) 0.386861 1.000001 1.489133 1.489133
1.00 1 × 10−2 1 × 10−3 52 0.999996(2) 0.207107 1.000001(7) 0.898187 0.898187
2.00 1 × 10−1 1 × 10−3 32 1.000001 0.0888253 1.000000 0.584124 0.584124

10.00 1 × 10−1 1 × 10−4 20 0.999999 0.00643374(2) 1.000000 0.280253 0.280253

3 0.15 1 × 10−4 3 × 10−5 400 0.96856(4) 0.59271(1) 0.98514(7) 2.672979(3) n/a
0.20 1 × 10−4 3 × 10−5 280 0.974811(4) 0.521168(7) 0.98624(2) 2.147209(1)
0.30 1 × 10−4 1 × 10−5 284 0.982815(4) 0.414841(6) 0.98813(2) 1.592772(2)
0.50 1 × 10−4 1 × 10−5 152 0.99072(3) 0.284116(2) 0.991031(2) 1.116243(5)
1.00 1 × 10−3 1 × 10−4 48 0.996832(2) 0.141663 0.995079(2) 0.7210346(1)
2.00 1 × 10−3 1 × 10−5 60 0.99923(1) 0.0572655(3) 0.997884 0.493739
8.00 1 × 10−2 1 × 10−5 24 0.999977(3) 0.00576756(2) 0.999812 0.2742787(2)

4 0.10 3 × 10−5 1 × 10−5 428 0.930993(6) 0.59836(1) 0.97189(5) 2.695252(3) n/a
0.14 3 × 10−5 1 × 10−5 264 0.94516(6) 0.522324 0.97424(1) 2.13511(2)
0.20 1 × 10−4 1 × 10−5 332 0.95917(3) 0.436457(2) 0.977090(3) 1.67632(1)
0.30 1 × 10−4 1 × 10−5 204 0.97308(3) 0.337726(1) 0.980765(2) 1.28399
0.50 1 × 10−4 1 × 10−5 100 0.98605(3) 0.223150(3) 0.98580(1) 0.932945(2)
1.00 1 × 10−4 1 × 10−5 40 0.995700(8) 0.106277 0.992435(1) 0.627439
2.00 1 × 10−3 1 × 10−5 48 0.998968(2) 0.0413266 0.996967 0.4429263(1)
6.00 1 × 10−2 1 × 10−5 32 0.999930(4) 0.00668751 0.999560 0.2823396(1)

Also, see the second column of Table II and the red lines in
Fig. 3; we can confirm that Eq. (3.2) is a quite efficient form
of the asymptotic correlation functions, especially, to analyze
the correlation lengths with their full anisotropies.

C. Q = 3, 4 cases

In this subsection, we analyze the ACLs observed in the
Q = 3, 4 Potts models by using the same method as in
Sec. III B.

As mentioned in Appendix A, the contribution from the
next-to-next-largest eigenvalues with ν = 4 vanishes due to
the Z2 symmetry of the Q = 2 Potts model. We cannot expect
the same here. In fact, if we compare the Q = 2 and t = 0.24
case with the Q = 3 and t = 0.15 case, though values for
ξdiag are nearly equal to each other (i.e., ξ̄ 
 2.7), we cannot
attain the same accuracy of the fitting for the latter MC data
in the former annulus (i.e., blue cells in Fig. 2). We cannot
attribute it to the statistical errors but to an influence from
the contribution of the next-to-next-largest eigenvalues in the
latter. Therefore, to circumvent the systematic errors, we need
to employ annuli with larger radii than those in the Q = 2
case. For this issue, we estimate the order of errors included in
Eq. (3.2) to optimize the annulus employed in the Q = 2 case.

In the Q = 3 and t = 0.15 case, denote the deviation at the
origin (0,0) as �(3), which is estimated as �(3) 
 O(10−2)
(see Appendix C). Noting that the next-to-next-largest eigen-
values form the second band, we can estimate their contribu-
tion as �(3) × e−2R/ξ̄ . To obtain the ACL within a sufficient
accuracy, we employ |D(10−4, 3 × 10−5)| = 400 with the
mean radius 
21, which is depicted by the green cells in
Fig. 2. The third column of Table I summarizes the results
for the Q = 3 Potts model. We succeeded in fitting the data by
Eq. (3.2), which permits us to evaluate the ACL of the model
within five-digit accuracy at all temperatures calculated. As
in the Q = 2 case, we checked that the improvement of the
accuracy was observed for the fitting of data in the outer
annuli by increasing MC steps. The obtained results exhibit
the relevant deviation from the values of the Ising models.

In the Q = 4 Potts model, the second band contributions
become somewhat larger than those in the Q = 3 case. This
can be recognized via the same argument as above: We com-
pare the Q = 3 and t = 0.15 case with the Q = 4 and t = 0.10
case; the correlation lengths in these cases are nearly equal.
We can also estimate the deviation �(4) and then find that
it becomes larger than �(3). Therefore, we should employ a
slightly larger annulus in radius than corresponding one in the
Q = 3 case. Based on the same order-estimate of the second
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TABLE II. The elliptic modulus dependence of the interfacial tension (4.1) and the radius of the curvature (4.5) in the facet (θ⊥ = 0)
and the corner (θ⊥ = π

4 ) directions. The parenthesized digits indicate errors. t∗ denotes a reduced temperature related via the duality condition
with t .

γ ∗/kBT ∗ ρ/|R|
Q t t∗ k̄ θ⊥ = 0 θ⊥ = π

4 θ⊥ = 0 θ⊥ = π

4

1 0.50 n/a 0.593506 0.362487 0.363561 1.024034 0.976668
0.65 0.507724(4) 0.470826 0.473149 1.040366(3) 0.961575(3)
1.00 0.365381(1) 0.697672 0.705011 1.088328(2) 0.920472(1)
1.50 0.245847 0.966719(1) 0.985527(1) 1.170490(2) 0.859568(1)
2.00 0.176466 1.186919(2) 1.220652(3) 1.260456 0.803824
3.00 0.103562 1.530284(5) 1.598887 1.448106(2) 0.713801
5.00 0.0481419 2.000909 2.142406 1.823115 0.597195

14.00 0.00817343(5) 3.007556(3) 3.398371(4) 3.361020(8) 0.409052

2 0.24 0.180449 0.596242(1) 0.364650 0.365654 1.022308 0.978298
0.30 0.212423 0.534544 0.441115 0.442888 1.032748 0.968541
0.50 0.296641 0.386861 0.665509 0.671532 1.075470 0.931052
1.00 0.423400 0.207107 1.087883 1.113353 1.209256(1) 0.834354
2.00 0.542189 0.0888253 1.631399 1.711964 1.506487 0.691295

10.00 0.726099 0.00643374(2) 3.137726(1) 3.568201(2) 3.666353(8) 0.391270

3 0.15 0.123678 0.59271(1) 0.373113 0.374116 1.021751(7) 0.978826(6)
0.20 0.155806 0.521168(7) 0.463792 0.465721 1.033903(4) 0.967477(4)
0.30 0.210524 0.414841(6) 0.623150 0.627836 1.062267(6) 0.942242(5)
0.50 0.293001 0.284116(2) 0.882588(4) 0.895863(4) 1.129046(3) 0.888962(2)
1.00 0.416299 0.141663 1.341439 1.386896 1.319586(3) 0.772300(2)
2.00 0.531350 0.0572655(3) 1.903634(2) 2.025360(3) 1.714394(4) 0.625274(1)
8.00 0.692933 0.00576756(2) 3.197038(3) 3.645926(3) 3.815002(3) 0.383675

4 0.10 0.087335 0.59836(1) 0.370106 0.371023 1.020045(5) 0.980445(5)
0.14 0.116378 0.522324 0.466507(3) 0.468359(3) 1.032331(2) 0.968928(1)
0.20 0.155063 0.436457(2) 0.592715(4) 0.596544(4) 1.053238 0.950094
0.30 0.209177 0.337726(1) 0.770348(4) 0.778821(4) 1.092567 0.917077
0.50 0.290435 0.223150(3) 1.050345(4) 1.071875(3) 1.18063(1) 0.85286(1)
1.00 0.411331 0.106277 1.528807(2) 1.593782(2) 1.419833(4) 0.725893(2)
2.00 0.523800 0.0413266 2.100168 2.257712 1.898554 0.580533
6.00 0.656712 0.00668751 3.118181(2) 3.541834(2) 3.609079(2) 0.394535

band contributions as the above, for instance for t = 0.10, we
employed |D(3 × 10−5, 10−5)| = 428 with mean radius 
24,
which is indicated by the red cells in Fig. 2. The fitting can
be performed with the same accuracy as in the Q = 3 case,
and the obtained results are summarized in the fourth column
of Table I. The deviation from the Ising model becomes more
prominent. Note that the parameter b monotonically decreases
with the increase of Q; we will discuss its physical meanings
in Sec. IV.

