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Spectral statistics of multiparametric Gaussian ensembles with chiral symmetry
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The statistics of chiral matrix ensembles with uncorrelated but multivariate Gaussian distributed elements is
intuitively expected to be driven by many parameters. Contrary to intuition, however, our theoretical analysis
reveals the existence of a single parameter, a function of all ensemble parameters, which governs the dynamics
of spectral statistics. The analysis not only extends the formulation (known as complexity parameter formulation)
for Hermitian ensembles without chirality to those with it but also reveals the underlying connection between
chiral complex systems with seemingly different system conditions as well as between other complex systems,
e.g., multiparametric Wishart ensembles as well as generalized Calogero-Sutherland Hamiltonians.
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I. INTRODUCTION

For systems in which the relevant behavior is governed by
a linear operator, it is useful to consider the matrix represen-
tation in a symmetry preserving basis which in turn puts the
constraints on the type of matrix elements and/or structure
of the matrix [1–3] (referred to as matrix constraints). The
underlying complexity in real systems, however, often man-
ifests through fluctuations of physical properties making it
necessary to consider their statistical behavior [4–6]. This in
turn requires an analysis of not only single matrices but also
their ensemble, with the latter’s choice sensitive to the system
specific conditions, e.g., hopping range, dimensionality, and
boundary conditions; the conditions on the choice of ensem-
ble, i.e., its parameters as well as nature of randomness, are
referred to as ensemble constraints. The latter can conspire
with matrix constraints in multiple ways to give rise to dif-
ferent types of statistical behavior. This motivates the present
paper, in which the primary focus is to analyze the influence of
a specific matrix constraint, namely, chiral symmetry, on the
statistical behavior of complex systems with varying ensemble
constraints, e.g., disorder [2]. The motivation comes not only
from the fundamental aspect of the topic but also from a range
of applications in which complexity appears hand in hand
with chirality, e.g., charge transport in graphene [7], spec-
tral fluctuations in QCD Dirac operators [8,9], conductance
fluctuations in mesoscopic systems [1,10], and topological
systems [11–14].

Consider a complex system with chiral symmetry de-
scribed by an ensemble of chiral Hermitian matrices. For
special cases in which the complexity subjects the matrix
elements to independent and identical distributions (e.g., cases
with ergodic dynamics in the basis space), thus resulting in
a minimum number of ensemble constraints, the system can
then be represented by a basis-invariant chiral ensemble, e.g.,
a chiral Gaussian ensemble invariant under orthogonal, uni-
tary, or symplectic transformation (referred to as Ch-GOE,
Ch-GUE, and Ch-GSE, respectively) [4–6,8]. For generic

cases, however, the information about inhomogeneity of sys-
tem conditions appears through ensemble parameters (e.g.,
those with localized dynamics in basis space), and as a con-
sequence an appropriate ensemble representation depends on
many of them. Any variation of the system conditions changes
the ensemble parameters, thus leading to a multiparametric
evolution of the matrix ensemble (in a fixed basis), and it
is natural to wonder whether any universality classes can
be identified during nonequilibrium stages. As revealed by
previous studies, the answer is in the affirmative at least in the
case of the multiparametric, nonchiral, Hermitian ensembles
(of real-symmetric, complex Hermitian, or real-quaternion
matrices); the reasoning is based on a common mathematical
formulation of their statistical properties in which ensemble
details enter only through a single function of all distribution
parameters. Using the function, referred to as the complexity
parameter, the nonchiral ensembles can be mapped to a single
parametric Brownian ensemble of corresponding symmetry
class (real, complex Hermitian, or real-quaternion matrices)
[15–20]. The latter can be described as an ensemble of Her-
mitian matrices H = H0 + √

Y V , with H0 taken from one of
the stationary ensembles of Hermitian matrices, subjected to
perturbation V taken from another stationary ensemble, and Y
as the perturbation parameter [21–23]. The mapping not only
reveals the underlying universality among nonequilibrium
(nonstationary or basis-dependent) Hermitian ensembles but
also helps the application of all available information for the
latter to the former. A similar formulation in the case of chiral
Hermitian matrices is very desirable as well as intuitively
expected but is not technically obvious; this is because their
off-diagonal blocks are in general non-Hermitian. This moti-
vates us to analyze the multiparametric Gaussian ensembles
of chiral Hermitian matrices with and without time-reversal
symmetry and seek a single parametric formulation of their
spectral and strength (i.e., eigenfunction) fluctuations. As dis-
cussed below, the diffusion equation for the ensemble density
[joint probability density function (JPDF) of the matrix el-
ements] in terms of the complexity parameter turns out to
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be analogous to that of a chiral Brownian ensemble (Ch-
BE), a perturbed stationary chiral ensemble with its diffusion
governed by the perturbation parameter [24]; a direct diago-
nalization of the diffusion equation then leads to analogous
diffusion equations for the spectral as well as strength statisti-
cal measures. Some of the fluctuation measures for the Ch-BE
are theoretically analyzed in [24], with their formulation ex-
pressed in terms of the perturbation parameter. By replacing
the latter by the complexity parameter, the information can
then directly be used for the multiparametric Gaussian ensem-
bles of chiral Hermitian matrices.

