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As the coronavirus disease 2019 (COVID-19) spreads worldwide, epidemiological models have been em-
ployed to evaluate possible scenarios and gauge the efficacy of proposed interventions. Considering the
complexity of disease transmission dynamics in cities, stochastic epidemic models include uncertainty in their
treatment of the problem, allowing the estimation of the probability of an outbreak, the distribution of epidemic
magnitudes, and their expected duration. In this sense, we propose a kinetic Monte Carlo epidemic model that
focuses on demography and on age-structured mobility data to simulate the evolution of the COVID-19 outbreak
in the capital of Brazil, Brasilia, under several scenarios of mobility restriction. We show that the distribution
of epidemic outcomes can be divided into short-lived mild outbreaks and longer severe ones. We demonstrate
that quarantines have the effect of reducing the probability of a severe outbreak taking place but are unable to
mitigate the magnitude of these outbreaks once they happen. Finally, we present the probability of a particular
trajectory in the epidemic progression resulting in a massive outbreak as a function of the cumulative number
of cases at the end of each quarantine period, allowing for the estimation of the risk associated with relaxing
mobility restrictions at a given time.
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I. INTRODUCTION

With the worldwide diffusion of the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) [1,2], re-
searchers across many fields, such as physics [3–5], pharma-
cology [6,7], and biology [8,9], are contributing in the fight
against the pandemic. One particular area of interest is the
modeling of the evolution of the coronavirus disease 2019
(COVID-19) outbreak in different parts of the world to guide
policymakers and gauge the efficacy of proposed interven-
tions.

As a first approach to epidemic modeling, phenomenologi-
cal models provide a simple analytical expression calibrated
by the available data to model important epidemiological
variables and provide short-term forecasts of the epidemic’s
progression [10]. Such models include generalized growth
models, suitable for the initial stages of the epidemic, or logis-
tic models as the Richards growth model (RGM) [11], which
are more appropriate for later stages [3,12]. However, when
it comes to analyzing the effects of different interventions
in the development of an epidemic, the phenomenological
models are not able, by themselves, to provide the connection
between the intervention and model parameters. Approaches
with additional complexity are required in such cases. In this
sense, agent-based models, which simulate the interactions
between people, allow the evaluation of mitigation strategies
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in the early stages of the epidemic, guiding measures of health
and political authorities [13,14].

Generally, epidemiological models rely on the population’s
compartmentalization in categories whose occupation varies
in time [15,16]. An example is the SEIR model, in which
individuals in a population are considered susceptible (S),
exposed (E), infectious (I), or recovered (R). Whereas sus-
ceptible individuals are those who are not immune to the
disease, “exposed” refers to those to whom the virus has been
transmitted but are not yet able to infect others. The capac-
ity to transmit the virus characterizes infectious individuals.
Finally, after the infectious individuals are either cured or
die from the disease, they are considered to belong to the
recovered category, at which point they no longer can be
infected. In deterministic models, the number of individuals
in each category is often governed by a set of differential
equations, which are solved to yield the time dependence
of each category’s occupation number, allowing, in prin-
ciple, for making forecasts regarding the evolution of the
outbreak.

However, deterministic models do not take into account
the random aspects that, especially in the case of complex
environments such as those that involve the transmission of
a virus in a city, may significantly impact the outcomes, ren-
dering deterministic predictions meaningless. In this sense,
stochastic epidemic models have been developed [17–21] in-
cluding models that rely, for instance, on Markov chains or
stochastic differential equations to arrive at a distribution of
outcomes that may result from a given set of initial conditions.
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FIG. 1. Schematics of the KMC model. Individuals (black squares) are able to move in a grid by jumping to nearby sites. When a
susceptible (S) individual and an infected (I) one meet, the susceptible may become exposed (E) with probability pt . Exposed individuals
turn infectious with a rate of 1/τinc and infectious individuals are removed (either cured or dead) with rate 1/τinf .

This allows one to obtain answers to questions regarding the
duration and severity of an outbreak in probabilistic terms.

We have developed a kinetic Monte Carlo (KMC) imple-
mentation of an age-structured SEIR model in this work. This
new stochastic model is inspired by similar simulations that
have been successfully employed in materials science [22,23].
It focuses on the mobility of individuals and demography
as critical aspects in determining possible outcomes for an
outbreak. The model is used to study the effect of mobility
restriction on the evolution of a COVID-19 outbreak. By
selecting model parameters to reflect the characteristics of the
city of Brasilia, Brazil, we were able to present a distribu-
tion of possible outcomes under scenarios in which mobility
restriction measures were imposed for different time periods.
We determine that the probability of occurrence of large out-
breaks is affected by quarantine duration, but this measure is
unable to decrease the severity of a massive outbreak when it
takes place. Finally, we present the probabilities for different
outcomes in each scenario and provide a means to gauge
the likelihood of success of lifting mobility restrictions as a
function of the cumulative number of infected individuals.