D. Bond percolation process as Q → 1 limit

The Potts model is related to a number of other problems
in lattice statistics [11–13]. These relations make it possible to
explore their properties from known results on the Potts model
or vice versa [61–63]. The bond percolation provides a simple
picture of a phase transition [64]. Regarding Q as a continuous
variable [63], we can relate the Q-state Potts model to the bond
percolation model: Suppose that Z (Q) is the partition function
of the Q-state Potts model, whose cluster representation is
provided in Appendix B. Then, the generating function of the

bond percolation is given by

lim
Q→1

∂

∂Q
ln Z (Q), (3.6)

where the bond percolation probability is p = 1 − e−2K [11]
and the percolation threshold pC is p at TC (1). The connec-
tivity function is defined by the probability that the origin
o and the site r belong to the same cluster and was proven
that, for p < pC , it decays exponentially as r becomes large
[65–67]. The correlation function (3.1) reduces to the con-
nectivity function in the Q → 1 limit [12]. Therefore, in this
subsection, we investigate the connectivity function in the
bond percolation, i.e., the correlation function of the Potts
model in the Q → 1 limit, by using Eq. (3.2).

The first column of Table I summarizes the fitting results
for Q = 1. Based on the same argument as above, we op-
timized the annular regions: For example for t = 0.50, we
employ |D(10−4, 3 × 10−5)| = 436 with mean radius 
22,
which is given by crosses in Fig. 2. Then we performed the
fittings of the MC data in the optimized annuli to determine
A, k, b. We obtained the ACL within five-digit accuracy. In
the course of fitting calculations, we recognized the systematic
errors similarly to the Q = 3, 4 cases. The extracted parameter
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FIG. 3. Elliptic modulus dependence of interfacial tension and
radius of curvature in the facet (θ⊥ = 0) and the corner (θ⊥ = π

4 )
directions. The correspondence between marks and Q is provided in
(a); the fitting curves are a guide for the eye. The figures plot the
data normalized by the corresponding values of Q = 2, which are
calculated for an extracted k̄ by taking b̄ = 1 in Eqs. (4.1) and (4.5).
The bare Ising values are also given by numerals (see Table II).

values Ā and b̄ exhibit deviations from the values of Q = 2 in
the opposite direction to the Q = 3, 4 cases and reveal their
monotonic Q dependence.

As demonstrated, the form (3.2) can accurately fit the
asymptotic correlation functions of the Q = 2, 3, 4 Potts
models for T > TC (Q), and the asymptotic connectivity func-
tion of the bond percolation (Q = 1) for p < pC . The result
strongly suggests that the elliptic curve (1.3) is related to
the structure factor for general Q. Consequently, we expect
that Eq. (1.3) plays a key role to describe the asymptotic
correlation functions in a wide class of models possessing the
C4v symmetry.

IV. DISCUSSION AND SUMMARY

We have investigated the asymptotic correlation functions
of the Q-state Potts model on the square lattice. Revisiting
the exact solutions of the eight-vertex model, we pointed
out the importance of the three properties of the eigenvalues
of the transfer matrix: (i) the analyticity found by JKM [33],
(ii) the functional equation related to the π -rotational in-
variance, and (iii) the doubly periodic structure. Assuming
(i)–(iii), we can essentially determine the asymptotic forms
with the help of the C4v symmetry.

For the off-critical Ising model Q = 2 we proved that
(i)–(iii) are satisfied; see Appendix A. For Q > 4 the same
situation occurs at the first-order transition point. Assuming
Q as a continuous variable, we brought the three properties
into the asymptotic form with isotropic interactions above the
transition temperature as Eq. (3.2).

Based on these observations, we have proposed the new
approach to analyze the correlation functions by using the
result from (i)–(iii) and the numerical procedures combined:
Equation (3.2) includes the parameters A, k, b not determined
from the C4v symmetry. We performed MC simulations pro-
vided by the infinite-size algorithm [59] and then carried out
fittings of MC data to determine A, k, b.

As mentioned in Sec. III, there are two types of errors:
statistical errors and systematic errors. One typical way of
calculating the correlation lengths is to consider the exponen-
tial decay of the correlation function along fixed directions,
but this method is not efficient to control the two types of
errors. We handled these errors successfully by introducing
the annular regions for the fitting of A, k, b.

To demonstrate the efficiency of our approach, we cal-
culated the ACL of the Ising model above the critical
temperature. The obtained results agreed extremely well with
the exact values. We investigated the Q = 3, 4 Potts models
for T > TC (Q) and then the bond percolation model (the
Q → 1 limit) for p < pC . To minimize the errors, the annular
regions were optimized carefully. We succeeded in fitting
the data within a five-digit accuracy. The high accuracy of
the results for Q = 1, 2, 3, and 4 shows the validity of the
asymptotic form (3.2) and that our approach is in fact effective
to investigate the ACLs of the system possessing the C4v

symmetry.

A. Equilibrium crystal shapes

It was revealed that (I) the structure factors of the Q-state
Potts model, including the bond percolation as Q = 1, are
represented by the use of the elliptic curve (1.3) and that (II)
the parameter b̄ monotonically decreases with the increase
of Q. It is noticeable that, although small in magnitude, (II)
provides the reliable evidence of deviation from the case of
the Ising model. Here, to show its physical meanings, we
investigate the Q dependence of the ECS.

The ECS is the droplet shape of one phase embedded
inside a sea of another phase with its volume (or area)
fixed [1–10]. Disappearance of facet in the ECS is a signal
of the roughening transition [7,68,69]. Once knowing the
anisotropic interfacial tension, we can determine the ECS with
the help of Wulff’s construction [1,2].

In a previous work [8], we found that for Q � 2 the ACL
is related to the anisotropic interfacial tension as

γ ∗

kBT ∗ = 1

ξ
in all directions, (4.1)

where γ ∗ is the anisotropic interfacial tension at a temperature
T ∗ [< TC (Q)] such that K∗ = J/kBT ∗ satisfies the duality
condition (e2K − 1)(e2K∗ − 1) = Q. We regard γ ∗ as a func-
tion of θ⊥, which is the angle between the normal vector of the
interface and ex direction; θ = θ⊥ + π/2. The ECS is derived
from γ ∗(θ⊥) with the help of Wulff’s construction as

�R =
(cos θ⊥ − sin θ⊥

sin θ⊥ cos θ⊥

)[
γ ∗(θ⊥)
dγ ∗
dθ⊥

(θ⊥)

]
, (4.2)

where R = (X,Y ) is the position vector of a point on the ECS
and � a scale factor adjusted to yield the area of the crystal.
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Using ξ calculated in Sec. III in Eq. (4.1), we can derive
the ECS via Eq. (4.2). Our result is as follows:

�R =
(

− ln
[
k̄sn

(
φ + b̄ iI ′

4

)
sn

(
φ − b̄ iI ′

4

)]
− ln

{
k̄sn

[
φ − (2 + b̄) iI ′

4

]
sn

[
φ − (2 − b̄) iI ′

4

]}
)
(4.3)

with � chosen suitably. As φ moves from 0 to 2iI ′ on the
imaginary axis, R sweeps out the ECS. One finds that, re-
flecting the result (I), the ECS is expressed as Eq. (1.3) with
α = exp(−�X ) and β = exp(−�Y ), where Ā2, Ā3, Ā4 are,
respectively, given as

Ā2 = 2cn
(
b̄ iI ′

2

)
dn

(
b̄ iI ′

2

)
1 + k̄sn

(
b̄ iI ′

2

)2 , Ā3 = 1, Ā4 = −
(
k̄

1
2 + k̄− 1

2
)2

1 + k̄sn
(
b̄ iI ′

2

)2 .

