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Trapping in self-avoiding walks with nearest-neighbor attraction
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The statistics of self-avoiding random walks have been used to model polymer physics for decades. A self-
avoiding walk that grows one step at a time on a lattice will eventually trap itself, which occurs after an average
of 71 steps on a square lattice. Here, we consider the effect of nearest-neighbor attractive interactions on isolated
growing self-avoiding walks, and we examine the effect that self-attraction has both on the statistics of trapping as
well as on chain statistics through the transition between expanded and collapsed walks at the theta point. We find
that the trapping length increases exponentially with the nearest-neighbor contact energy, but that there is a local
minimum in trapping length for weakly self-attractive walks. While it has been controversial whether growing
self-avoiding walks have the same asymptotic behavior as traditional self-avoiding walks, we find that the theta
point is not at the same location for growing self-avoiding walks, and that the persistence length converges much
more rapidly to a smaller value.
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I. INTRODUCTION

A self-avoiding walk (SAW) is a random walk on which no
two sites share the same location. In polymer physics, SAWs
are used to model excluded-volume repulsion between two
segments of a molecule, and the statistics of self-avoiding
walks can be used to make measurable predictions about
the scaling behavior of polymers and polymer solutions [1].
Typically, the statistics of a self-avoiding walk are averaged
over every member of the ensemble that consists of every walk
of the same length, assuming that each is equally probable.
In contrast, a growing self-avoiding walk (GSAW) on a lat-
tice can be generated by taking a step in a random direction
from a lattice site, then a subsequent random step to an open
neighboring lattice site, continuing to walk randomly to any
unoccupied site until no more sites are available [2]. While
every SAW on a specific lattice can in principle be generated
as a GSAW, there are two key differences between the GSAW
and traditional SAW ensembles, the first being that GSAWs
are likely to reach a state where there are no free adjacent sites
and the walk becomes “trapped” and terminates [3], and the
second that each N-step walk is not equally likely [2]. It has
been debated as to whether the GSAW belongs to the same
universality class as the traditional SAW [4].

Trapping is often considered as a bug rather than a fea-
ture; various forms of the Rosenbluth method for generating
SAW ensembles bias the walk conditions in order to avoid
trapping [5]. GSAWs have been proposed as models for
polymers whose growth timescales are faster than their re-
laxation timescales, or more generally as models for polymer
growth [6]. Recent investigations into active nematic gels
based on microtubule polymerization [7] or so-called “living”
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micellar solutions [8] serve as physical examples. A grow-
ing self-avoiding walk will inevitably become trapped. This
was proven by Hemmer and Hemmer [6], and a simulation
of 60 000 GSAWs on a square lattice found that the mean
distance reached before trapping was approximately 71 steps,
with a probability distribution that peaks near 33 steps. A
subsequent thesis by Renner [9] examined trapping in trian-
gular, honeycomb, and simple cubic lattices (among others),
and found that the mean length to trapping is approximately
78, 70, and 4000, respectively. The most detailed numerical
simulations of GSAW trapping are those of Pfoertner [10],
whose simulations are precise enough to identify strong even-
odd oscillation in the trapping probability distribution.

In the language of polymer physics, a “good solvent” is one
in which excluded volume interactions between distant parts
of the chain cause a polymer to adopt a “swollen coil” config-
uration that is larger than a noninteracting chain of the same
length, described by the statistics of a self-avoiding walk. A
“poor solvent” is one in which effective attractive interactions
between distant parts of the chain dominate over excluded
volume interactions and the chain forms a compact “globule”
that is smaller than an equivalent length noninteracting chain.
The coil-globule phase transition between the two occurs in
what is known as a “theta solvent,” in which the attractive and
repulsive interactions exactly cancel and the polymer can be
described by the statistics of a random walk in three dimen-
sions [11], and three-body interactions become dominant at
the theta point in two dimensions [12]. The theta point is a tri-
critical point [13], in that it not only separates the solvent-rich
and polymer-rich states [14], but also delineates between a
first- and second-order transition between the two. In practice,
the theta point can be found either by fixing the intrachain
interaction strength and varying the temperature, or by fixing
the temperature and varying the interaction strength with the
reciprocal effect. An equivalent transition between swollen
and collapsed states may be observed in self-avoiding random
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FIG. 1. Diagrams of four trapped walks on a square lattice. The
top figures are trapped after 19 steps and the bottom after 99. The left
figures were generated at βε = 0 and the right figures at βε = 1. The
first step is indicated with a green arrow, and the final trapped step
is indicated with a red arrow. Gray arrows indicate the five nearest-
neighbor contacts in (a) and the ten nearest-neighbor contacts in (b).