The implications of the single parametric formulation of
the statistics for the multiparametric chiral ensembles are
many; e.g., it reveals (i) an analogy among the statistics
of different complex systems, represented by the ensem-
bles of different ensemble constraints but the same matrix
constraints; (ii) an analogy of the statistics of a complex
system for different system conditions; (iii) the connection
to a variant of the Calogero-Sutherland Hamiltonian (CSH),
thus providing further evidence supporting the claim that the
CSH is the hidden backbone Hamiltonian of the world of
complex systems [25]; and (iv) the possibility of a simi-
lar formulation for multiparametric Wishart ensembles. The
importance of these connections as well as the implications
makes it necessary to verify our theoretical predictions and
is the primary focus of the present paper. For this purpose, we
numerically analyze the spectral statistics of the four Gaussian
chiral ensembles with different functional dependence of the
distribution parameters.

The paper is organized as follows. Section II describes the
diffusion of the multiparametric probability density of the chi-
ral ensemble under consideration and presents the complexity
parametric formulation of its diffusion when the ensemble pa-
rameters (a few or all) are varied. As the steps are essentially
the same as in the nonchiral case discussed in [16], we avoid
repetition here and only mention the diffusion equation for
the ensemble density. An exact diagonalization of the latter
then leads to complexity parameter driven diffusion equations
for the joint probability distribution functions of the eigen-
values and eigenfunctions. The relevant steps are described
in Sec. III; here again we mention only those steps which
are different from the nonchiral cases. The numerical analysis
presented in Sec. IV verifies our theoretical predictions. We
conclude in Sec. V with a brief summary of our results and
open questions.

II. MULTIPARAMETRIC GAUSSIAN ENSEMBLES WITH
CHIRALITY AND HERMITIAN CONSTRAINTS

A. Matrix representation

A (2N + ν) × (2N + ν) Hermitian matrix with chirality
constraint can be described as

H =
(

0 C
C† 0

)
, (1)

where C is a general N × (N + ν) complex matrix if H has no
other antiunitary symmetry; as clear from above, Hk,N+l = Ckl

[1,2,4,5]. For cases with time-reversal symmetry also present,
C is a real or quaternion matrix based on the presence or
absence of rotational symmetry (i.e., integer or half integer

angular momentum). For clarity purposes, here we confine
our study only to C real or complex with no other matrix con-
straints. The elements of the C matrix can then be written as
Ckl = ∑β

s=1(i)s−1Ckl;s where k = 1 → N, l = 1 → (N + ν),
and β = 1 or 2 for C real or complex. (The generalization
to quaternion C can be done following similar steps but is
technically tedious and is therefore not included here.)

B. Diffusion of matrix elements: Ensemble complexity
parameter

Using Eq. (1), the distribution, say ρ(H ), of the elements
of the matrix H can be expressed in terms of those of C:

ρ(H ) = ρc({Hk,N+l}) Fc Fh (2)

with ρc(C) as the probability density of the ensemble of C
matrices and with Fc and Fh as the constraints due to chirality
and Hermiticity of H , respectively: Fc = ∏N

k,l=1 δ(Hkl ) and
Fh(H ) = δ(H − H†).

For simple presentation of our formulation, here we con-
sider elements of C as independent Gaussian distributed, with
arbitrary mean and variances:

ρc(C; h, b) = N exp

[
−

∑
k,l,s

1

2hkl;s
(Ckl;s − bkl;s)2

]
(3)

with
∑

k,l,s ≡ ∑N
k=1

∑N+ν
l=1

∑β

s=1 and N as a normalization
constant. Here h ≡ [hkl,s] and b ≡ [bkl,s] refer to the matrices
of variances and mean values of Ckl;s. Clearly, with different
choices of h and b matrices, Eq. (3) can give rise to many
chiral ensembles; some of them are used below in Sec. IV for
numerical verification of our results.