(4.4)
The ECS in the Q-state Potts model is the same as those of the
Ising models on the Union Jack and 4-8 lattices [25].

Note that, for a given θ⊥, γ ∗/kBT ∗ (or the inverse correla-
tion length 1/ξ ) is a function of k and Q. From (II), it follows
that with the increase of Q but keeping k fixed γ ∗/kBT ∗
becomes larger in all directions. It is helpful to calculate the
radius of curvature ρ. The row and the diagonal directions are
particularly important in connection with the roughening tran-
sition phenomena: In the zero-temperature limit, we expect
that the ECS is a square and that a facet and a corner appear at
θ⊥ = 0 and π/4, respectively. Since �R = γ ∗(cos θ⊥, sin θ⊥)
in these directions, it follows that

ρ

|R| =
(

1 + 1

γ ∗
d2γ ∗

dθ⊥2

)
, θ⊥ = 0, π/4. (4.5)

We can proffer the numerical data of γ ∗/kBT ∗ and ρ/|R| at
θ⊥ = 0 and π/4. We summarize the results in Table II, which
indicates that, for a given k, the ECS deforms slightly to a
more circular shape as Q increases.

The deformation is small: Up to a few percentages in
curvature. To make it visible, we normalize the bare data
using the corresponding values of Q = 2 [3,4]. In Fig. 3, the
data normalized by the corresponding exact values are plotted.
Figures 3(a) and 3(b) show that, as Q increases (with k fixed),
γ ∗/kBT ∗ becomes larger in both directions. From Figs. 3(c)
and 3(d), we find that the radius of the curvature becomes
smaller at θ⊥ = 0, and larger at θ⊥ = π/4, which means that
the ECS of the Q-state Potts model becomes slightly rounded
in the facet direction and simultaneously flatter in the corner
direction. Consequently, the ECS deforms monotonically to a
more circular shape as Q increases (see, for example, Fig. 4 of
Ref. [24] or Fig. 3 of Ref. [25]).

The Q dependence of the shape can be extended into
Q � 1 with the ECS replaced by the polar plot of 1/ξ . The
results obtained here is somewhat unusual: In typical cases,
as the correlation length of the system becomes larger, the
ECS or the polar plot of 1/ξ more circular. One should
note that the unusual situation also occurs in the eight-vertex
model [24] and the Ising models on the Union Jack and
4-8 lattices [20].

In the eight-vertex model, continuously varying exponents
can be explained by the weak universality concept [70], where
the inverse correlation length 1/ξ is regarded as a variable

measuring departure from criticality. Our results imply that
the elliptic modulus k describing the ACL is more essential
than 1/ξ . That is, even if they have different values of 1/ξ ,
the models sharing the same value of k are the same in the
amount of the deviation from the critical point. We suggest
a possibility that the algebraic geometry provides the bira-
tional equivalence [50] as a framework to denote this kind of
equivalence. Note that the algebraic curve (1.3) is a singular
curve possessing two nodes at infinity, and the algebraic ge-
ometry offers a standard procedure to treat such curves. One
scenario is that the weak universality concept is connected
with the birational equivalence between algebraic curves like
Eq. (1.3). It is expected that the connection to the algebraic
geometry will break a new ground in the study of statistical
models.

B. Universal asymptotic forms

Before the analyses of the eight-vertex model, we com-
monly observed the curves like Eq. (1.3) as the ECSs of
the various models solved by the Pfaffian method and that
the curves can be related to the three properties (i)–(iii); see
Secs. I and II, and references therein. In Ref. [25] it was
also shown that the ECSs like Eq. (1.3) do not survive for
the modified KDP model because its excitations exhibit a
unidimensional band structure and explicitly break the double
periodicity condition. These imply that the universality of Eq.
(1.3) and the applicability of Eq. (3.2) are connected with
rather generic properties than a specific solvability condition

Moreover, the three properties are expected to be robust
against some continuous variations of lattice models. For the
Q-state Potts model, by MC simulations, we confirmed that
Eq. (3.2) can indeed fit the numerical data of asymptotic
correlation functions with high accuracy. This indicates that
the universality of our form (3.2) emerges via the robustness
of the three properties (i)–(iii).

Further investigations on this subject are desirable. We
expect that Eq. (3.2) or (2.3) is a universal form for the asymp-
totic correlation functions with the C4v symmetry. While the
Q-state Potts model possesses discrete variables, an inves-
tigation of continuous spin models, like the classical XY
model, is important to clarify the degree of applicability of
Eq. (3.2). In this paper, we have restricted ourselves to the
models defined on the square lattice. It is natural to expect
that the same argument is applicable to other lattices, e.g.,
a triangular, a honeycomb, and so on. Thus, modifications
of Eq. (3.2) for other point groups, e.g., C6v are interesting
[25–30]; see also Refs. [68,69]. At last, our investigations may
include an application of the present form to the problems
such as the susceptibility calculations containing higher-order
terms [44,71]. We will report our studies on these topics in the
future.
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APPENDIX A: EXACT CALCULATION OF CORRELATION
LENGTH IN SQUARE-LATTICE ISING MODEL

In Chap. 7 of Ref. [11] Baxter exactly calculated the cor-
relation length of the square-lattice Ising model along the
diagonal direction. We extend the transfer matrix argument
into all directions using the shift operator. In order to find the
role of the C4v symmetry, we consider the Ising model on a
rotated square lattice.

1. Commuting transfer matrices in Q = 2

Suppose a square lattice drawn diagonally. For each site
r = iex + jey we introduce a variable σr, which is related to
the Q-valued variable qr in Eq. (1.1) as σr = exp(2π iqr/Q).
When Q = 2, σr = ±1 and δ(qr, qr′ ) = 1

2 (1 + σrσr′ ). Thus,
the Q = 2 Potts model (with Jr,r′ replaced by 2Jr,r′) is equiv-
alent to the Ising model whose Hamiltonian is given by

E = −
∑

r

(
Jσr+ex σr + J ′σr+eyσr

)
. (A1)

The nearest-neighbor spins are coupled by J or J ′ depending
on the direction. We assume J , J ′ > 0. The partition function
is

Z =
∑

σ

exp

[∑
r

(
Kσr+ex σr + K ′σr+eyσr

)]
, (A2)

where the outer sum is over all spin configurations and the
reduced couplings K = J/kBT and K ′ = J ′/kBT .

We introduce diagonal-to-diagonal transfer matrices: Con-
sider two successive rows, and let σ = {σ0, . . . , σN−1}
(respectively σ ′ = {σ ′

0, . . . , σ
′
N−1}) be the spins in the lower

(respectively upper) row. We assume the periodic boundary
conditions in both directions. Then, as shown in Fig. 4(a), the
transfer matrices V and W are defined by elements as

[V]σ,σ ′ = exp

[
N−1∑
l=0

(Kσl+1σ
′
l + K ′σlσ

′
l )

]
,

[W]σ,σ ′ = exp

[
N−1∑
l=0

(Kσlσ
′
l + K ′σlσ

′
l+1)

]
,

(A3)

where σN = σ0 and σ ′
N = σ ′

0 (see Chap. 7 of Ref. [11]). When
the system has 2M rows, the partition function is given as

FIG. 4. (a) Three successive rows of the square lattice drawn
diagonally. (b) The transfer matrix U operates spins on a row to
transfer them from lower to upper direction along the m axis. The
i and j axes correspond to the directions of the primitive translation
vectors ex and ey of the square lattice, respectively.

follows:

Z = TrUM =
2N −1∑
p=0

(
�2

p

)M
, U = VW, (A4)

where �2
p is the pth eigenvalue of U.