walks on lattices, where poor-solvent interactions are imple-
mented in terms of an associated energy based on the number
of nearest-neighbor contacts between nonadjacent sites on
each walk [15]. Exact enumeration [16], Monte Carlo [17],
and renormalization-group [18] analysis have identified the
theta condition for square lattice SAWs in terms of the critical
self-attraction strength and the asymptotic behavior at the
transition. While attractive interactions are known to change
the asymptotic behavior of self-avoiding walks, and the grow-
ing self-avoiding walk has been conjectured to have different
behavior from the traditional self-avoiding walk [4,19] (for
example, a smaller scaling exponent ν), there has been no
examination of the effects of self-attraction on the growing
self-avoiding walk. Here, we examine the effect of nearest-
neighbor self-attraction on the growing self-avoiding walk in
order to ascertain the correlation between trapping statistics
and solvent quality and to provide further insight into the
differences between the SAW and GSAW ensembles.

II. THEORY AND SIMULATIONS

A “walk” on a square lattice begins at the site 〈0, 0〉. It
takes its first step toward any of the n = 4 nearest-neighbor
sites with equal probability. For its second step, there are now
n = 3 unoccupied adjacent lattice sites. Steps may be taken
probabilistically into unoccupied adjacent sites until none re-
main, at which point the walk is said to have become trapped.
The earliest that this can occur is after seven steps. Figure 1

shows examples of walks that have become trapped after 19
and 99 steps.

For a purely self-avoiding walk, the probability of taking
a subsequent step to an open lattice site is po = 1

n . More
generally, each of the i = 1, . . . , n available steps may be
assigned an associated energy F such that the probability of
each step is Boltzmann-weighted by the energy

pi ∝ e−βFi . (1)

The thermodynamic β is the reciprocal of the thermal energy,
equivalent to 1/T in natural units. The probability of each of
the n available steps is

pi = e−βFi

∑n
j=1 e−βFj

. (2)

In a system with no interactions beyond self-avoidance, the
associated energy of each step is zero, the probability of each
open step is equal, and Eq. (2) is identical to that of Lyklema
and Kremer [19]. The probability of each possible first step
on a square lattice is 1/4, and it is 1/3, 1/2, or 1 for each
subsequent step depending on the number of empty adjacent
sites. The probability of stepping toward an occupied site is
always zero, in contrast to the Domb-Joyce model [20] in
which an energetic cost is given to multiply-occupied sites,
or the self-avoiding trail model in which only lattice sites but
not edges may be shared [21].

To study the effects analogous to those experienced be-
tween nonadjacent monomers in a polymer chain in a poor
solvent, we include a negative energy associated with nearest-
neighbor contacts between nonadjacent sites [indicated with
gray arrows in Figs. 1(a) and 1(b)]. Such a model is typi-
cally used when discussing the theta-point transition in lattice
walks. The energy of each walk in the ensemble depends
favorably on the total number m of nonadjacent occupied
nearest-neighbor lattice sites, with interaction energy ε per
pair:

Fi = −εm. (3)

The Boltzmann-weighted probability of each state is

pi = eβεmi

∑n
j=1 eβεmj

. (4)

In simulations parametrized to physical polymers, poor-
solvent behavior corresponds roughly to values of βε above
0.5 [22]. In the GSAW ensemble, the number of new nearest-
neighbor contacts arising from a step will be between 0 and
3. Since each possible state shares a common “history,” the
number of contacts in the (N − 1)th step need not be recom-
puted. For example, the final step in Fig. 1(a) gains three new
nearest-neighbor contacts. If the last step had been up instead
of right, it would have gained one new contact, and zero if
it had been to the left. Counting every step, rather than just
new steps, the choices would be between two, three, and five
steps. Computing the probability of a given step in the above
situation using Eq. (4) acquires a factor of exp(2βε) in both
the numerator and denominator if total steps (rather than new
steps) are taken into account, which have no net effect. For
computational ease, the probabilities need only be computed
based on the number of new contacts in each potential step. In
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all nontrapped walks, the probability of each allowable step
sums to unity. In the above example, the total probability is

pt = 1

1 + eβε + e3βε
+ eβε

1 + eβε + e3βε
+ e3βε

1 + eβε + e3βε
= 1.

