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Transverse field effects on the competition between antiferromagnetic and cluster spin-glass phases
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We investigate a disordered cluster Ising antiferromagnet in the presence of a transverse field. By adopting a
replica cluster mean-field framework, we analyze the role of quantum fluctuations in a model with competing
short-range antiferromagnetic and intercluster disordered interactions. The model exhibits paramagnetic (PM),
antiferromagnetic (AF), and cluster spin-glass (CSG) phases, which are separated by thermal and quantum phase
transitions. A scenario of strong competition between AF and CSG unveils a number of interesting phenomena
induced by quantum fluctuations, including a quantum PM state and quantum driven criticality. The latter occurs
when the thermally driven PM-AF discontinuous phase transition becomes continuous at strong transverse fields.
Analogous phenomena have been reported in a number of systems, but a description of underlying mechanisms
is still required. Our results indicate that quantum driven criticality can be found in a highly competitive regime
of disordered antiferromagnets, which is in consonance with recent findings in spin models with competing
interactions.
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I. INTRODUCTION

Quantum frustrated magnets are an endless source of
challenging problems and interesting phenomena [1–9]. Un-
derstanding the role of interactions as well as thermal and
quantum fluctuations on the magnetic phases and phase
boundaries is of utmost importance for the description of
these materials. For instance, antiferromagnets with compet-
ing interactions are a prominent class of systems that harbors
exotic physics. An interesting example of this is the quan-
tum annealed criticality—when classical discontinuous phase
transitions become continuous due to the increase of quantum
fluctuations—that can be driven by competing interactions
[10,11]. Despite attracting significant attention, the underly-
ing mechanisms of this unconventional phenomenon are still
unclear [12,13]. In particular, a relevant subject is whether
quantum annealed criticality can be found when frustration
is introduced by other sources, such as disorder. For instance,
when bond disorder leads to frustration, besides the antifer-
romagnetic (AF) phase, magnetic glassy states can also be
observed. These randomly frozen states often exhibit signa-
tures consistent with a collective freezing of spin clusters,
suggesting the onset of a cluster spin-glass (CSG) phase.
Moreover, the possible presence of quantum annealed critical-
ity in these frustrated systems still lacks a proper investigation.
Motivated by this issue, the present work aims to analyze the
role of quantum fluctuations on cluster disordered antiferro-
magnets.
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From the theoretical point of view, describing the com-
petition between CSG and AF states in the presence of
quantum fluctuations represents a unique task for numerical
approaches, generally demanding significant computational
efforts. Analytical approaches are, therefore, an alternative
to provide insights on the magnetic phases and the nature
of phase transitions hosted by quantum disordered antiferro-
magnets. A simple way to study quantum fluctuations on spin
systems is to consider transverse field Ising models (TFIMs),
which can be seen as the ideal platforms for the research of
quantum phenomena [14]. Even the simplest version of the
model, the one-dimensional ferromagnetic TFIM, is prototyp-
ical for the study of quantum criticality [15]. Moreover, very
recent studies also suggest that the phase transitions nature
is highly sensitive to quantum fluctuations when competing
interactions are considered in the TFIM [10,11]. For instance,
in the J1-J2 antiferromagnetic TFIM, discontinuous thermally
driven phase transitions can become continuous when quan-
tum fluctuations are increased [10]. In addition, describing
the role of bond disorder on TFIMs have motivated several
investigations [7,16–24]. It has been found, for instance, that
tuning the ratio between disorder strength and AF couplings
allows to modulate a competition between a canonical spin-
glass phase and antiferromagnetism [7]. Moreover, a replica
approach for cluster spin-glasses in a transverse field has
been proposed within the context of random bond models
[21]. However, the competition between antiferromagnetism
and a CSG state in a transverse field still lacks a proper
description.

In this paper, we investigate the competition between AF
ordering and cluster freezing by adopting a disordered version
of the TFIM with focus on the role of AF correlations and
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quantum fluctuations in the onset of a CSG state and the
nature of phase transitions. In order to describe the collective
freezing of clusters, we adopt a model with random interclus-
ter interactions, introducing a relevant degree of freedom, the
cluster magnetic moment, for the description of the CSG state.
In other words, our model embodies a competitive scenario
by including AF first-neighbor interactions and random bonds
between clusters. To incorporate effects of both quantum and
thermal fluctuations, we adopted a cluster mean-field (CMF)
approximation. This method has been used extensively in the
study of frustrated and disordered spin systems, often yielding
a suitable description of phase diagrams and thermodynamic
quantities [25–27]. In addition, we incorporate the replica
formalism within the CMF theory, allowing us to describe
both the collective freezing of clusters and the AF ordering
and, therefore, providing a framework able to account for the
competitive nature of this quantum spin model. Moreover, we
found evidence of a change in the nature of phase boundaries,
namely, the thermally driven discontinuous transitions can
become continuous when the transverse field is increased. It
means that the model adopted can belong to a class of sys-
tems with competing interactions that host quantum annealed
criticality.