Using Hk,N+l = Ckl , Eq. (3) leads to the ensemble density
ρ(H ) of the H matrix:

ρ(H ; h, b) = N exp

[
−

∑
k,l,s

1

2hkl;s
(Hk(N+l ) − bkl;s)2

]
Fc Fh.

(4)
We now consider a diffusive dynamics in the ensemble

space of C matrices by a smooth variation of the parameters
hkl;s and bkl;s. As the dynamics occurs in C-matrix space,
it preserves the chirality of H . Proceeding as discussed in
[17,19] for the nonchiral case, it can be shown that the dif-
fusion depends on the multiple parameters hkl;s and bkl;s only
through a function Y , the latter referred to as the ensemble
complexity parameter, if the matrix basis preserves the global
constraints on the system. The single parametric evolution of
ρc(C) can be described as

∂ρc

∂Y
=

∑
k,l,s

∂

∂Ckl;s

[
∂ρc

∂Ckl;s
+ γ Ckl;s ρc

]
(5)

with

Y = − 1

2Mγ
ln

[ ′∏
k,l

β∏
s=1

|xkl;s| |bkl;s|2
]

+ const (6)

where xkl;s = 1 − 2 γ hkl;s and
∏′

k,l implies a product over
nonzero xkl;s and bkl;s, with M as their total number [for ex-
ample, for the case with all xkl;s �= 0 but bkl;s = 0, we have
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M = βN (N + ν), and, for the case with all xkl;s �= 0 and
bkl;s �= 0, we have M = 2βN (N + ν)]. Further γ is an ar-
bitrary parameter, related to the final state of the ensemble
(giving the variance of matrix elements at the end of the
evolution), and the constant in Eq. (6) is determined by the
initial state of the ensemble.

Substitution of Ckl;s = HkN+l;s in the above then leads to
the evolution equation for ρ(H ):

∂ρ

∂Y
=

∑
k,l,s

∂

∂HkN+l;s

[
∂ρ

∂HkN+l;s
+ γ HkN+l;s ρ

]
. (7)

Equation (7) describes the diffusion of ρ(H ) with a fi-
nite drift, starting from an arbitrary initial condition, say
ρ0(H,Y0) at Y = Y0, and approaching the steady limit of
CH-GOE or CH-GUE as Y → ∞. With system information
in Eq. (7) appearing only through Y , its solution ρ(H |H0)
remains the same for different ensembles, irrespective of
the details of h and b matrices, if they share the same Y
value and are subjected to the same global constraints. The
latter condition can be explained as follows. A generic trans-
formation maps M independent variables (i.e., sets h and
b) to another set {Y,Y2, . . . ,YM} of independent variables:
hkl;s = hkl;s(Y,Y2, . . . ,YM ) and bkl;s = bkl;s(Y,Y2, . . . ,YM ).
This transforms ρ(h, b) → ρ(Y,Y2, . . . ,YM ). Equation (7) de-
scribes the Y -governed evolution of ρ while Yj , j = 2 →
M remain constant. As discussed in [2,17], these M − 1
constants can be chosen in terms of the basis constants
and initial conditions if the basis (chosen to represent H)
is kept unchanged during the evolution. The statistics dur-
ing the transition is then governed by Y only with Yj ,
j = 2 → M appearing as the constants of evolution. For
analysis of physical properties, it is important to choose
a physically motivated basis. For comparison of ensembles
subjected to the same global constraints, the appropriate ba-
sis is the one which preserves these constraints. This in
turn ensures the same evolution constants Yj , j = 2 → M
as well as a common initial state for the ensembles un-
der consideration (the related examples for nonchiral cases
are discussed in [2,16,17] and can be generalized for chiral
ones).

In [17], a similar diffusion equation of the matrix elements
confined by harmonic potential and governed by a single
parameter was also derived for the nonchiral Hermitian en-
semble of multiparametric Gaussian ensembles (also see [19]
for an alternative approach). Equation (7) is different from
its nonchiral counterparts only in terms of the distinct matrix
elements which appear in the equation: the former has con-
tributions only from the elements in one off-diagonal block
C (or C†) of the H matrix while the latter has it from all
off-diagonals.