(5)

Growing self-avoiding walks were simulated with MATLAB

using parallel CPU computation. The uniform random number
generation in MATLAB is based on the Mersenne Twister [23].
Walks were simulated for βε from 0 to 0.6 in increments
of 0.01, and up to 3.3 in increments of 0.1. At least 75 000
walks were generated for each value of ε, with additional
walks generated for specific values of interest. 1.25 million
were generated for the ε = 0 case. For βε values of 6 and
10, 100 000 walks of maximum length 600 were generated to
study chain statistics, but it was computationally unfeasible to
study trapping at large ε.

III. RESULTS AND DISCUSSION: TRAPPING

There are several metrics that can characterize the char-
acteristic length of a self-trapping walk, including the mean,
median, and peak of the probability distribution. Here, we will
primarily discuss the mean trapping length and its dependence
on the nearest-neighbor attraction strength. Other metrics of
the trapping distribution are presented in the Appendix.

In the simple case of zero self-attraction, we find that the
mean trapping length is 70.85 ± 0.05, consistent with the
findings of Hemmer and Hemmer [3], and within two standard
errors of the computations from Pfoertner [10]. The findings
from Renner [9] are approximately 1.0 greater than those of
Hemmer, Pfoertner, and the present work, suggesting a node-
versus-step discrepancy.

Trapping requires that the walk first creates a void bounded
by occupied sites, and then walks into the void. Voids are
unlikely to form in the limit of strong self-attraction, so it may
be expected that the mean trapping length increases with the
attraction strength. Indeed, we do observe an exponential in-
crease in the mean trapping length with respect to ε [Fig. 1(a)].
For βε > 1, the mean trapping length increases exponentially,
approximately described by the function 〈N〉 ∝ e1.12βε . The
largest value of βε for which we measured full trapping statis-
tics was 3.3, at which the mean trapping length was 1152. In
100 000 runs up to length 600, only 120 walks became trapped
at βε = 6 (the lowest at 77 steps), and no trapping events were
observed at βε = 10.

Notably, there is a local minimum at approximately ε =
0.28 at which the mean trapping length is 67.2 [Fig. 2(b)].
While counterintuitive, the local minimum may be understood
by considering that a walk entering a previously formed void
will likely have more nearest-neighbor contacts than if it
were to avoid the void. When self-attraction is strong, voids
are less likely to form for walks to become trapped, but
when self-attraction is weak, there is no bias to walk into
the voids that do form. The local minimum in the trapping
length arises when there is sufficient self-attraction to bias
the walks into voids, without suppressing their formation
altogether.

FIG. 2. (a) Mean trapping length of growing self-avoiding walks
as a function of the nearest-neighbor self-attraction strength. The
dashed line shows an exponential function with a best-fit coefficient
of 1.12. (b) The local minimum in trapping length with respect to
attraction strength. The minimum is at approximately βε = 0.28 and
〈N〉 = 67.2.

To further understand the local minimum in the mean
trapping length, we can consider the shortest trapped state as
an example, which can occur after seven steps. To become
trapped after seven steps [Fig. 3(a)], the third and fifth step
must both be in an unfavored direction in order to open a
void, while the final step must be the most favored step into
the void. The exact probability of trapping after seven steps
can be calculated from the product of the probability of each
necessary step:

P7 = 2

27

e3βε

(2 + eβε )(2 + e2βε )(1 + eβε + e3βε )
. (6)

This is derived in further detail in the Appendix. The min-
imal trapping probability is nonmonotonic with respect to the
attraction strength, with a local maximum at approximately
0.234. The minimal trapping probability is well-described
by numerical data [Fig. 3(b)]. The maximum in the N = 7
trapping probability is analogous to the minimum in the mean
trapping length. In principle, one could calculate exact proba-
bilities for longer trapped states and derive the mean trapping
length 7P7 + 8P8 + 9P9 . . . , but this becomes difficult as the
number of possibilities increases. The minimal trapping prob-
ability for the triangular and honeycomb lattices can also be
derived, showing that the same local maximum exists in the
triangular lattice, but not the honeycomb.