The rest of the paper is organized as follows. In Sec. II
we present the model and the replica CMF formalism. The
results, including phase diagrams and the thermal dependence
of order parameters, are presented and discussed in Sec. III.
Our conclusion is given in Sec. IV.

II. MODEL AND METHOD

We adopt the quantum Ising model defined by

H = −
∑
i< j

Ji j σ̂
z
i σ̂ z

j − �
∑

i

σ̂ x
i , (1)

where σ̂ z
i and σ̂ x

i represent Pauli matrices, Ji j is the exchange
interaction between the sites i and j, and � corresponds to the
transverse magnetic field. We consider a square lattice divided
into Ncl identical clusters with ns sites each:

H =
Ncl∑
ν

H ν
intra −

Ncl∑
ν<λ

∑
i, j

i ∈ ν

j ∈ λ

Ji j σ̂
z
i σ̂ z

j , (2)

with H ν
intra representing the intracluster couplings. We as-

sume two types of interaction: short-range and long-range,
which are AF and disordered, respectively. The long-range
interactions introduce a cluster-cluster coupling between all
pairs of nearest-neighbor clusters (Jνλ) and the short-range
ones are spin-spin couplings Ji j = −J0 between all pairs of
first-neighbor sites. This approach results in the following
Hamiltonian:

H =
Ncl∑
ν

H ν
intra −

Ncl∑
(ν,λ)

⎛
⎜⎜⎜⎜⎜⎝JνλŜz

ν Ŝz
λ − J0

∑
(i, j)
i ∈ ν

j ∈ λ

σ̂ z
i σ̂ z

j

⎞
⎟⎟⎟⎟⎟⎠, (3)

where Ŝz
ν = ∑ns

i∈ν σ̂ z
i ,

H ν
intra =

∑
(i, j∈ν)

J0σ̂
z
i σ̂ z

j − �

ns∑
i∈ν

σ̂ x
i , (4)

where (· · · ) imply a sum over nearest-neighbors, and Jνλ is
a random variable that follows a Gaussian probability distri-
bution with mean zero and variance J/

√
zcl , in which zcl is

the number of neighbor clusters. It means that, for J = 0 and
J0 > 0, the model reproduces the Ising model in the square
lattice. In this limit case, the exact solution for the model is
known. On the other hand, a nonzero J introduces clusters in
the model, also leading to a competition between disorder and
AF couplings.

The replica method is used to get the disorder-
averaged free energy per cluster f = −1/(βNcl )ln Z =
−1/(βNcl ) limn→0

ln Zn

n , where the overline denotes an av-
erage over the quenched intercluster disorder Jνλ and β =
1/kBT (kB is the Boltzmann constant and T is temperature).
The computation of this average leads to the follow-
ing replicated partition function within the imaginary time
formalism [28]:

Zn = TrT exp

⎛
⎜⎜⎜⎜⎜⎝−β

∫
dτ

⎡
⎢⎢⎢⎢⎢⎣
∑

α

Hα
intra (τ )

+
∑
(ν,λ)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
∑

α

∑
(i, j)
i ∈ ν

j ∈ λ

J0σ̂
zα
i (τ )σ̂ zα

j (τ ) − βJ2

2Ncl

×
∫

dτ ′ ∑
α,γ

Ŝzα
ν (τ )Ŝzα

λ (τ )Ŝzγ
ν (τ ′)Ŝzγ

λ (τ ′)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠, (5)

where τ is the imaginary time, T is the time ordering operator,
and α (γ ) represents the replica index.