A Ch-BE is a special case of the multiparametric chiral
Gaussian ensembles [its ensemble parameters are the same as
given in Eq. (18) for the chiral Rosenzweig-Porter ensemble
(Ch-RPE)]. The equation governing evolution of the matrix
elements of Ch-BE is derived in [24] [see Eq. (32) therein]
and is analogous, as expected, to Eq. (7). Various statistical

measures for the former are also discussed in [24] and, as dis-
cussed below, can directly be applied to the multiparametric
chiral Gaussian ensembles following the analogy.

III. SPECTRAL STATISTICS

With H given by Eq. (1), let E be its eigenvalue ma-
trix (Emn = enδmn) and U the eigenvector matrix, with Ukn

as the kth component of the eigenvector Un corresponding
to eigenvalue en. Following from Eq. (1), Tr(H) is zero,
which then implies that the eigenvalues of H exist in equal
and opposite pairs or are zero; let us refer to such pairs as
en, en+N with en = −en+N , 1 � n � N . Clearly, with E as the
(2N + ν) × (2N + ν) diagonal matrix, the number of zero
eigenvalues is ν. Henceforth, the eigenvalues are labeled such
that ek , k = 1 → N correspond to positive eigenvalues with
their negative counterparts lying at k = N + 1 → 2N , and
k = 2N + 1 → 2N + ν refers to zero eigenvalues.

A variation of system conditions perturbs H , resulting in
dynamics of the matrix elements and thereby of the eigen-
values and eigenfunctions. The latter’s response to change in
H can be derived from the eigenvalue equation HU = UE
along with the unitary condition U †U = I2N+ν ; this has been
discussed in detail for nonchiral cases in many previous stud-
ies [15,17–20] and in [24] for the chiral Brownian ensemble.
Although the intermediate steps in chiral cases are essentially
similar to the nonchiral ones, their final responses turn out to
be different. The difference mainly arises from the response
of the pairwise symmetric eigenvalues, chirality induced rela-
tions between eigenfunction components, as well as existence
of zero modes in a chiral matrix. As the present paper is
confined to the spectral fluctuation analysis, we include chiral
spectral responses in Appendix A to make the presentation
self-contained.

A. Joint probability distribution of eigenvalues

As in the nonchiral case [15,20], an exact diagonalization
of Eq. (7) leads to the diffusion equations for the eigenvalues
and eigenfunctions. These equations can also be obtained
by standard second order perturbation theory for Hermitian
matrices with chiral symmetry. With primary focus on the
eigenfunction statistics, the perturbation route was used in
[24] in the case of Ch-BEs [24]. This route, however, is based
on H expressed as the sum of two matrices (the elements
of one matrix subjected to perturbation by the other, which
in turn manifests as perturbation of one stationary ensemble
by another), and its application to the multiparametric case
(where the parameters of a single ensemble are subjected to
perturbation) is not directly obvious. It is therefore instructive
to consider the exact diagonalization route too (it also gives
insights about how the dynamics of ρ in the matrix space is
mimicked by that in the parameter space).

Let us define P(E ) ≡ P(e1, e2, . . . , e2N+ν ) as the JPDF of
the eigenvalues ei, i = 1, 2, . . . , 2N + ν of H :

P(e1, e2, . . . , e2N+ν ) ≡ PN (e1, e2, . . . , eN )
N∏

k=1

δ(ek + ek+N )

×
ν∏

n=1

δ(e2N+n) (8)
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with PN (E ) ≡ PN (e1, e2, . . . , eN ) as the JPDF of the N
nonzero positive eigenvalues. As discussed in Appendix B,

an exact integration of Eq. (7) leads to Y governed evolution
of PN described by the following equation:

∂PN

∂Y
= 2

N∑
n=1

∂

∂en

[
∂

∂en
− β

(
ν + 1/2

en
+

N∑
m=1

2en

e2
n − e2

m

)
+ γ en

]
PN . (9)

(As the derivation is essentially similar to that of nonchiral
cases discussed in [15,17], we avoid repeating the intermedi-
ate steps here but include them in Appendix B.) The above
equation describes the diffusion of PN (E ,Y ), with a finite
drift, from an arbitrary initial state PN (E0,Y0) at Y = Y0. In
limit ∂PN

∂Y → 0 or Y → ∞, the diffusion approaches a unique
steady state: PN (E ; ∞) = Cβ |QN |β with Cβ as the normaliza-
tion constant and

|QN |β =
N∏

m<n=1

∣∣e2
m − e2

n

∣∣β N∏
k=1

|ek|β(ν+1/2) exp

[
−γ

2

N∑
k=1

e2
k

]
.