The distribution of trapping lengths was previously de-
scribed by Hemmer and Hemmer [3] as power-law growth
below the peak and exponential decay beyond the peak,
finding that for ε = 0, p(N ) ≈ (N − 6)3/5e−N/40. Renner [9]
described similar behavior with a more complex function. We
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FIG. 3. The shortest self-trapping walk lasts seven steps. (a) An
example of a minimally trapped walk. Red lines highlight steps
necessary for minimal trapping, which are unfavorable because they
are not in the direction that increases the number of nearest-neighbor
contacts. The final step, highlighted in green, leads to trapping and
maximizes the number of nearest-neighbor contacts. (b) Calculated
probability of trapping after seven steps, according to Eq. (6), over-
laid with simulation results.

may examine histograms of trapping probability at various ε

and see that the peaks are indeed shifted to the right and the
tails become broader with increasing βε. We can, in princi-
ple, make similar fits to histograms and examine how the fit
parameters depend on ε. The trapping probability is however
not characterized by a single distribution, but two. Even-odd
oscillation in the trapping probabilities has been observed for
ε = 0, with odd-valued trapping being slightly more likely
(for example, the probability of trapping after eight steps
is 5/6 that of seven steps). This can be explained by the
abundance of trapped SAWs of various lengths, which itself
has even-odd dependence [10]. The asymmetry becomes more
pronounced with increasing βε, where histograms curves cor-
responding to each parity are clearly distinct (Fig. 4). The
probability of trapping in an even state decreases continu-
ously with βε, but the distribution of even trapping lengths
is typically longer than that of odd: the ratio of the mean
of the odd-length to even-length walks reaches a plateau of
about 1.05 (Fig. 5). It may be conjectured that the parity
asymmetry is an artefact of the square lattice. We also note
that the nonmonotonic trend in the trapping probability with
respect to the attraction strength is not present in the parity
asymmetry.

FIG. 4. Probability distribution of trapping lengths at βε values
of 0, 1, 1.5, and 2. Odd trapping lengths are indicated with solid sym-
bols and even trapping lengths with open symbols. There is strong
parity oscillation, which is heightened with increasing self-attraction.

IV. RESULTS AND DISCUSSION: CHAIN STATISTICS

While the primary aim of this study was to examine the
effect of self-attraction on self-trapping, we may also exam-
ine the statistics of the growing self-avoiding walk ensemble
in comparison to traditional self-avoiding walks. We preface
this by noting that attrition due to self-trapping leads to sig-
nificantly reduced samples of large walks, which are most
important for evaluating critical behavior.

The metric we use to discuss chain statistics is the radius of
gyration, Rg, which is the standard deviation of the position of
every node in the walk, relative to the center-of-mass position.
It may be compared to the end-to-end distance, Ree, which
is the Pythagorean distance between the origin and the N th
site. Both the end-to-end distance and the radius of gyration
are expected to scale according to a power law with respect
to N for sufficiently long walks, described by an exponent ν,
referred to as the scaling exponent.

FIG. 5. Parity asymmetry as a function of increased attraction
strength. Black points indicate the ratio of odd-length trapped walks
to even-length trapped walks, which increases continuously. Red
points indicate the ratio of the means of the even-length population
to the odd-length population, which approaches a plateau near 1.05.
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For traditional SAWs in two dimensions, the “good sol-
vent” scaling exponent is 0.75, known as the Flory exponent.
For collapsed chains, because the area of a walk is pro-
portional to its length, the exponent is expected to be 0.5.
For asymptotically long chains, the exponent is 0.75 at any
temperature above the theta point and 0.5 at any temperature
below it, with a transition at which the exponent is 4/7 ≈
0.57. For finitely long chains, there is a smooth transition from
0.75 through 4/7 toward 0.5 [24].