The intercluster coupling terms of Eq. (5) can be
analytically computed in a CMF approximation. For in-
stance, Figure 1 illustrates the lattice divided into clus-
ters of four sites (ns = 4) with the mean fields replac-
ing the intercluster interactions. Formally, this approach
is achieved by introducing the variational parameters
Qαγ (τ, τ ′) and mα

i (τ ), which can lead to the following free
energy:

β f = lim
n→0

[
β2J2

4n

∫
dτ

∫
dτ ′ ∑

α,γ

[Qαγ (τ, τ ′)]2+

− βJ0

2n

∫
dτ

∑
α

ns∑
(i, j)′

mzα
i (τ )mzα

j (τ ) − lnZeff

n

⎤
⎦, (6)

032139-2



TRANSVERSE FIELD EFFECTS ON THE COMPETITION … PHYSICAL REVIEW E 102, 032139 (2020)

FIG. 1. The ns = 4 cluster considered in the mean-field treat-
ment. The solid lines represent the antiferromagnetic couplings
and the arrows indicate the mean fields related to the short-range
antiferromagnetic (solid lines) and the disordered (dashed lines)
interactions.

where (i, j)′ refers to nearest-neighbor sites belonging to dif-
ferent clusters,

Zeff = TrT exp

(
−β

∫
dτ

{∑
α

[Hα
intra (τ )

+ J0

ns∑
(i, j)′

σ zα
i (τ )mzα

j (τ )] +

− βJ2

2

∫
dτ ′ ∑

α,γ

Qαγ (τ, τ ′)Ŝzα (τ )Ŝzγ (τ ′)

})
(7)

with the variational parameters corresponding to the cluster
spin-glass order parameter Qαγ (τ, τ ′) = 〈Ŝzα (τ )Ŝzγ (τ ′)〉Heff

(for α �= γ ), the cluster magnetic moment self-interaction
Qαα (τ, τ ′) = 〈Ŝzα (τ )Ŝzα (τ ′)〉Heff , and the site magnetization
mα

i (τ ) = 〈σ zα
i (τ )〉Heff , where 〈· · · 〉Heff expresses the thermal

average over the effective model in Eq. (7).
In this work, we consider the static approximation [28] and

replica symmetry ansatz, which neglect the time dependence
and the replica index of the order parameters: Qαα (τ, τ ′) = q̄,
Qαγ (τ, τ ′) = q and mα

i (τ ) = mi. It is worth mentioning that
despite the static approximation for the intercluster couplings,
the intracluster dynamic is fully preserved. This procedure
results in the following effective problem:

f = βJ2

4
(q̄2 − q2) − J0

2

ns∑
(i, j)′

mz
i m

z
j +

− 1

β

∫
Dz ln

∫
Dx Tr e−βĤeff (z,x), (8)

where the effective single-cluster Hamiltonian is

Ĥeff (z, x) = J0

ns∑
(i, j)

σ̂ z
i σ̂ z

j + J0

ns∑
(i, j)′

σ̂ z
i mz

j +

−�

ns∑
i

σ̂ x
i − J

[
x
√

q̄ − q + z
√

q
] ns∑

i

σ̂ z
i , (9)

with

q̄ =
∫

Dz

∫
Dx Tr

∫
dτ ŜzŜz(τ )e−βĤeff (z,x)∫

Dx Tr e−βĤeff (z,x)
, (10)

q =
∫

Dz

⎡
⎢⎢⎣
∫

DxTr
ns∑
i

σ z
i exp(−βĤeff (z, x))∫

DxTr exp(−βĤeff (z, x))

⎤
⎥⎥⎦

2

, (11)

mz
i =

∫
Dz

∫
DxTr σ z

i exp(−βĤeff (z, x))∫
DxTr exp(−βĤeff (z, x))

, (12)

and Dξ = dξ exp (−ξ 2/2)/
√

2π (ξ = x or z).

III. RESULTS

The numerical results are obtained by computing Eqs. (9),
(10), (11), and (12) in a self-consistent procedure, where
the single-cluster effective model is evaluated by exact di-
agonalization. The AF long-range order is characterized by
a nonzero staggered magnetization (mAF = |mz

1 − mz
2 + mz

3 −
mz

4|/4) calculated using the local magnetizations [Eq. (12)]
and the CSG phase occurs when q �= 0. The cluster magnetic
moment self-interaction q̄, given by Eq. (10), is a relevant
mean-field order parameter related to disorder and quantum
fluctuations. We note that this internal field can be nonzero
even in the paramagnetic (PM) state, being dependent on �,
J0/J , and temperature. In addition, first-order phase transi-
tions can be located by comparing the free-energy (Eq. (8))
of the phases under transformation.