II. METHODS

A. The KMC model

The model is set on a N × N two-dimensional square lat-
tice in which sites are set apart by a distance d from each
other in the vertical and horizontal directions. The lattice
spans a specific area that is populated by several individu-
als. This number is chosen in such a way as to reproduce a
particular urban density (ρurb). Each individual is randomly
assigned an age with a probability distribution corresponding
to the region’s age pyramid. Finally, the individuals are placed

randomly on the grid, and periodic boundary conditions are
enforced to prevent border effects. An initial fraction ρ0 of
the individuals is assumed to be infectious, whereas the rest
of the population is considered susceptible to the infection.

After the model is populated, the simulation starts. Each in-
dividual is able to move by stepping toward one of their eight
nearest-neighboring cells (four in the vertical and horizontal
directions and four in the diagonal directions), as shown in
Fig. 1. The rate with which a move between two sites takes
place is given by

ks = 1

τ

(L

r

)
, (1)

in which τ is the time unit, r is the intersite distance, and L
is a measure of the individual’s mobility. Setting τ to 1 day
allows us to interpret the ratio L/r as the number of steps an
individual takes in a day. Accordingly, L becomes the average
distance covered by an individual in a day.

The actual site to which an individual in the simulation
moves is determined by calculating the step rates to each of its
eight neighboring sites. The probability of each site (identified
by i = 1, 2, . . . , 8) being chosen is given by

pi = ksi∑
i ksi

, (2)

in which ksi corresponds to the jumping rates to each neigh-
boring site.

At this point, a random number is drawn to select the
site that may receive the individual. This process of outcome
selection is repeated for every person in the simulation. As a
result, a transfer rate k j is associated to each individual corre-
sponding to the selected movement. The inverse of the largest
such rate among all individuals (kmax) corresponds to the time
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step of the simulation. The ratio between each moving rate
and the maximum one (k j/kmax) is used as the probability
of each individual’s selected movement being allowed at that
particular simulation step. This way, the higher a person’s
mobility (larger moving rates), the higher the probability of
moving at each step.

The moving process competes against two other processes
in the case of infectious individuals: Death and recovery.
These latter processes occur with rates kd and kr , respec-
tively. The death rate is calculated as IFR/τinf , where τinf is
the average duration of the infectious period, and IFR is the
infection fatality rate, which may vary according to the age
group of the individual. Likewise, the recovery rate is given
by (1 − IFR)/τinf . As such, once a site is chosen for moving,
a second random number is drawn to determine whether the
infected individual moves, dies, or recovers from the disease.
Again, each outcome has probability given by the process
rate divided by (ks + kd + kr ). If a subject dies or recovers,
then they are removed from the simulation. In this manner,
we consider recovered individuals to have become immune to
further infection.

A similar measure is taken regarding exposed individu-
als. In this case, the competing process is their conversion
to the infectious category. This conversion happens with a
rate kc = 1/τinc, in which τinc is the mean incubation period.
The conversion process has probability kc/(kc + ks), and if
it is selected, then the individual becomes infectious. We
consider that all exposed individuals eventually become infec-
tious [27]. This mechanism for conversion between exposed to
infectious and from infectious to removed results in exponen-
tially distributed incubation and infectious periods [22,23].

After this step is concluded and all individuals have either
moved, stayed put, or been removed from the simulation, we
check whether there is any site at which an infectious and a
susceptible individuals have met. If so, then the susceptible
individual turns exposed with a transmission probability pt

(as shown in Fig. 1). The time, location, and age of individ-
uals that die, recover, or become exposed or infectious are
registered. After that, the whole process is repeated until no
infectious or exposed individuals remain in the simulation. A
large number of rounds are run so that statistical analysis of
the results is possible.

B. Determining model parameters

The characteristic infection and incubation periods em-
ployed in the simulations, as well as the transmission
probability per contact associated with the virus, are shown
in Table I, following recent research on the subject.