There has been uncertainty in the literature over whether
the GSAW follows the same asymptotic behavior as the tra-
ditional SAW with regard to its universal exponents. Initially
the exponent ν was determined by Majid et al. [4] to be 0.66,
followed by Lyklema and Kremer [19], who estimated 0.68;
both are below the Flory value of 0.75. Subsequently, Lyklema
and Kremer argued that the exponent ν would approach the
Flory value for walks that were of such great lengths that the
convergence [would likely never be seen via simulation] [2].

To understand why the GSAW may be asymptotically
smaller than the SAW, consider the probability of finding a
walk extended along a straight line. For the GSAW, the first
step may be taken in any direction, and each subsequent step
has a 1/3 probability of remaining straight. The probability of
finding a length-N GSAW in a straight line is thus (1/3)N−1.
For a SAW of length N , there are four extended walks, and
asymptotically ∼2.64N total walks [25], meaning the proba-
bility of finding a straight path is 4/2.64N . It is asymptotically
much more likely to find an extended SAW than an extended
GSAW, and it can be argued that ensemble-averaged GSAWs
are asymptotically smaller than SAWs.

While we cannot answer the question of asymptotic scal-
ing in the affirmative or negative, we can examine the effect
of self-attraction on GSAW statistics in order to identify
the swollen-collapsed transition at the theta point. For a
square lattice SAW with nearest-neighbor attraction in two
dimensions, the transition occurs at βε ≈ 0.66 with a scaling
exponent of 4/7 [26].

The scaling of the mean radius of gyration as a func-
tion of walk length for several values of ε may be seen in
Fig. 6(a). Generally, the radius scales as a power law, with
the exponent decreasing with increasing self-attraction. For
ε = 0, the scaling is similar to the 0.68 seen by Lyklema and
Kremer [19], while for large βε it approaches the 0.5 expected
in the compact state. We note that for large ε, the behavior of
a growing walk is essentially that of an expanding spiral, and
many of the traits of an ensemble of “random” walks are no
longer seen.

Figure 6(b) shows the results of least-squares power-law
fits to various parts of the Rg-vs-N data. As expected, there is a
smooth transition with ε from between 0.65 and 70 at ε = 0 to
a collapsed state near 0.5 for large βε. The transition is sharper
when the fit is made with larger values of N , but there is no
definitive evidence of a first-order transition between coil-like
and globule-like phases [13,14].

One means of identifying the theta point is to find the
value of the attraction strength for which length dependence
vanishes. While the curves appear to converge near βε = 3,
they do not meet at a single point. Rather, the intersection
between two ν-ε curves tends to move toward larger ε with
increasing length. We note that the traditional SAW θ point,

FIG. 6. (a) Mean radius of gyration of the ensemble on loga-
rithmic axes at βε values of 0, 0.5, 1, 1.5, 2, 2.5, 3, and 10. Data
were included until the standard error exceeded 10%. For clarity,
error bars are only shown on the final point, which are at lengths of
367, 334, 459, 639, 1063, 1638, 2660, and 600 in order of increasing
βε. For comparison, power-law curves are shown for the 2D Flory
exponent (0.75), the expectation for the collapsed phase (0.5), and
the value ascertained by Lyklema and Kremer (0.68) [19]. (b) Best-fit
length scaling exponent of Rg, plotted as a function of the attraction
strength. The fits were taken at lengths 10–30, 30–100, and 100–300.
The green circle represents the θ condition for standard self-avoiding
walks. ε = 0 values that would otherwise be absent on a logarithmic
axis are shown on the y axis with horizontal lines.

at βε = 0.66 and ν = 4/7, is entirely inconsistent with the
GSAW data, and we expect from Fig. 6(b) that more data at
increased lengths would push the transition toward even larger
ε. We present additional data to support this in the Appendix.
Although we have not uniquely identified the θ point for the
GSAW, we can conclusively refute the hypothesis that the
critical value of βε is the same as the SAW.