Above the critical temperature TC , we parametrize K and
K ′ using the elliptic functions with the modulus k ∈ (0, 1) as

sinh 2K = ksn(iu)

i
, cosh 2K = dn(iu),

sinh 2K ′ = i

sn(iu)
, cosh 2K ′ = i

cn(iu)

sn(iu)
. (A5)

The quarter periods are denoted by I and I ′; and the ar-
gument u satisfies the condition 0 < u < I ′ (see also Chap.
15 of Refs. [11] and [72]). For T < TC , we find the similar
parametrization:

sinh 2K = sn(iu)

i
, cosh 2K = cn(iu),

sinh 2K ′ = i

ksn(iu)
, cosh 2K ′ = i

dn(iu)

ksn(iu)
. (A6)

Regard k as a fixed constant and u as a complex variable.
Then U is a function of u. When we write it as U(u), it satisfies
the commutation relation

[U(u), U(u′)] = 0 ∀u, u′ ∈ C. (A7)

Further, it commutes with the matrix R defined by elements
as

[R]σ,σ ′ =
N−1∏
l=0

δ(σl ,−σ ′
l ), (A8)

i.e.,

[U(u), R] = 0. (A9)

For simplicity, suppose that N is an even number, then it
follows that �(u) is a doubly periodic function of u:

�(u + 2I ′) = r�(u), �(u − 2iI ) = r�(u) for T > TC,

(A10)

�(u + 2I ′) = r�(u), �(u − 2iI ) = �(u) for T < TC,

(A11)

where r (= ±1) is the eigenvalue of R corresponding to �(u).
In addition, it is found that

�(u)�(u + I ′)

= (−2)N
{ 1

sn(iu)N
+ [ksn(iu)]N r

}
for T > TC, (A12)

= (−2)N
{ 1

[ksn(iu)]N
+ sn(iu)N r

}
for T < TC . (A13)

To determine explicit forms of �(u), we can use Eq. (A12)
with the periodicity (A10) for T > TC and Eq. (A13) with
Eq. (A11) for T < TC . For example, it is shown that the max-
imum eigenvalue �0(u)2 behaves as �0(u)2 ∼ κ (u)2N , when
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N becomes large, and the per-site free energy f is given by

− f

kBT
= ln κ (u)

= 1

2π

∫ π

0
dθ ln {2[cosh 2K cosh 2K ′ + c(θ )]}, (A14)

where

c(θ ) = (1 − 2k+1 cos 2θ + k+2)
1
2 for T > TC, (A15)

= (1 − 2k−1 cos 2θ + k−2)
1
2 for T < TC (A16)

(see Sec. 7.9 of Ref. [11]).

2. Shift operator method

In Chap. 7 of Ref. [11] Baxter analyzed the asymptotic be-
havior of the correlation function using U(u). The correlation
length was exactly calculated along the diagonal direction. We
can extend the calculation into all directions with the help
of the shift operator S, which moves spins on a row along
horizontal direction, i.e.,

[S]σ,σ ′ =
N−1∏
l=0

δ(σl , σ
′
l+1). (A17)

Let r+ be the position vector of a site on the sublattice
containing the origin o; we start with choosing two sites on
the same sublattice, but this restriction will be removed later.
In the usual transfer matrix method the expectation value of
the spin product σoσr+ is represented as

〈σoσr+〉 = Tr[A0UmAnUM−m]

TrUM
,

(A18)
r+ = n(ex + ey) + m(−ex + ey),

where Aks are defined by

[Ak]σ,σ ′ = σk

N−1∏
l=0

δ(σl , σ
′
l ). (A19)

Apply a similarity transformation to diagonalize U. We
take the M → ∞ limit first and then the N → ∞ limit. In
the M → ∞ limit, we find that

〈σoσr+〉 =
∑

p

[Ã0]0,p[Ãn]p,0

[
�p(u)

�0(u)

]2m

, (A20)

where �p(u)2 is the pth eigenvalue of U(u) in decreasing
order of magnitude, and Ãk is the matrix transformed from
Ak . Equation (A20) implies that the ratios between the eigen-
values of U(u) essentially determine the asymptotic behavior
of the correlation function along the diagonal direction. For
example, when n is fixed and m becomes large, the correlation
length along the diagonal direction is calculated from the
ratios between �0(u)2 and the next-largest eigenvalues.

To find the asymptotic form in all directions, we consider
the anisotropic correlation length (ACL), which is obtainable
by taking the m → ∞ limit with the ratio n/m fixed to be
constant. In this limit contribution from the matrix elements
[Ã0]0,p and [Ãn]p,0 is important as well as the ratios between

the eigenvalues. This causes a difficulty since the direct cal-
culation of the matrix elements is very complicated in most
cases.

We can overcome the difficulty with the help of the shift
operator S [35–37]; see also Refs. [42,43]. Because the shift
operator relates An to A0 as

An = S−nA0Sn, (A21)

we rewrite Eq. (A20) as

〈σoσr+〉 =
∑

p

[Ã0]0,p[Ã0]p,0

[
�p(u)

�0(u)

(Sp

S0

) γ

2
]2m

(A22)

with

γ = − n

m
, (A23)

where Sp is the pth eigenvalue of S and S0 = 1. Equation
(A22) shows that we can obtain the ACL from the eigen-
values of U(u) and those of S without calculating the matrix
elements.

3. Limiting function L(u)

To consider the N → ∞ limit, we define limiting functions
as

Lp(u) = lim
N→∞

�p(u)

κ (u)N
, p = 0, 1, . . . , (A24)

where κ (u) is given by Eqs. (A14)–(A16); note that L0(u) ≡
1. It is shown that

Sp

S0
= lim

u→0
Lp(u)2. (A25)

From Eqs. (A22), (A24), and (A25), we obtain

〈σoσr+〉 =
∑

p

[Ã0]0,p[Ã0]p,0[Lp(u)Lp(0)γ ]2m
. (A26)

Using Eqs. (A10)–(A16), we can determine the form of
L(u). When N becomes large and −I ′/2 < Re(u) < I ′/2, the
first term is dominant on the right-hand side of Eq. (A12). We
keep only the dominant term there [37]. Divide the both sides
by κ (u)Nκ (u + I ′)N and use Eqs. (A14), (A15), and (A24).
Combining the result from the second equation of (A10), we
find that

L(u)L(u + I ′) = 1, L(u − 2iI ) = rL(u) for T > TC .

(A27)
Similarly, from Eq. (A13) and the second equation of (A11),
we obtain

L(u)L(u + I ′) = 1, L(u − 2iI ) = L(u) for T < TC .

(A28)
Because the zeros of �0(u) are located on the line Re(u) =

−I ′/2 in a periodic rectangle, the first equation of (A27) or
(A28) shows that the limiting function is written as

L(u) = F (u)
ν∏

l=1

a − xal

a − x3al
, − I ′

2
< Re(u) � 3I ′

2
, (A29)

with a = exp (−πu/I ), al = exp (iπφl/I ), and x =
exp (−π I ′/2I ). A function F (u) is analytic and nonzero
for −I ′/2 < Re(u) � 3I ′/2. Thus, the limiting functions
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are labeled by an integer ν and real numbers φ1, φ2, . . . , φν

instead of p.
Substitute Eq. (A29) into the first equation of (A27) or

(A28), take the logarithms of both sides, and then expand them
in the annulus −I ′/2 < Re(u) < I ′/2 using the form

ln F (u) = c0 + α ln a +
∞∑

μ=1

(cμaμ + c−μa−μ),

− I ′

2
< Re(u) � 3I ′

2
. (A30)

Equating coefficients gives

c0 = −1

2

ν∑
l=1

ln(−al ), α = ν

2
, cμ = xμ

1 + x2μ

1

μ

ν∑
l=1

a−μ

l ,

c−μ = − x3μ

1 + x−2μ

1

μ

ν∑
l=1

aμ

l , (A31)

with μ = 1, 2, . . . . We find that

L(u) = ±
ν∏

l=1

k
1
2 sn

(
iu − φl − iI ′

2

)
, − I ′

2
< Re(u) � 3I ′

2
.