TABLE I. Parameters concerning the behavior of COVID-19
employed in the simulations

Parameter Value Reference

Avg. incubation period (τinc) 6.4 days [24,25]
Avg. infectious period (τinf ) 7 days [25,26]
Transmission probability (pt ) 0.10–0.30 per contact Assumed

TABLE II. Brasilia’s population, IFR, and relative mobility for
several age groups according to Refs. [13,28,29].

Age Population (%) [28] IFR (%) [13] Relative mobility [29]

0–9 15.1 0.002 0.50
10–19 17.1 0.006 0.85
20–29 20.1 0.03 0.91
30–39 18.1 0.08 0.84
40–49 13.5 0.15 0.81
50–59 8.5 0.6 0.78
60–69 4.5 2.2 0.72
70–79 2.2 5.1 0.60
80+ 0.9 9.3 0.60

Next, in order for simulations to reflect the behavior of
transmission in a given city, it is necessary to adjust the model
parameters accordingly. The first parameter in this sense is the
urban density ρurb, which is information that is readily avail-
able for most cities and corresponds to 4729 people/km2 in
the case of Brasilia [28]. We choose the number of individuals
in the simulation so that the lattice’s average population den-
sity matches this value. Also important is the age distribution
of the population, as it is known that age is a significant factor
in mortality rates [13] and is associated with varying degrees
of mobility [29]. Table II presents the age pyramid for the
city of Brasilia as well as the IFR of COVID-19 for each age
group.

Mobility in this model is expressed in terms of the average
daily number of steps taken by an individual. We write this
number as S = S0M, where S0 is a baseline number of steps,
and M is the relative mobility, which is a function of age
group and is also presented in Table II. The average number
of steps observed for each age group under normal conditions
is reproduced with S0 = 6000 steps per day (spd) [29]. We
model quarantine conditions by reducing this S0 term to 2000
spd, corresponding to a 66% decrease in overall mobility in
the population.

Finally, lattice size N and intersite distance d determine the
surface area of the simulation. Ideally, one could choose d as
small as an average step size, say, 0.5 m, but that would require
a huge lattice for a reasonable population to be simulated. For
this reason, a scheme is required to perform the simulations
with much larger intersite distances without modifying the
results. The key is choosing the parameters in such a way as
to produce the same diffusion constant for the population.

For jumping rates of L/d jumps per day, the diffusion con-
stant can be shown to correspond to Ld m2/day. Considering
a person takes an average number S of steps per day with an
average length of d = 0.5 m results in a daily covered distance
L = 0.5S and a diffusion constant of (0.52)S m2/day. As such,
for a given daily number of steps, an equivalent coarse-grained
simulation can be performed by choosing more suitable values
of d and L such that:

Ld = (0.52)S. (3)

For the simulation shown here, a 50 × 50 lattice was em-
ployed, the intersite distance d was set to 20 m, resulting in
L = 75 m and L = 25 m under regular and quarantine con-
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(a) (b)

FIG. 2. (a) Average number of active infectious individuals as a function of time for different quarantine scenarios and pt = 0.30. The
shaded area corresponds to one standard deviation. (b) Histograms showing the distribution of peaks of the infection curves in the pt = 0.30
case. The inset shows in details the distribution in the 0.02% to 0.15% population range.

ditions, respectively. Simulations for each analyzed scenario
were run 1000 times.

III. RESULTS AND DISCUSSION

To analyze the effects of enforcing a reduction in overall
mobility for different periods, we ran simulations for sce-
narios in which these restrictions are applied for a number
of days that ranges from 0, that is, no intervention at all,
to 120 days. Once these time limits are reached, the regular
mobility regime is reintroduced. In each scenario, a fraction
of 0.02% of the total population was considered infectious at
the initial moment of the simulation. In the case of Brasilia,
with its approximately three million people population, this
would amount to roughly 600 simultaneously active infectious
individuals.

The main concern regarding the fast propagation of the
COVID-19 virus lies in the possible pressure on each city’s
healthcare system due to the large number of infected people
requiring hospitalization at the same time. As such, we start
looking into the simulation results by analyzing the evolution
of the total number of active infectious individuals as a func-
tion of time. Figure 2(a) shows results averaged from the 1000
simulations run with pt = 0.30 in each scenario with shaded
areas corresponding to one standard deviation intervals. This
metric leads to the belief that mobility restriction results in
both a progressive decrease and delay of the curve’s peak,
a phenomenon that has been dubbed the “flattening of the
curve.”