Another metric we can examine is the ratio between the
squares of the radius of gyration to the end-to-end distance,
also known as a universal amplitude ratio. This ratio reaches
a universal constant for asymptotically long polymers, which
is approximately 0.18 at the theta point for square lattice
walks [26]. In the swollen regime, the ratio is approached from
below with respect to length, while in the collapsed regime
it is approached from above, and the ratio is approximately
independent of length at the theta point [5]. Examining the
data in Fig. 7(a), it can be seen that the ratio increases with
small N for values of βε above 1.5 and decreases below
it. For any value of βε, however, there is a length beyond
which the ratio begins to decrease such that no value of ε

will produce a horizontal curve. Figure 7(b) shows the ratio
at several lengths as a function of the attraction strength with
a similar trend to the scaling exponent data in that there is
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FIG. 7. (a) Universal amplitude ratio of the squares of the radius
of gyration Rg and end-to-end distance Ree as a function of chain
length for several values of attraction strength. The dashed horizontal
line represents the value for the SAW theta condition. (b) The same
ratio plot as a function of the attraction strength for several lengths.
The scarce data for small βε at N = 200 are not shown. The green
circle represents the theta point for SAWs.

minimal but nonzero length dependence around βε = 3, but
it moves toward greater ε with increasing length. Similar to
the scaling exponent data, there is no single value of βε for
which the universal amplitude ratio converges independently
of length, and to the extent that there is convergence, it is not
at the SAW value of either βε or R2

g/R2
ee.

A final parameter of interest is the persistence length of the
walk, sometimes known as the “persistency” to distinguish it
from the persistence length of the wormlike chain. The persis-
tence length of a self-avoiding walk represents the “memory”
a walk has for the direction of its first step. It is defined by
Grassberger [27] over an ensemble of walks of length N as
the mean coordinate of the N th step in the direction of the first
step, or equivalently the dot product of the position vector of
the N th step and the first step.

Based on enumerations of self-avoiding walks on the
square lattice, Grassberger concluded that the persistence
length diverged with a 0.06 power law dependence on
length [27]. Redner [29] argued using the same data that the
persistence was logarithmically divergent, rather than obeying
a power law. Eisenberg [30] later used Monte Carlo tech-
niques and examined angular correlation functions to argue
that they decayed in such a way as to imply a finite persistence
length. Granzotti et al. recently extended Eisenberg’s result to
state that the persistence length was in fact 2.66 [28].

Figure 8(a) shows the persistence as a function of length
for four values of ε. In general, the persistence converges
beyond 10 or 20 steps, with noticeable even-odd effects. The
convergent value typically decreases with increasing attrac-
tion strength. For the ε = 0 case, the persistence converges to
approximately 1.402 ± 0.001. It is tantalizing but unjustified

FIG. 8. (a) The persistence, defined as the mean position of the
N th step in the direction of the first step, as a function of walk
length for several values of the attraction strength. The persistence
has a convergent value that decreases with attraction strength. For
comparison, the random-walk value of 0.5 and the values for the
traditional self-avoiding walk [28] and its asymptotic value of 2.66
are shown. (b) Persistence length as measured by the mean value
from length 30 to 60, as a function of attraction strength.

to ascribe the square root of 2 to this value. Figure 8(b) shows
the persistence length as a function of attraction strength,
which decreases smoothly from 1.4 toward approximately 0.5.
Compared to the ongoing controversy over the convergence of
the SAW persistence, as well as to finite-length effects in other
metrics, it is quite clear that the GSAW persistence converges.

V. CONCLUSION

Including nearest-neighbor attraction in the growing self-
avoiding walk tends to increase the average number of steps
before trapping. However, a local minimum in the trapping
length arises for weak values of self-attraction. This can be un-
derstood from the idea that a walk must both open a void and
step into it in order to become trapped; strongly self-attractive
walks do not open voids, while weakly self-attractive walks
will not necessarily step into them. Investigating the chain
statistics of the GSAW ensemble in comparison to the tradi-
tional SAW, we have shown that the theta point, if it exists,
does not occur at the same value of ε, and that the persistence
length is convergent and approximately half that of the SAW.
Many of the effects seen in the limit of strong attraction mani-
fest themselves as odd-even effects that may be artefacts of the
square lattice and include only nearest-neighbor interactions.
Broadening the analysis to other lattices and including next-
nearest-neighbor interactions would be a worthwhile future
investigation. It may be asked whether there is a correlation
between trapping statistics and chain statistics, in the same
way that the growth of SAW enumerations shares a parameter
with its metric scaling [31]. This is not manifestly the case,
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FIG. 9. (a) Mean, median, and distribution peak of the trapping
length as a function of the attraction strength. (b) Ratio of the me-
dian and the peak to the mean trapping length as a function of the
attraction strength.