(10)
It is desirable to seek the solution of Eq. (9) for finite

Y . This is, however, technically difficult, requires a separate
study, and is also beyond the purview of the present paper,
where our main objective is to numerically confirm the va-
lidity of complexity parametric formulation of the spectral
statistics. Important insights in the latter can, however, be
obtained by the following analogy: Eq. (9) for the multi-
parametric case is analogous to that of Ch-BE [24] [this is
as expected, following the analogy of Eq. (7) with evolution
of the ensemble density of a Ch-BE]. Consequently, the the-
oretical results, obtained in [24], for the statistics of chiral
Brownian ensembles can directly be used for the multipara-
metric chiral Gaussian ensembles. For example, following
the same steps as discussed in [24], the diffusion equation
for PN (E ,Y ) can be rewritten in terms of the Schrödinger
equation for the general state �(E ,Y ) = PN (E ,Y )

|Q|β/2 of a variant
of the CSH of the interacting particles (with eigenvalues now
playing the role of particles). The ground state and many of the
excited states of the standard CSH (and many variants) have
already been worked out and relevant information about its
particle correlations is available. The information can then be
used in deriving the solution for PN (E ,Y ) and the spectral cor-
relations for the present case. (A similar connection between
multiparametric Gaussian ensembles without chirality and the
standard CSH has been used in the past to derive the spectral
correlations for the former, although the steps remain essen-
tially the same for the two cases but the difference in confining
potential is expected to manifest in long range correlations).
Alternatively, for the Ch-BE, a hierarchical set of equations
for the spectral correlations is derived in [24] [see Eq. (77)
therein] and can directly be applied for the multiparametric
chiral Gaussian ensembles [with Y in Eq. (76) of [24] now
replaced by Y in Eq. (6)].

Further insights about the spectral statistics in the multi-
parametric chiral case can also be gained by a comparison of
Eq. (9) with its nonchiral counterpart derived in [15,17,19]
[see Eq. (17) of [15] or Eq. (52) of [17]]. A significant differ-
ence in the two equations arises in the form of the contribution
from the repulsion part of the drift term; contrary to the

nonchiral case with repulsion arising from the terms of type
1

en−em
, the chiral case also contains additional terms of type

1
en+em

and (ν+1/2)
en

(the terms arising due to existence of equal
and opposite pairs of eigenvalues as well as zero eigenvalues
and their repulsions). The additional terms are, however, rela-
tively negligible for the spectral ranges |e| � 0 and Eq. (9)
can be approximately reduced to the nonchiral case. This
suggests analogous statistical behavior, away from |e| = 0,
for the two cases, which is also numerically confirmed by
previous studies.

B. Fluctuation measures

The Y -based formulation of the spectral JPDF, given
by Eq. (9), indicates its applicability to a wide range of
chiral ensembles. It also leads to the diffusion equation
for nth order spectral correlation Rn(e1, . . . , en), i.e., the
probability density of n positive eigenvalues irrespective
of the location of other ones, defined as Rn(e1, . . . , en) =

N!
(N−n)!

∫ ∏N
j=n+1 de j Pe(e1, . . . , eN ). Using the spectral den-

sity formula ρ(e) = ∑
n δ(e − en), Rn can also be expressed

as the nth order ensemble averaged level-density correlation:
Rn(e1, . . . , en) = 〈ρ(e1) ρ(e2) . . . ρ(en)〉 with 〈.〉 implying the
ensemble average. Thus Rn(e1, . . . , en), for n > 1, describe
the local fluctuations of the spectral density ρ(e) and R1 is its
ensemble average.

The spectral density in general is system dependent. For
comparison of the local fluctuations imposed on different
spectral density backgrounds, it is imperative to rescale
or “unfold” the levels e j by the local mean level spacing
	loc(e) at the spectral point of interest, say e. The rescaled
correlations can be given as Rn(r1, . . . , rn; e) = limN →
∞ Rn(e1,...,eN )

R1(e1 )...R1(en ) with rn = (en−e)
	loc (e) and r = e 	loc(e). The un-

folding of eigenvalues, however, also rescales the parameter
Y ; the rescaled complexity parameter can be given as [24]
(also see Sec. 6.13 of [4], [6,21–23], and references therein)


e(Y, e) = (Y − Y0)

[	loc(e)]2
. (11)

As clear from the above, the rescaling results in an energy
dependence of the diffusion parameter.