However, analyses made in terms of average results are
deceiving. It can be seen that the uncertainty in the results
is large, which prompts an investigation into the behavior of
the distribution of curves from individual simulations as well.
In this sense, Fig. 2(b) shows the histograms corresponding to
the distribution of the peak values of the infection curves in the
pt = 0.30 case. The distribution is bimodal, with the number
of simultaneously infected individuals in the population peak-
ing at values below 1% in some simulations and between 15%

and 20% in others. Interestingly, this is the case even for the
simulations with no mobility restriction, which present a 20%
chance of developing only a mild outbreak regardless of the
lack of transmission mitigation measures.

We also observe that the effect of the mobility restriction
lies in the shifting of the number of simulations that belong
to each peak, with longer quarantines being associated with
larger probabilities of peak infection number remaining below
1%. The inset of Fig. 2(b) shows in detail the distribution
of peak values in the 0.02% to 0.15% population interval.
Nearly 8% of the simulations are found to produce infection
peaks at the 0.02% mark, which coincides with the initial pro-
portion of the population that was considered to be infected.
As such, these simulations correspond to cases in which the
virus fails to spread. The most common result in this initial
range, on the other hand, is seen to be a peak of 0.04% of
the population. Peaks amounting to more significant fractions
of the population are also observed with probabilities that
decrease accordingly until practically vanishing at the 0.15%
mark. These cases constitute the best-case scenarios for the
outbreak’s evolution, meaning short-lived outbreaks that af-
fect only a small portion of the population. Such was the case,
for instance, of the SARS outbreak in 2002–2003, which had
a short duration and resulted in a relatively low number of
cases [30].

Interestingly, we note that mobility restriction, regardless
of its duration, does not reduce the infection curve’s peak.
This is evidenced by the fact that for all scenarios, both the
leftmost and rightmost peaks in Fig. 2(b) are located near
the same values, although with different probabilities of being
reached. In this sense, the progressive “flattening of the curve”
becomes, in this model, a mere artifact of averaging over this
bimodal distribution. The actual effect of imposing mobility
restrictions becomes only the reduction in the probability of
large-scale outbreaks.

The same conclusions apply to simulations run with trans-
mission probabilities (pt ) of 0.20 and 0.15, which have their
peak infection curves shown in Fig. 1 in the Supplemental Ma-
terial [31]. The effect of reducing this probability is twofold.
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(a)

(b)

FIG. 3. (a) Distribution of the number of days for peaks in the
infection curves to be reached in the case of simulations that resulted
in large outbreaks. (b) Average attack rate taken from simulations
that produced large outbreaks as a function of time for the different
mobility restriction scenarios.

First, it increases the chance of outbreaks being mild. Second,
it reduces the maximum amount of simultaneously infectious
individuals to between 10–15% and 5–10% in the pt = 0.20
and pt = 0.15 cases, respectively. It is worth noting that for
pt = 0.10 large outbreaks become rare regardless of mobility
restriction.

If the reduction in peak value is not observed in the
simulations with different mobility restrictions, on the other
hand, then a delay in the appearance of the peaks is seen.
Focusing only on the large outbreaks, Fig. 3(a) shows the
distribution of the number of days for the peak of the in-
fection curve to take place in the pt = 0.30 case. There is
a clear progression showing that longer periods of restricted
mobility translate into a delay in the number of days for
peaks to be reached, as expected. When no mobility restriction
is applied, the peak in the number of infectious individu-

als happens most likely 90 days after the beginning of the
simulations. This number is increased in the exact amount
of the quarantine duration for each other scenario shown
in Fig. 3(a), amounting effectively to a time shift in the
simulations.

We now turn our attention to the attack rate of the virus,
that is, the proportion of the population that gets infected
during the course of the simulation and its behavior under the
different mobility restriction scenarios. In this sense, Fig. 3(b)
presents the average attack rate as a function of time for all
quarantine durations in the pt = 0.30 case. These averages
are taken only from simulations for which at least 1% of the
population has been infected by the 600th day. These sim-
ulations correspond to those that present larger and delayed
peaks in the infection curve, as seen in Figs. 2(b) and 3(a), as
opposed to the simulations for which the virus fails to spread
significantly. It can be seen that in all cases the average attack
rate approaches 100% before the 300th day. The different
mobility restriction regimes are seen to delay the spread of the
virus by extending the periods of slow growth in the number of
cases. However, after regular mobility is restored, contagion
accelerates drastically. These results are in line with those
of Fig. 2(b) and again show that, under model conditions,
mobility restriction does not significantly affect the size of the
epidemic once contagion reaches over 1% of the population.
For transmission probabilities pt = 0.20, final average attack
rates are the same as the ones in Fig. 3(b). When the contagion
probability is decreased to 0.15, then average attack rates
drop, for instance, to 84% in the no quarantine case. In both
cases, as can be seen in Fig. 2 in the Supplemental Material
[31], we observe that at the 300th day attack rates are lower
than what is seen in the pt = 0.30 case, which shows that the
reduction in the chance of contagion delays the progression of
the epidemic, as expected.