(A32)

For T > TC , from the second equation of (A27), it follows
that ν is an odd (even) integer if r = −1 (r = +1). The next-
largest eigenvalues correspond to the case with ν = 1 and
r = −1.

For T < TC , the two largest eigenvalues �0(u)2 and �1(u)2

are asymptotically degenerate when N becomes large. Note
that r = +1 for �0(u)2 and r = −1 for �1(u)2 (see Sec. 7.10
of Ref. [11]). The second equation of (A28) shows that ν is an
even number. We thus find that the next-largest eigenvalues
correspond to the cases with ν = 2 and r = ±1.

4. Anisotropic correlation lengths Q = 2

It is shown that, because of continuous distributions of
eigenvalues, the sum in Eq. (A22) becomes integrals over
φl s in the N → ∞ limit [33]. For simplicity, we choose the
positive sign in Eq. (A32). Detailed analysis also shows that
the maximum eigenvalue �0(u)2 corresponds to the case r0 =
+1, and [Ã0]0,p and [Ã0]p,0 vanish unless rp = −1 due to the
Z2 symmetry of the system, where rp is the pth eigenvalue of
R.

For T > TC , only the band of next-largest eigenvalues with
ν = 1 and r = −1 contributes to the leading asymptotic be-
havior of the correlation function in the limit of m large with
γ fixed. It follows that

〈σoσr+〉 − 〈σo〉〈σr+〉 ∼
∫ I

−I
dφρ(φ)

{
k

1
2 sn

(
iu − φ − iI ′

2

)[
k

1
2 sn

(
− φ − iI ′

2

)]γ }2m

, (A33)

where the function ρ(φ) is to be determined from the distri-
bution of eigenvalues and matrix elements [Ã0]0,p, [Ã0]p,0.
Because r = +1 for eigenvalues with ν = 2, [Ã0]0,p and
[Ã0]p,0 vanish. Therefore, the first correction to the asymptotic
behavior (A33) comes from the integral over the band of
eigenvalues with ν = 3 and r = −1 [43].

As stated in Appendix A 2, we extend the above analysis
to include any pair of sites. Because r+ = (n − m)ex + (n +

m)ey [see Fig. 4(b)], we obtain the transformation of the
coordinates, i.e.,

i = n − m, j = n + m. (A34)

We can remove the restriction i ± j = even in Eq. (A33) to
find the correlation function for all r as

〈σoσr〉 − 〈σo〉〈σr〉 ∼
∫ I

−I
dφρ(φ)

{
ksn

(
iu − φ − iI ′

2

)
sn

(
− φ + iI ′

2

)[
ksn

(
iu − φ + iI ′

2

)
sn

(
− φ + iI ′

2

)]�} j

, (A35)

where � is the ratio given by

� = i

j
= γ + 1

γ − 1
. (A36)

Along the direction designated by �, the correlation length
ξ is defined as

−1

ξ
= lim

R→∞
ln [〈σoσr〉 − 〈σo〉〈σr〉]

R
, R =

√
i2 + j2,

(A37)
where the limit is taken with � fixed. We regard ξ as a function
of θ , the angle between ex and the direction of �. Explicitly,

� is related to θ as

� = 1

tan θ
,

π

4
< θ <

5π

4
. (A38)

We assume an analyticity of ρ(φ) and then estimate the in-
tegral on the right-hand side of Eq. (A35) by the method of
steepest descent. It follows that

−1

ξ
= sin θ ln

[
ksn

(
iu − φs − iI ′

2

)
sn

(
− φs + iI ′

2

)]

+ cos θ ln

[
ksn

(
iu − φs + iI ′

2

)
sn

(
− φs + iI ′

2

)]
,

(A39)
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where the saddle point φs is determined as a function of θ by

sin θ
d

dφs
ln

[
ksn

(
iu − φs − iI ′

2

)
sn

(
− φs + iI ′

2

)]

+ cos θ
d

dφs
ln

[
ksn

(
iu − φs + iI ′

2

)
sn

(
− φs + iI ′

2

)]
= 0

(A40)
with the condition φs = iu − iI ′/2 ± I for θ = 3π/4. The re-
lation ξ (θ + π ) = ξ (θ ) implies that the result in Eqs. (A39)
and (A40) is analytically continued into 0 < θ < 2π . Note
that increasing θ by 2π causes Im(φs) to decrease by 2I ′. We
expect that ρ(φ) is a doubly periodic function and is analytic
inside and on a periodic rectangle. According to Liouville’s
theorem, it should be a constant.

Shifting the integration path along the imaginary axis, we
can rewrite Eq. (A35) as

〈σoσr〉−〈σo〉〈σr〉 ∼ const

×
∮

dα

α

∮
dβ

β

αiβ j

2a − γ1(α + α−1) − γ2(β + β−1)
, (A41)

where contours of integrations are unit circles, and

a = (
1 + z2

1

)(
1 + z2

2

)
,

γ1 = 2z2
(
1 − z2

1

)
, (A42)

γ2 = 2z1
(
1 − z2

2

)
,

with z1 = tanh K and z2 = tanh K ′. We note that Eqs. (A41)
and (A42) coincide with the results in Sec. 4 of Ref. [40] and
Sec. XII-4 of Ref. [41]; see also Ref. [43]. In the case of the
isotropic interactions the denominator of the integrand has the
same form as that in a special case of the left-hand side of
Eq. (1.3). Therefore, it follows that the structure factor of the
asymptotic correlation function possesses the same algebraic
property as that of the eight-vertex model.

For T < TC , because the band of next-largest eigenvalues
with ν = 2 and r = −1 determines the leading asymptotic
behavior of the correlation function. We obtain

〈σoσr+〉 − 〈σo〉〈σr+〉 ∼
∫ I

−I
dφ1

∫ I

−I
dφ2ρ(φ1, φ2)

{
k

1
2 sn

(
iu − φ1 − iI ′

2

)[
k

1
2 sn

(
− φ1 − iI ′

2

)]γ }2m

×
{

k
1
2 sn

(
iu − φ2 − iI ′

2

)[
k

1
2 sn

(
− φ2 − iI ′

2

)]γ }2m

. (A43)

Again, the function ρ(φ1, φ2) is to be calculated from the
distribution of eigenvalues and the matrix elements [Ã0]0,p,
[Ã0]p,0. Assume an analyticity of ρ(φ1, φ2), and integrate by
steepest descents. Then, we find that the correlation length ξ ∗
below TC is related to ξ above TC determined by Eqs. (A39)
and (A40) as

ξ = 2ξ ∗ in all directions. (A44)

Shifting the integration paths suitably, we find that
Eq. (A43) is essentially the same as the leading asymptotic
form in Sec. 3 of Ref. [40] and Sec. XII-3 of Ref. [41]. The
asymptotic correlation function is expressed in terms of the
differential forms on the same algebraic curve as in Eq. (A41).
The difference from the case T > TC is that two elliptic curves
are needed in the case T < TC .

5. Passive rotations

In Ref. [43] it was shown that the results of the correlation
functions by the Pfaffian method in Refs. [40,41] are equiva-
lent to those by the row-to-row transfer matrix. The analyses
in the previous section suggest that difference in direction
along which the transfer matrix is defined causes a shift or
deformation of the integration paths in the asymptotic corre-
lation function. To clarify this point, we apply the argument
for the eight-vertex model in Refs. [23] to the square-lattice
Ising model.