The presence of both short-range interactions (J0 > 0)
and long-range disorder (J > 0) introduces a competition
between AF ordering and CSG freezing. In the absence of
transverse field, the low-temperature magnetic state for weak
AF couplings (J0/J < 1) is a CSG, as shown in Fig. 2(a).
In this phase, the cluster magnetic moments are randomly
frozen and the replica symmetry is broken. An increase in
the J0/J strength reduces the freezing temperature by favor-
ing AF spin pairs inside the cluster. The AF pairs lead to
a low cluster magnetic moment, introducing an unfavorable
scenario for the CSG state. For a strong enough J0/J , the
CSG state disappears and the onset of antiferromagnetism is
observed at low temperatures. We notice that tuning the ratio
J0/J could be an intricate task in physical systems. However,
changing the system ground-state from antiferromagnetism to
CSG has been achieved in several systems, often by chemical
doping [29–34]. For instance, in the La2−xSrxCuO4 com-
pound an AF state is observed at very low Sr contents,
but this long-range order is suppressed as x → 0.02. For
x � 0.02, a cluster spin-glass phase is found at low tem-
peratures. We note that this competing scenario holds for
both bulk and thin films of La2−xSrxCuO4 [30]. Moreover, a

032139-3



SCHMIDT, KELLERMANN, AND ZIMMER PHYSICAL REVIEW E 102, 032139 (2020)

FIG. 2. Phase diagrams of the disordered TFIM in the temperature-coupling plane for several transverse field strengths. Solid and dashed
curves indicate continuous and discontinuous phase transitions, respectively. The circle indicates the tricritical point.

similar change in the low temperature phases were observed
for (Sr1−xCax )3Ru2O7 (at x ≈ 0.4) [31], TbMn1−xScxO3 (at
x ≈ 0.3) [32], and CeNi1−xCux (at x ≈ 0.7) [33]. Therefore,
our theoretical framework provides phase diagrams resem-
bling those obtained for several disordered antiferromagnets,
suggesting that tuning J0/J can mimic some doping effects
on the magnetism of these materials. It is also worth men-
tioning that the results of Fig. 2(a) are analogous to those
found for the CSG model proposed in Ref. [35], in which van
Hemmen-like disordered couplings were adopted. In this way,
the classical limit of the present model is in agreement with
both theoretical and experimental expectations for a system
with competing CSG and AF states.

The behavior of order parameters can help us discuss the
coupling effects on the present model. Figures 3(a) and 3(b)
exhibit the order parameters for different regimes of AF cou-
plings in the absence of transverse field. In particular, while
a large q̄ is observed within the CSG phase, this parameter
approaches zero within the AF long-range order as a con-
sequence of the cluster compensation introduced by the AF
couplings. Moreover, thermal fluctuations can increase q̄, by
activating uncompensated cluster states even when the AF
couplings rule the low temperature magnetism, as shown in
Fig. 3(b) for J0/J = 2.

It should be noted that the CSG and AF states are separated
by a discontinuous phase transition, which is a consequence
of the competing nature of the two phases. In addition, con-
tinuous phase transitions occur between the PM and CSG
states. A more interesting scenario occurs in the PM-AF phase
boundary, in which a tricritical point separates the continuous
and discontinuous phase transition lines. The presence of the

PM-AF discontinuous phase transitions can also be related
to the competition between compensation/uncompensation
mechanisms. It should be noted that the nonzero q̄ near the
PM-AF phase transition [see Fig. 3(b)], indicates that disorder
affects the system not only in the CSG state. As a conse-
quence, in a highly competitive regime (i.e., J0/J ≈ 1.25) a
discontinuous phase transition can be found between PM and
AF phases. Analogous phenomena has been reported in other
spin systems with competing interactions, such as the J1-J2

Ising model, in which tricriticality also occurs [36].
The presence of a transverse field introduces quantum

fluctuations in the Ising spin system. These quantum fluctu-
ations reduce the ordering temperatures of both AF and CSG
phases. The temperature dependence of the order parameters
for �/J = 4.85 are depicted in Figs. 3(c) and 3(d). Comparing
these results with the zero-field limit, one can note that �

reduces both the staggered magnetization and the CSG order
parameter q [Figs. 3(a) and 3(b)]. Quantum fluctuations also
reduce the z component of the cluster magnetic moment, as
evidenced by the temperature dependence of q̄ for �/J = 0
[Figs. 3(a) and 3(b)] and �/J = 4.85 [Figs. 3(c) and 3(d)]. In
particular, an increase in q̄ can be driven by thermal fluctua-
tions even within the CSG state, as evidenced by the results for
J0/J = 0.5 and �/J = 4.85. It should be stressed that despite
the fact that the increase of � can eliminate both the AF and
CSG states, as shown in Fig. 4, it also can favor the glassy state
at very low temperatures. In particular, the phase diagrams in
Figs. 2(b) and 2(c) show that the CSG state can be observed
at larger values of J0/J as the transverse field is increased.
In other words, increasing the strength of �/J can lead to
replica symmetry breaking in a disordered antiferromagnet.
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FIG. 3. Temperature dependence of the order parameters. In the
absence of transverse field, panels (a) and (b) show the results
for weak and strong AF interactions, respectively. Panels (c) and
(d) exhibit the order parameters for weak and strong AF interactions,
respectively, when quantum fluctuations are introduced by the trans-
verse magnetic field.