The diffusion equation for Rn for the chiral Brownian
ensemble is discussed in [24] and is applicable for the present
case too (due to analogy of the diffusion equations for PN for
the two cases) but with Y now given by Eq. (6). As discussed
in [24], 
e is obtained by neglecting the variations of the
average level density at e [24] and is therefore applicable
for the nth order local correlations within an energy range,
say e ± n	loc(e), with 	loc(e) dependent on the interaction
among states.
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Local mean level spacing

A determination of 
e from Eq. (11) requires a prior
knowledge of Y − Y0 as well as 	loc. While Y is explicitly
given by Eq. (6), 	loc depends on the underlying eigen-
function dynamics; for the eigenfunctions with nonergodic
dynamics, it can be significantly different from the mean
level spacing 	(e). This can be explained as follows: while
	loc(e) corresponds to only those states at energy e which are
interacting, 	(e) refers to all states at energy e irrespective of
their interaction. As the eigenfunctions localized in different
parts of the basis space do not interact, 	loc(e) is intuitively
expected to be proportional to the average correlation or
localization volume at energy e [26]. Based on the above
reasoning, one possible definition can be given as follows:
	loc(e) = 1

〈ρloc〉 where

ρloc(e) =
N∑

n=1

φn δ(e − en) (12)

with φn as the probability of the nth eigenfunction inter-
acting with other eigenfunctions at energy e (and therefore
occupying the same region as other eigenfunctions with en-
ergies close to e). Note ρloc(e) in general is different from
the standard local density of states. [The latter is defined as
ρ(e, j) = ∑

n |Ujn|2δ(e − en), thus counting the eigenstates
Un having appreciable overlap with or, equivalently, located
close to the basis state j in an arbitrary basis.] Instead ρloc(e)
refers to, in our case, the number of interacting states at energy
e and, therefore, to the probability of states, with their energy
e, occupying the same region in basis space. Clearly, although
the spread of eigenfunctions in the basis space affects ρloc(e)
too, contrary to ρ(e, j), it does not explicitly depend on the
location, i.e., basis state j. Also note that both ρloc(e) and
ρ(e, j) are clearly distinct from the global density of states
ρ(e) = ∑N

n=1 δ(e − en) too, which counts all the eigenstates
at the energy e irrespective of their basis space location as
well as mutual interaction.

From Eq. (12), the determination of ρloc(e) requires a prior
knowledge of φn, but at present this is known only for the
special cases. For example, for the case in which a typical
eigenfunction is delocalized in the entire Hilbert space (e.g.,
a GOE), the above implies φn = 1, which gives 〈ρloc(e)〉 =
R1(e) and 	loc(e) = 	(e). [Note, a GOE has a strong level re-
pulsion and a semicircle level density: R1(e) = 1

π

√
2N − e2.

The latter is almost constant for a large neighborhood of
e ∼ 0 if N is large; this in turn implies 〈ρloc(e)〉 = R1(e).]
Similarly, in the case of localized dynamics, e.g., although two
localized states do not typically overlap they can be localized
in the same region with a small probability of ξ d/(2N ) [with
ξ (e) as the average localization radius at energy e, d as the
system dimension, and 2N as the number of basis states] [26].
This implies φn ∼ ξ d

2N , which gives ρloc(e) = ξ d

2N R1(e). Using
R1(e) = 1

	(e) , this leads to

	loc(e) = 	(e)
2N

ξ d
(13)

(with ξ d/2N as the probability of eigenfunctions localized in
the same region of basis space). For cases where the eigen-
functions are exponentially localized, e.g., in the standard

Anderson Hamiltonian (a single particle moving in a random
potential), ξ d (e) can be approximated by the average inverse
participation ratio 〈I2(e)〉 of the eigenfunctions with energies
∼e: ξ d ≈ (〈I2〉)−1. [For an eigenfunction Un described in a
N-dimensional basis, I2 is defined as I2(Un) = ∑N

k=1 |Ukn|4.
Following from the definition, I2(Un) ∝ 1/N for Un extended
throughout basis space, and I2(Un) = 1 for Un localized on
just one basis state. In general, I2 varies with energy e and
it is a standard practice to consider an averaged I2 of all
eigenfunctions within a given spectral range in which the
average spectral density varies smoothly.] Note, however, that
the ξ − I2 relation mentioned above is not valid in general and
one has to use alternate routes to determine ξ .