In addition to the behavior of the infection curves, the evo-
lution of the outbreak may also be analyzed by looking into
the behavior of the reproduction number R, that is, the average
number of people to whom an infected person transmits the
virus during its infectious period. The average reproduction
number, considering only simulations in which the virus is
still active after quarantine, is shown in Fig. 4(a) as a function
of time for the pt = 0.30 case. The initial time is taken as the
seventh day after the mobility restrictions are relaxed so as
to allow for a better comparison between different scenarios.
It can be seen that for the no quarantine simulations, a basic
reproduction number of 4.3 is reached. This number drops in
the following days, becoming equal to what is observed in
the other scenarios. Interestingly, all scenarios that included
mobility restrictions present very similar behavior concerning
the average reproduction number of the remaining active sim-
ulations, with an initial value of around 2.2. It is worth noting
that such a number is close to previously reported values for
COVID-19 [13,32]. In each case, it is only around 50 days
after quarantine is over that these still active outbreaks display
a reduction in their reproduction number.

The above results again reinforce the observation that even
though mobility restriction measures may reduce the prob-
ability of a severe outbreak, they are unable, under model
conditions, to change the characteristics of these severe out-
breaks. In fact, considering again Fig. 4(a), we may think of
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(a) (b)

(c) (d)

FIG. 4. (a) Average reproduction number as a function of time for simulations with still active infections after quarantine. Time starts
counting from the seventh day after the end of quarantine in each scenario. (b) Cumulative conditional probability of an outbreak resulting
in >90% infected individuals as a function of the cumulative number of cases at the end of quarantine. (c) Probability of at most 1% of the
population being infected as a function of quarantine duration. (d) Distribution of the total number of deaths for simulations with different
periods of quarantine.

the time at which mobility restriction ends as constituting the
initial time of simulations that are run with different initial
conditions but that produce nearly the same progression. Fur-
thermore, tests with simulations run with more strict mobility
restrictions (S0 = 1200 spd) that ended up in large outbreaks
showed the same behavior as of the simulations presented
here. These results indicate that the characteristics of large
outbreaks are determined by the combination of mobility, de-
mography, and transmission probability rather than from the
initial conditions of the simulations. A similar insensitivity to
initial conditions was observed in the context of an irreversible
epidemic model that showed that the location of an initial
spreader in a network affects the probability of outbreaks but
not their average magnitudes [33].

The existence of simulations that present large reproduc-
tion numbers even after the quarantine ends prompts the
question of what is the likelihood that, given one particular
realization of the process, the situation will deteriorate to the
more acute scenarios, that is, those corresponding to the right-
most peaks observed in Fig. 2(b) with more than 90% of the
population being infected. The answer is given in Fig. 4(b),
which shows the cumulative conditional probability of the
outbreak becoming uncontrolled, given the cumulative num-
ber of cases registered at the end of each quarantine scenario.
We see that for a 30-day quarantine, if the number of infec-
tions reaches up to 0.1% of the total population (around 3000
people in the case of Brasilia), then there is a 28% probability
of the outbreak affecting the entire population. This number

drops to 4% in the case of a 60-day quarantine and 0% for
longer ones.

It is noteworthy how the probabilities of Fig. 4(b) increase
so sharply in the interval from 0 to 0.5%. This goes to show
the importance of acting quickly in the face of an outbreak,
since if the cumulative number of infected individuals reaches
1% of the population, then even the 120 days quarantine has
less than 50% chance of keeping the outbreak under control.