as the most interesting feature of the trapping statistics occurs
at βε ≈ 0.25, and the most interesting feature of the chain
statistics occurs at βε ≈ 3. We hope that this work encour-
ages more computationally sophisticated investigations into
the GSAW chain and trapping statistics.
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APPENDIX

1. Alternative trapping metrics

Figure 9(a) shows the median and distribution peak of
the trapping length as a function of the attraction strength
alongside the mean. The peak of the distribution is found
based on a fit to each trapping histogram using Hemmer and
Hemmer’s power-exponential function [3]. This measurement
is less noisy than the mode of the distribution, but it may
slightly overpredict the location of the peak (within one step
length), in addition to ignoring parity effects. Figure 9(b)
shows the ratio of the median and peak to the mean, both of
which increase weakly with the attraction strength.

2. Minimal trapping probability

Consider the seven labeled steps in Fig. 3(a). There are
eight possible configurations, with fourfold rotational symme-
try on the first step and twofold reflection symmetry on the
second step. We will consider the probability that each of the
first seven steps of a walk will be the step required for minimal
trapping. The first step may be taken in any direction,

p1 = 4 1
4 .

The second step may be taken in any of three directions, two
of which lead to trapping,

p2 = 2 1
3 .

Assuming without loss of generality that the first two steps
are in the +y and +x direction as in Fig. 3(a), if the third

FIG. 10. Local scaling exponent of the radius of gyration for
several values of βε, plot against the reciprocal of the walk length.

step is taken in the −y direction it will increase the number of
neighbor contacts by 1. The probability of the necessary third
step is

p3 = 1

2 + eβε
� 1

3
.

The fourth step cannot change the number of contacts,

p4 = 1
3 .

The fifth step is similar to the third in that it must avoid
increasing the number of contacts by 2,

p5 = 1

2 + e2βε
� 1

3
.

The sixth step cannot change the number of contacts,

p6 = 1
3 .

Finally, the seventh step must be in the +y direction to in-
crease the number of contacts by 3 in order to become trapped.
An alternative step in the −x direction would increase the
number of contacts by 1, and a step in the −y direction would
leave it unchanged:

p7 = e3βε

1 + eβε + e3βε
� 1

3
.

The product of each of these probabilities is the total prob-
ability of becoming trapped after seven steps, as outlined in
Eq. (6) and plotted in Fig. 3(b). There are two nondegenerate
eight-step trapped walks, the probabilities of which are left as
an exercise for the reader.

3. Length dependence of scaling exponents

Figure 6(b) shows the best-fit scaling exponents at var-
ious lengths. Following the conventions of Lyklema and
Kremer [19] and others, we can define the “local” scaling
exponent for walks of a given length as

ν(N ) = ln (Rg(N + 1)) − ln (Rg(N − 1))
ln(N + 1) − ln(N − 1)

.
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Figure 10 shows the local scaling exponent at various values
of βε as a function of reciprocal length, such that its behavior
may be extrapolated toward asymptotically long chains. The
data are truncated when they become excessively noisy. Each
curve starts at small N at a local maximum (the “rodlike”
limit), reaches a global minimum, and then approaches its
asymptotic limit as (1/N) approaches 0. The second conclu-
sion of Lyklema and Kremer [2] is that the asymptotic limit

of the ε = 0 data is 0.75, which we cannot support or refute
with our current data. The jagged behavior of the βε = 3
data is a lattice-induced parity effect. Although each set of
data approaches its asymptotic limit from below, if there is
a discrete transition at a theta point for which there is min-
imal length dependence, we might expect data beyond that
point to approach the limit from above [32], which is not
observed.
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