As discussed in [24], 
e is the only parameter (besides
the energy range of interest) which appears in the differen-
tial equations determining the local spectral fluctuations. The
latter are therefore expected to be analogous for two differ-
ent ensembles if (i) both have the same 
e value and (ii)
both evolve from an analogous initial condition (statistically).
[Note, as mentioned below Eq. (7), that the final end point of
the diffusion is a chiral GOE or GUE with the matrix element
variance dependent on γ .] Equivalently, the ensembles with
different system conditions but subjected to the same global
constraints (e.g., Hermitian as well as chiral nature of the H
matrix in the present paper) statistically correspond to differ-
ent crossover points on a specific curve (based on the global
constraints) lying between the initial point Y0 and the end point
Ch-GOE or Ch-GUE.

IV. NUMERICAL VERIFICATION OF SINGLE
PARAMETRIC FORMULATION

To verify the above prediction, we numerically compare
the spectral fluctuations of four multiparametric Gaussian
ensembles of real-symmetric matrices as well as complex
Hermitian chiral matrices with different variance types. The
ensemble details needed to determine Y − Y0 as well as 	e

and thereby 
e are discussed below. The section also illus-
trates how different ensembles, if subjected to the same matrix
constraints, can be justified to evolve from the same initial
condition.

A. Details of the ensembles

The ensembles can briefly be described as follows.

1. Chiral Anderson ensemble

Within the tight-binding approximation, the Hamiltonian
H of a d-dimensional bipartite lattice with Na unit cells, each
consisting of two atoms, with a single orbital contributing for
each atom, can be given as

H =
∑
x,y

Vxy c†
xcy (14)

with c†
x and cx as the particle creation and annihilation oper-

ators on the site x, Vxx as the on-site energy, and Vxy as the
hopping between sites x and y. Here x = (m, α) with m as the
label for the d-dimensional unit cell and α as the atomic label,
where α = a, b. The motivation for choice of this system
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comes from the rich physical properties it has been shown to
display by previous studies [27].

To preserve chiral symmetry, here we consider the case
with zero diagonal disorder [13], a Gaussian hopping between
atoms within the same unit cell, and an isotropic Gaus-
sian hopping between z nearest neighbor sites on different
unit cells; this implies (i) Vxx = 0, (ii) Vxy �= 0 and is Gaus-
sian distributed for x = (m, a), y = (m, b), (iii) Vxy �= 0 and
is Gaussian distributed if x = (m, α) and y = (m − 1, β ) or
(m + 1, β ) with β = a, b but β �= α, and (iv) Vxy = 0 for all
other x, y pairs. Henceforth this case is referred as Ch-AE.

In site basis, the condition (i) results in a chiral structure of
matrix H in Eq. (1) The conditions (ii) and (iii) lead to nonzero
Ckk and Ckl , respectively, for k, l pairs corresponding to z
nearest neighbor sites on different unit cells. The ensemble
density in this case is given by (3) with

hkk = 〈
C2

kk

〉 = w2/12, hkl = 〈
C2

kl

〉 = f1 w2
s /12,

bkl = 〈Ckl〉 = f2 t (15)

where f1(kl ) = 1, f2(k, l ) = 1 for {k, l} pairs representing
hopping, and f1(k, l ), f2(k, l ) → 0 for all {k, l} values cor-
responding to disconnected sites. From Eq. (6), the ensemble
complexity parameter in this case is [16]

Y = − βN

2Mγ
ln

[|1 − γw2/6||1 − γw2
s /6|z |t + δt0|2z

] + c0

(16)
where M = βN (N + 2z) with 2βzN as the number of nearest
neighbors which depends on the lattice conditions as well as
the dimensionality d of the system. Here c0 is a constant of
integration (determined by the initial condition on the ensem-
ble).

To determine Y0, the initial state is chosen as a clean
bipartite lattice with sufficiently far off atoms resulting in
zero hopping (i.e., both w = ws = 0); consequently the initial
ensemble corresponds to a localized eigenfunction dynamics
with Poisson spectral statistics (with chiral constraint) and
Y0 = c0. Substitution of Eq. (16) in Eq. (11) with 	loc(e) =
2N〈I2〉

R1
and 〈I2〉 as the typical ensemble as well as spectral

averaged inverse participation ratio at e leads to the spectral
complexity parameter:


e,A(Y, N, e) = −R2
1

8γ N3 〈I2〉2 ln[|1 − γ w2/6||1 − γ w2
s /6|z

× |t + δt0|2z]. (17)