The method given in Appendix A 2 corresponds to the
active rotations. We employ another method corresponding

to the passive rotations: We define the Ising model on a
square lattice rotated through an arbitrary angle with respect
to the coordinate axes. The rotated system is related to an
inhomogeneous system possessing a one-parameter family of
commuting transfer matrices. A product of commuting trans-
fer matrices can be interpreted as a transfer matrix acting on
zigzag walls in the rotated system [23,49].

For convenience, we denote the Boltzmann weight of four
edges as

W (a, b|c, d|u) = 2 cosh(K ′a + Kb + K ′c + Kd ), (A45)

where a, b, c, and d are the nearest-neighbor spins of f
arranged as in Fig. 5. Note that K , K ′ are given by Eq. (A5)
for T > TC and by Eq. (A6) for T < TC .

FIG. 5. The Boltzmann weight of four edges W (a, b|c, d|u),
where a, b, c, and d are the nearest-neighbor spins of f summed.
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The weight W (a, b|c, d|u) satisfies the following proper-
ties [49], i.e., the standard initial condition:

lim
u→0

W (a, b|c, d|u)

κ (u)2
= δ(a, c), (A46)

and the crossing symmetry

W (a, b|c, d|I ′ − u) = W (b, a|d, c|u), (A47)

where κ (u) is given by Eqs. (A14)–(A16). Since κ (I ′ − u) =
κ (u), it follows from Eqs. (A46) and (A47) that

lim
u→I ′

W (a, b|c, d|u)

κ (u)2
= δ(b, d ). (A48)

To calculate ξ along the direction θ , we consider the Ising
model on a square lattice rotated through 3π/4 − θ with re-
spect to the one drawn diagonally. Let σ = {σ0, . . . , σN−1}
(respectively σ ′ = {σ ′

0, . . . , σ
′
N−1}) be the spins on the lower

(respectively upper) row of open circles shown in Fig. 4(a).
Suppose that N = (|n| + m)N0, where m > 0 and N0 is an
even number. Then, we define inhomogeneous transfer ma-
trices as

[UIH(u)]σ,σ ′ =
N0−1∏
l=0

[
l (|n|+m)+|n|−1∏

s=l (|n|+m)

W (σs, σs+1|σ ′
s+1, σ

′
s |u)

(l+1)(|n|+m)−1∏
t=l (|n|+m)+|n|

W (σt , σt+1|σ ′
t+1, σ

′
t |u + u0 − H (−n)I ′)

]
(A49)

with σN = σ0 and σ ′
N = σ ′

0, where 0 < u0 < I ′ and H (·) is the Heaviside step function.
The commutation relation (A7) is generalized as

[UIH(u), UIH(u′)] = 0 ∀u, u′ ∈ C, (A50)
and (A9) as

[UIH(u), R] = 0. (A51)

By using UIH(u), we can construct a transfer matrix Ū acting on zigzag walls in the rotated system as

Ū =
[

lim
u→0

UIH(u)

κ (u)2|n|N0

]m[
lim

u→I ′−u0

UIH(u)

κ (u + u0)2mN0

]|n|
for n > 0,

=
[

lim
u→I ′

UIH(u)

κ (u)2|n|N0

]m[
lim

u→I ′−u0

UIH(u)

κ (u + u0 − I ′)2mN0

]|n|
for n � 0, (A52)

where n and m are related to θ by n/m = tan(3π/4 − θ ) with π/4 < θ < 5π/4 (see Fig. 2 of Ref. [49]). Ū reduces to the
diagonal-to-diagonal transfer matrix in the case n = 0 and to the row-to-row transfer matrix in the case n = m (or n = −m). We
can find the correlation length along any direction of θ from the eigenvalues of Ū.

Noting the relations ∑
f

W (a, b| f , d|u)W ( f , b|c, d| − u) = −(2 sinh 2K ′)2δ(a, c),

∑
f

W (a, b| f , d|u − I ′)W ( f , b|c, d| − u + I ′) = −(2 sinh 2K )2δ(a, c) (A53)

with sinh 2K , sinh 2K ′ given by Eq. (A5) or (A6), we also construct a shift operator S̄ as

S̄ =
[
− lim

u→−u0

(2 sinh 2K ′)2
]−|n|mN0

[
lim

u→−u0

UIH(u)

κ (u + u0)2mN0

]m[
lim
u→0

UIH(u)

κ (u)2|n|N0

]|n|
for n > 0,

=
[
− lim

u→−u0

(2 sinh 2K )2
]−|n|mN0

[
lim

u→I ′−u0

UIH(u)

κ (u + u0 − I ′)2mN0

]m[
lim
u→0

UIH(u)

κ (u)2|n|N0

]|n|
for n � 0. (A54)

We denote eigenvalues of UIH(u) as �IH(u)2. When N0 (or
N) becomes large with n and m fixed, the maximum eigen-
value �IH;0(u)2 behaves as

�IH;0(u)2 ∼ κ (u)2|n|N0κ[u + u0 − H (−n)I ′]2mN0 , (A55)

where κ (u) is given by Eqs. (A14)–(A16) [72]. We introduce
the limiting function as

LIH(u) = lim
N0→∞

�IH(u)

κ (u)2|n|N0κ[u + u0 − H (−n)I ′]2mN0
. (A56)

The expectation value of σoσr+ is represented as

〈σoσr+〉 =
∑

p

[Ā0]0,p[Ā0]p,0

× LIH;p(−H (−n)I ′)2mLIH;p(I ′ − u0)2|n|, (A57)

where Ā0 is the matrix transformed from A0 in Eq. (A19) by
a similarity transformation to diagonalize UIH(u). Almost the
same argument as in Appendix A 3 yields that LIH(u) must be
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of the form

LIH(u) = ±
ν∏

l=1

k
1
2 sn

(
iu − φ̄l − iI ′

2

)
, (A58)

where φ̄l s are complex numbers determined by the con-
dition that the eigenvalues of the shift operator S̄ are

unimodular, i.e.,

|LIH(−u0)mLIH(0)n| = 1. (A59)

From Eqs. (A58) and (A59), we can reproduce the asymptotic
behavior of the correlation function found in Appendix A 4,
i.e., Eq. (A33) or (A35) for T > TC and Eq. (A43) for T < TC .

Now we consider the correlation function for T > TC (al-
most the same argument holds for T < TC). The asymptotic
correlation function is given as follows:

〈σoσr+〉 − 〈σo〉〈σr+〉 ∼
∫

C
dφ̄ρ̄(φ̄)

[
k

1
2 sn

(
− φ̄ − iI ′

2

)]2m[
k

1
2 sn

(
− iu0 − φ̄ + iI ′

2

)]2n

. (A60)

Note that the contour C is determined by the condition (A59),
and the rotations of the lattice deform C. For instance, in the
case n = 0 (θ = 3π/4),

∫
C denotes an integral over a period

interval of the length 2I on the line Im[φ̄] = −u0, where
Eq. (A60) reduces to Eq. (A33) by the relations φ̄ = φ − iu0

and ρ̄(φ̄) = ρ(φ) with u0 replaced by u. In the case n = m
(θ = π/2), the contour C is on the line Im[φ̄] = −u0/2. The
equivalence between Eqs. (A33) and (A60) is derived with the
help of the analyticity of the integrand. Using the deformation
of C, we can extend the result in Eqs. (A35)–(A40) into all
directions.

The π rotation of the lattice corresponds to shifting the
integration paths by iI ′ in Eq. (A60), which is connected with
the fact that the twofold rotational symmetry of the system
appears with the help of the relation

k
1
2 sn(φ̄ ± iI ′) = [

k
1
2 sn(φ̄)

]−1
. (A61)

In the case of isotropic interactions, where u0 = I ′/2, the π/2
rotation causes a shift of the integration paths by iI ′/2, which
relates the eigenvalues of Ū to those of S̄.