This result corroborates recent studies of disorder cluster anti-
ferromagnets, in which field-induced cluster freezing is found
[37,38]. In particular, in Ref. [38], the role of a longitudi-
nal magnetic field on the competition between CSG and AF
phases were investigated within a disordered Ising model with
a rather different type of disordered coupling given by a van
Hemmen-like interaction [39]. As a result, a glassy state is
found even at very low levels of disorder for strong longitudi-
nal fields. On the other hand, our findings in the present work
suggest that the transverse field can favor a CSG state only at
intermediate levels of disorder. It indicates that transverse and
longitudinal fields have different effects on the competition
between CSG and AF phases at low levels of disorder. This
difference could be attributed to the quantum fluctuations
introduced by the transverse field, which is absent when only
a longitudinal field is considered [38]. We also note that,
for strong enough �/J , only continuous phase transitions are
found in the phase diagrams, as shown in Figs. 2(c) and 2(d).

Several interesting phenomena arise in the regime of
strong competition between AF interactions and disorder.
For instance, a quantum paramagnetic state arises at zero
temperature [see Fig. 2(d)]. One can note that this disor-
dered state occurs as a consequence of the presence of both
quantum fluctuations—introduced by the transverse field—
and the competition between couplings. For J0/J ≈ 4/3, an
even more appealing result can be observed: the discontinuous
PM-AF phase boundary becomes a continuous one when �/J
increases, as shown in Fig. 4(b). In other words, continu-
ous phase transitions emerge as a consequence of quantum

FIG. 4. Phase diagrams of the disordered TFIM in the
temperature-transverse field plane for several antiferromagnetic
couplings. Solid and dashed curves indicate continuous and dis-
continuous phase transitions, respectively. The circle indicates the
tricritical point.

fluctuations. Analogous findings have been reported in recent
studies of other transverse field Ising models with compet-
ing interactions, such as the J1-J2 square lattice [10] and
the J1-J2-J3 honeycomb lattice [11]. Therefore, our results
support the proposal that continuous phase transitions can be
induced by quantum fluctuations in systems with competing
interactions [10]. It is worth stressing that the PM-AF phase
boundary is not affected by the replica-symmetric approxima-
tion, suggesting that the change in the phase boundary nature
is not an artifact of the theoretical framework adopted.

IV. CONCLUSION

We studied a disordered AF Ising model in a transverse
field, characterizing the role of thermal and quantum fluc-
tuations on phase boundaries. By adopting a replica CMF
formalism we were able to identify continuous and discon-
tinuous phase transitions, as well as tricriticality. We found
that strong competition between AF interactions and disorder
supports discontinuous phase transitions driven by thermal
fluctuations and continuous phase transitions induced by
quantum fluctuations. We remark that this phenomenon oc-
curs at the AF phase boundary and, therefore, is not affected
by the replica-symmetric approach considered in this work.
Analogous findings have been reported in a rather different
context, namely ferroeletric materials, in which room tem-
perature phase transitions are discontinuous, but signatures
of quantum criticality are observed at very low temperatures
[12]. Our results indicate that a similar phenomenon occurs
in a highly competitive regime of disordered antiferromag-
nets, supporting the recent findings for other TFIMs with
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competing interactions [10,11]. In this way, our findings rein-
force that competing interactions provide a suitable scenario
for quantum annealed criticality in spin systems [10].

In addition, we found that the competition between clus-
ter spin glass and antiferromagnetism can be affected by
the transverse field. For instance, it is found that increas-
ing �/J can favor the CSG state over the AF one in the
highly competitive regime of J0/J . It should be stressed that
we considered a particular disordered AF model and further
studies are required to corroborate our main findings in the
context of quantum disordered antiferromagnets. We note that
our calculations are based on a cluster approximation that
goes a step beyond the standard single-site mean-field treat-
ment. However, despite that we considered a square lattice
and our approach retains some features of the lattice geom-
etry, the intercluster interactions are still evaluated within a

mean-field picture, allowing, for instance, a finite temperature
CSG phase. Therefore, we hope our results motivate further
investigations of the competition between cluster freezing and
AF long-range order in the presence of quantum fluctuations.
In particular, taking into account that geometrical frustration
is known to favor spin-glass freezing [40,41], an interesting
question regards the role of this type of frustration in disor-
dered antiferromagnets under transverse field.
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