In this sense, we may obtain the probabilities of an out-
break ending up infecting at most 1% of the population as a
function of quarantine duration. These are shown in Fig. 4(c)
for different transmission probability values. We see that with
no intervention there is a 20% chance of the outbreak remain-
ing limited in the pt = 0.30 case. This number increases to
54% for a 30-day quarantine and 70% for 60 days. From 90 to
120 days, the increase in probability is of only 4%, from 78%
to 82%. The apparent saturation in the probabilities is indica-
tive that total elimination of the risk of widespread diffusion
of the disease is not possible for the urban density, mobility,
and transmission probability employed in these simulations.
Importantly, the situation improves significantly if the proba-
bility of contagion is reduced. For pt = 0.15, for instance, the
30-day quarantine is enough to make the probability of a mild
outbreak to reach 94%. In addition, the payoffs in reducing pt

are nonlinear, which indicates that the early adoption of mea-
sures that diminish even slightly the probability of contagion
per contact, such as the use of face masks, may prove mostly
beneficial.
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Finally, we take a look at the distribution of the total num-
ber of fatalities in the different quarantine scenarios. These
can be seen in Fig. 4(d) for the pt = 0.30 case, which focuses
on the fatality rates as a fraction of the city’s population asso-
ciated with the larger outbreaks. Whereas the simulations for
which the outbreak is contained present near-zero additional
deaths, that is, not counting the ones that may have happened
until the initial conditions of the simulations were achieved,
the more severe outbreaks show a total death toll ranging from
0.2% to 0.6% of the population. The distribution peak is again
the same for all quarantine scenarios, with longer periods of
restricted mobility decreasing the likelihood of the most acute
outcomes taking place. Importantly, these estimates do not
take into account second-order effects that may modify the
IFR, such as the collapse of the city’s healthcare system. Even
disregarding such second-order effects, we see that avoidance
of the worst-case scenarios could result in the prevention of
around 10 000 deaths considering Brasilia’s roughly 3 mil-
lion population and the IFR estimates used here. For lower
transmission probabilities (pt = 0.15 and 0.20), the chances
of such large fatality rates decrease but, as shown in Fig. 3
in the Supplemental Material [31], the shape of the fatality
distribution remains the same.

It is important to stress that even though the model pre-
sented here may be useful to understand how well mobility
restrictions influence the epidemic outbreak, the predictive
power of the model, meaning its capacity to indicate how
the epidemic will actually progress in the city, is limited, as
it does not take into account, for instance, the possibility of
new infections being seeded by people coming from other
cities, which could restart an epidemic. It also does not ac-
count for the variability in how populations either comply
or disregard the mobility restriction orders that have also
themselves been subject to modifications during the course
of the epidemic. In this sense, the model serves the purpose
of indicating possible scenarios and gauge the efficiency of
proposed measures. However, the KMC simulations shown
here can be easily modified to include several different factors
that may be deemed important in further research.

IV. CONCLUSIONS

In summary, we have developed a stochastic epidemic
model based on kinetic Monte Carlo simulations. The
model focuses on the interplay between demography and
age-structured mobility data to study the evolution of the
COVID-19 disease outbreak in Brasilia, Brazil, under differ-
ent quarantine scenarios. Results show that outcomes can be

divided into two groups for simulations with a transmission
probability of 0.30. The first one consists of short-lived out-
breaks that present attack rates limited to less than 0.5% of
the population, constituting cases in which the virus fails to
spread. The second group, on the other hand, is composed
of simulations with more than 90% attack rate and longer
durations, taking around 90 days after mobility restrictions
are relaxed to reach a peak in the number of simultaneously
infectious individuals. This peak ranges from 15% to 20%
of the population and may result in a 0.4–0.6% death rate
according to the available IFR estimates.

If transmission probabilities are reduced, then a com-
parable decrease in the peak of simultaneously infectious
individuals is observed as well as an increase in the probability
of outbreaks being contained. However, for larger outbreaks,
the reduced chance of contagion increases the amount of time
it takes for the spreading to conclude and reduces the average
attack rate slightly. Overall, the behavior of the simulations
remains qualitatively the same for pt in the range 0.15–0.30.
For a pt of 0.10, on the other hand, we practically do not
observe major outbreaks taking place.

Interestingly, we observe that quarantine, modeled as a
mobility decrease in the whole population, has the effect of
reducing the probability of occurrence of large outbreaks,
with longer duration being associated with a higher chance
of the virus failing to spread. More importantly, we show
that quarantine duration is not able to affect the magnitude
of an outbreak once the virus is able to infect 1% of the
population. This is true even for simulations performed with
lower transmission probabilities.

Finally, we have provided estimates for the probability of
a particular trajectory belonging to the more severe outcome
group as a function of the cumulative number of cases at the
end of each quarantine period. These results are particularly
important as they could provide guidance when it comes to
deciding how risky it is to relax mobility restriction measures,
a decision that has to be made eventually.
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