6. Asymptotic form for general Q

The results by transfer matrices along various directions
should be equivalent. It is pointed out that this equivalence is
derived with the help of analytic properties of the integrand;
see the integrand in the right-hand side of Eq. (A35) and also
Ref. [33]. Therefore, (i) analyticity of the integrands is needed
to ensure the equivalence between the results along various
directions. Two further properties are pointed out: From the
fact that increasing θ by π causes C to shift by −iI ′ along
the imaginary axis, it follows that the twofold rotational sym-
metry is directly connected with the relation (A61). We find
that (ii) the same relation as (A61) is satisfied by the limit-
ing functions; see the first equation of (A27) or (A28). Note
that Eqs. (1.2) and (1.3) represent elliptic curves (i.e., they
are algebraic curves of genus 1) [50]. We find that (iii) the
asymptotic correlation function is written in terms of elliptic
functions (or differential forms on a Riemann surface of genus
1).

The meaning of (iii) can be explained as follows: Two-
dimensional (2D) lattice models are related to 2D Euclidean
field theories in their critical limit and for distances much

larger than the lattice spacing. For a Euclidean field, the dis-
persion relation is written as p2

x + p2
y + m2 = 0 with a suitable

mass term m, and the correlation function has a periodic struc-
ture describing the rotational symmetry. For off-critical lattice
models, two kinds of periodicity appear: One is connected
with two-, four-, or sixfold rotational symmetry, and the other
with the fact that eigenvalues of the transfer matrix are pe-
riodic functions of crystal momentum. This doubly periodic
structure leads to the property (iii).

Assuming (i)–(iii), we can essentially determine the lead-
ing asymptotic behavior of the correlation functions with the
C4v symmetry. The property (iii) shows that, choosing a suit-
able parametrization, we can write the correlation function
as

〈σoσr〉 − 〈σo〉〈σr〉 ∼ const
∫ ω1

−ω1

d�Y (�) jX (�)i, (A62)

where Y (�) comes from eigenvalues of the row-to-row
transfer matrix, and X (�) the corresponding ones of the
shift operator; X (�) and Y (�) are doubly periodic: X (� +
2ω1) = X (� + 2ω2) = X (�) and Y (� + 2ω1) = Y (� +
2ω2) = Y (�). The property (ii) yields the relations Y (� +
ω2) = Y (�)−1 and X (� + ω2) = X (�)−1, and the property
(i) indicates analyticity of Y (�) and X (�). As a result, Y (�)
and X (�) must be of the forms

Y (�) =
ν∏

l=1

k
1
2 sn(� + αl ), X (�) =

ν ′∏
l=1

k
1
2 sn(� + v + βl ).

(A63)
In the case K = K ′ (J = J ′) the present Ising model pos-

sesses the fourfold rotational symmetry. We can set v =
±ω2/2, ν = ν ′, and αl = βl . Since the correlation function
is real valued, we find that the modular parameter τ = ω2/ω1

must be pure imaginary, which ensure the C4v symmetry of
the system as well. It follows from Eq. (A35) that the simplest
case ν = 2 appears for T > TC . For parameters α1 and α2, we
find two possibilities: (α1 − α2)/ω1 is purely imaginary or a
real number; α1 − α2 = ω2/2 gives Eq. (A35) with u = I ′/2.
The results are closely related to the C4v symmetry except that
α1 − α2 = ω2/2. We expect that Eq. (A35) is applicable with
the relation α1 − α2 = ω2/2 modified suitably for general Q
and T > TC (Q).

Almost the same argument holds for T < TC (Q): It follows
that ν = 4, α1 − α2 = α3 − α4 = ω2/2, and α1 − α3 is a real
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number. As mentioned above, the only difference from the
case of T > TC (Q) is that two elliptic curves are needed to
represent the asymptotic correlation function (see Sec. 3 of
Ref. [40] and Sec. XII-3 of Ref. [41]).

APPENDIX B: DETAILS OF MONTE CARLO
SIMULATIONS FOR INFINITE-SIZE SYSTEMS

We perform large-scale MC simulations to investigate the
correlation functions. In this Appendix, we shall detail our
methodology. The Hamiltonian of the square-lattice Q-state
Potts model is given by Eq. (1.1). We treat it in the case
of Jr,r′ = 2J . According to Fortuin and Kasteleyn (FK) [32],
the random-cluster representation of the partition function is
given as

Z (Q) = Tre−E (Q)/kBT

=
∑
{n}

p
∑

r∗ nr∗ (1 − p)
∑

r∗ (1−nr∗ )QNc , (B1)

where p = 1 − e−2K is the bond percolation probability. nr∗ =
0, 1 is the bond occupation defined for r∗ ∈ �∗

sq, and �∗
sq is the

medial lattice of �sq. We denoted the number of FK clusters
as Nc. While there are some variations in implementations of
cluster MC simulations [59,73–75], we employ the so-called
infinite-size method proposed by Evertz and von der Linden
[59]. It is based on Wolff’s single-cluster algorithm [75] and
enables us to directly simulate infinite off-critical systems,
which thus means that an extrapolation of data to the thermo-
dynamic limit is not necessary. As we explained in Sec. III A,
this advantage is crucial for our purpose.

To make the explanation concrete, let us consider �sq in a
temperature-dependent bounding box of lB × lB (see Fig. 6).
As an initial condition, we take random spin configurations
instead of “staggered spin configuration” [59] because they
are neutral and unbiased for all spin states and also prevent a
deep penetration of clusters toward the boundary (see below).
We fix the seed of the cluster to the origin (the black cell)
and perform single cluster updates in order to equilibrate
a circular domain. Suppose that lT is its linear dimension.
Then, the required number of updates for its equilibration
increases exponentially with lT because the off-critical system
possesses finite correlation length ξ . Roughly speaking, we
performed equilibration steps to typically realize lT 
 20 × ξ

and also use the bounding box with lB > 4 × lT , where the
probability that a cluster touches the bounding box is neg-
ligible. Consequently, we can perform measurements of the
physical quantity, i.e., correlation functions within the circular
domain of lT without finite-size effects [59].

With respect to the measurement of correlation func-
tions, we can benefit from the so-called improved estimators.
In the present case, the correlation function of the Potts
model c(r − r′) = 〈σrσr′ 〉 can be calculated as an average
over the FK clusters generated by MC, i.e., c(r − r′) =
〈(σrσr′ )impr〉MC, where

(σrσr′ )impr = 1

|Ci|δ(r, r′|Ci ). (B2)

The set of sites (the number of sites) in a ith cluster were
denoted as Ci (|Ci|), and then δ(r, r′|Ci ) = 1 for r, r′ ∈ Ci;
otherwise, zero.

lB

lT

ξ

Q=2

Q=3

Q=4

0

1

0

1 2

0

1
2

3

FIG. 6. Left: Schematic representation of MC simulations. The
black cell (the seed site) and blue cells exhibit the FK cluster Ci. The
length scales of the bounding box lB and the equilibrated circular
domain lT as well as the correlation length ξ are depicted. Right: We
give the magnetic operators by Q unit vectors in Q − 1 dimensions,
where the corresponding value of qr is denoted (Q > 1). The arrows
in the Q = 3 (Q = 4) case point to the corners of the regular triangle
(tetrahedron).

The correspondence between qr and the magnetic opera-
tors is depicted in the right part of Fig. 6. These magnetic
operators can be characterized by the scaling dimensions
x(Q), i.e., x(2) = 1

8 , x(3) = 2
15 , x(4) = 1

8 , and also x(1) = 5
48 ,

which determine the power-law behavior of c(R) at TC (Q)
[63,76]. The fact that Eq. (B2) is positive definite is also

FIG. 7. Correlation functions c(r) of the Q-state Potts model in
two directions (Q = 1 is the bond percolation). For clarity, we draw
the lines for MC data points, where the blue (red) ones show

√
Rc(R)

in the row (diagonal) direction: r = Rex [r = R(ex + ey )/
√

2]. With
the increase of the temperature t , the slopes of lines become steeper,
and the discrepancies between blue and red lines become larger.
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crucial for calculations of vanishing correlations for large
R/ξ � 1.

For T > TC (Q), we shall provide the raw MC data of
the correlation functions in two directions. In Fig. 7, we
exhibit the semilog plots of correlation functions at various
temperatures t = [T − TC (Q)]/TC (Q). The pairs of blue and
red lines give

√
Rc(R) in the row (r = Rex) and the diagonal

[r = R(ex + ey)/
√

2] directions. Then, one finds that their
slopes become steeper, and the discrepancy of the pair of lines
becomes larger with the increase of the reduced temperature
t . For exactly solved cases, it was revealed that the correlation
length is isotropic near critical point but becomes anisotropic
at a distance from it due to the lattice effects. With this in
mind, if we suppose the Ornstein-Zernike form of the correla-
tion function as c(R) ∝ e−R/ξ /

√
R, then our MC data indicate

that ξ in the row direction is longer than that in the diagonal
direction. Simultaneously, one can notice that the directional
dependence of ξ is quite weak, so the extremely accurate data
are required to investigate the Q dependence of the ACLs.

APPENDIX C: FITTING CALCULATION OF THE FORM
FOR MONTE CARLO DATA

In this Appendix, we detail a fitting procedure of our
form (3.2) to the correlation function data provided by the
MC simulation calculations. As explained in Appendix B,
the infinite-size MC method and the improved estimator for
the correlation functions has been employed. In typical cases,
we performed 1000 independent runs of MC simulations and
generated the 1011 Fortuin-Kasteleyn clusters at each run.
Then, for square-lattice sites iex + jey ∈ �sq within the equi-
librated circular domain R < lT the correlation function data
{c(i, j)} were obtained, and their statistical errors {d (i, j)}
were estimated from standard deviations of the averages of
the independent runs.

As mentioned in Sec. III A, there exist two sources of
errors: the systematic errors stemming from higher bands of

eigenvalues which are not taken into account in Eq. (3.2)
and the statistical errors associated with MC samplings. The
former (respectively, latter) becomes larger inward (respec-
tively, outward). We analyze {c(i, j)} and {d (i, j)} in annular
regions D(cmax, cmin) following the procedure explained
below.

We shall take the Q = 3 and t = 0.15 case as an exam-
ple. In Sec. III C, we order-estimated the systematic error
as �(3) × e−2R/ξ̄ with ξ̄ 
 2.7 and �(3) = 1.0 − (A/π )(1 −
k2)

1
4 × 2I 
 O(10−2). Therefore, to calculate the ACL within

a five-digit accuracy, we need to employ an annular region
with mean radius 
20 or longer. Because the statistical er-
rors are larger in outer regions, we choose D0 = D(1 ×
10−4, 3 × 10−5) with mean radius R0 
 21.3 as an optimized
region.

Then, we define χ2 as a function of A, k, b by

χ2(A, k, b) =
∑

(i, j)∈D0

[Fsq(i, j; A, k, b) − c(i, j)

d (i, j)

]2

, (C1)

We extract values Ā, k̄, and b̄ of the fitting parameters by
minimizing χ2(A, k, b). The first line of the third column in
Table I gives their estimates and errors given by the parenthe-
sized digits, which were put based on differences between two
results to two groups of independent runs (e.g., we divided
1000 independent runs into two groups and performed fitting
calculation for each).

We have expected the extracted values to be obtained under
a well-controlled condition of systematic errors by carefully
choosing the fitting region. To show concrete evidence to this
statement, we perform fittings of data in different annular
regions Dα and check the Dα dependence of an estimate as
well as a reduced χ2 values, i.e.,

χ̄2
|Dα | = χ2(Ā, k̄, b̄)

|Dα| . (C2)

TABLE III. The Dα dependence of the estimates of ξdiag and the reduced χ 2 values (see text). Other than the optimized region (D0), one
inner region (D−1) and two outer regions (D1 and D2) are defined by cmax and cmin at each Q and t . Rα is the mean radius of annular region Dα .

Q t Dα cmax cmin |Dα| Rα ξdiag χ̄ 2
|Dα |

1 0.50 D−1 1 × 10−2 1 × 10−3 432 11.9 2.750670(2) 865
D0 1 × 10−4 3 × 10−5 436 22.1 2.750569(1) 0.642
D1 1 × 10−5 4 × 10−6 392 27.7 2.750564(4) 0.329
D2 5 × 10−8 3 × 10−8 336 41.2 2.75066(7) 1.231

2 0.24 D−1 1 × 10−2 3 × 10−3 188 10.3 2.734824(1) 0.084
D0 1 × 10−3 3 × 10−4 308 16.0 2.734823(4) 0.499
D1 3 × 10−5 1 × 10−5 452 24.9 2.734836(8) 0.560
D2 1 × 10−7 5 × 10−8 444 39.3 2.7348(1) 0.849

3 0.15 D−1 1 × 10−2 1 × 10−3 400 11.5 2.672762(3) 240
D0 1 × 10−4 3 × 10−5 400 21.3 2.672979(3) 1.10
D1 2 × 10−6 1 × 10−6 368 30.6 2.67291(5) 0.810
D2 1 × 10−7 5 × 10−8 436 38.3 2.67285(2) 0.496

4 0.10 D−1 1 × 10−2 1 × 10−3 400 11.5 2.694577 758
D0 3 × 10−5 1 × 10−5 428 24.3 2.695252(3) 0.301
D1 2 × 10−6 1 × 10−6 348 30.7 2.69525(1) 0.114
D2 1 × 10−7 5 × 10−8 452 38.5 2.6951(2) 0.223
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The third column of Table III compares the estimates in one
inner region (D−1), the optimized region (D0), and two outer
regions (D1 and D2). In general, χ̄2

|Dα | measures the goodness
of fit, which in the present case gives an applicability condi-
tion of Eq. (3.2) to MC data in Dα . First, one sees that χ̄2

|D−1|
is much larger than the others and that ξdiag estimated in D−1

deviates largely from those in other regions. Meanwhile, the
error in ξdiag shown by parenthesized digits becomes smaller
for D−1. These show that Eq. (3.2) cannot fit the data in
D−1 due to the systematic errors. Second, one also finds that
χ̄2

|D1| and χ̄2
|D2| are comparable to χ̄2

|D0| and that the estimates
of ξdiag are almost independent of the choice of the outer
regions. Therefore, we conclude that D0, D1, and D2 are in
an asymptotic region in which Eq. (3.2) can be used for the
fitting under the controlled condition of systematic errors, but
the statistical errors become larger in outer region.

The first, the second, and the fourth columns of Table III
give the results obtained via the same analysis for the Q =

1, t = 0.50, the Q = 2, t = 0.24, and the Q = 4, t = 0.10
cases, respectively. While the overall feature of Q = 1, 4 is
same as that of Q = 3, the fitting condition for Q = 2 is
clearly different from them, namely, both χ̄2

|Dα | and ξdiag are
almost independent of Dα . This difference can be attributed to
the presence or absence of the second band eigenvalue contri-
butions to the correlation function: As explained in Appendix
A, they are absent in the Ising case so that Eq. (3.2) can fit the
data in inner annular regions like D−1.

Table I exhibits the fitting data in optimized regions D0 for
which the convergence check of estimates as demonstrated in
Table III has been performed at all temperatures. In principle,
we can employ a wider annular region including, e.g., D0, D1,
and D2, but, in reality the infinite-size algorithm MC simula-
tions cannot provide reliable averages and meaningful errors
for R � ξdiag within a moderate computational effort [59].
Therefore, the optimization of the fitting region is necessary
for the purpose of the accurate estimations of the ACLs.
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