2. Chiral Rosenzweig-Porter ensemble

This is a chiral variant of the standard Rosenzweig-Porter
ensemble [21,28], with ρ(H ) given by Eq. (4) where

hkk;s = 〈
C2

kk;s

〉 = 1, hkl;s = 〈
C2

kl;s

〉 = 1

(1 + μ)
, k �= l,

bkl;s = 〈Ckl;s〉 = 0 (∀ k, l ) (18)

with 0 < μ < ∞; the limits μ = 0 and ∞ correspond to a
Ch-GOE and a matrix ensemble with diagonal chiral blocks,
respectively. Henceforth this case is referred as Ch-RPE.
Substitution of the above values in Eq. (6) gives Y for this

case:

Y = −βN (N − 1)

2Mγ
ln

[
1 − 2γ

(1 + μ)

]
+ c0 (19)

with M = βN (N + ν) = βN2 (with ν = 0 in our numerics)
and c0 as a constant of integration (determined by the initial
condition on the ensemble).

Choosing the initial condition with μ → ∞ corresponds to
an ensemble of H matrices, with its chiral blocks as diagonal
C matrices and the spectral statistics as Poisson statistics (with
chiral constraint). From Eq. (19), this implies Y0 = c0 and Y −
Y0 ≈ 1

μ
(for μ � 1). This on substitution in Eq. (11) leads to

the spectral complexity parameter for the Ch-RPE case:


e,B(e) = Y − Y0

	loc(e)2
≈ R2

1

μ
. (20)

Here the second equality is obtained by using 	loc(e) =
	(e) = 1

R1(e) . As clear from the above, 
e,B depends on three
parameters, namely, μ, matrix size N , as well as the spectral
location e chosen for the analysis of the local fluctuations.

The ensemble density with distribution parameters given
by Eq. (18) is analogous to a specific class of Ch-BE [24],
namely, that arising due to a single parametric perturbation of
a chiral ensemble, with Poisson statistics for nonzero eigen-
values, by a Ch-GOE ensemble; we henceforth refer to the
Ch-RPE case as the Ch-BE case.

3. Chiral Gaussian ensemble with power law decay

The C-matrix ensemble in this case consists of indepen-
dently distributed Gaussian entries with zero mean and a
power law decay of variances away from the diagonal. The
ensemble density ρ(H ) can again be described by Eq. (4) with

hkl = 〈
C2

k,l

〉 = 1

1 + |k−l|2
b2

, bkl = 〈Ckl〉 = 0 ∀ k, l

(21)

where b is an arbitrary parameter (the corresponding nonchiral
variant was first discussed in detail in [29] and later in many
works, e.g., [15,16,20,26]).

Substitution of Eq. (21) in Eq. (6) gives

Y = − β

2Mγ

[
N∑

r=0

gr (N − r) ln

(
1 − 2γ

1 + (r/b)2

)]
+ c0

(22)

with the number of independent elements M = βN2, r ≡ |k −
l|, and gr = (2 − δr0). Here the case b � 1 corresponds to the
H ensemble with diagonal C matrices with Poisson spectral
statistics and can therefore be chosen as the initial ensemble.
The choice leads to Y0 = − Nβ

2Mγ
ln(1 − 2γ ) + c0 ≈ c0 (for

large N).
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TABLE I. Ensemble and spectral parameters used for 
e in Fig. 3 for Ch-AE. Here the first column lists the approximate 
e values,
referred to as 
 in different parts of Fig. 3. The columns 2–4 list the ensemble parameters, i.e., matrix size, ensemble size, and squared
disorder strength w2 used in Eqs. (15) and (17) with fixed w2

s = 12 and t = 0. The columns 5–7 list the spectral parameters, namely, energy
e, ensemble averaged level density F (e) = R1(e)/2N , and inverse participation ratio at e used in Eq. (17) with resulting 
e values given in
column 8 as 
calc. Here γ = 1/4 is fixed for all cases. We also compare the numerical results for P(r) for each 
 value with Eq. (29) with
α(βt ) = 
 − 1.69 (1 − βt ) + 0.89 (1 − βt )5. The columns 9 and 10 list the values of fitted parameters βt and Ct .


 N Ensemble size w2 −e F (e) 〈I2(e)〉 
calc βt Ct

512 5000 12 1.39 0.143 0.02 0.69
0.7 1058 2500 12 1.11 0.147 0.014 0.72 0.88 3.6

512 5000 36 0.04 0.2295 0.032 0.696
1058 2500 36 0.04 0.233 0.0224 0.71
512 5000 12 1.84 0.135 0.025 0.39

0.38 1058 2500 12 1.58 0.137 0.018 0.379 0.88 4.07
512 5000 36 0.425 0.14 0.026 0.39

1058 2500 36 0.095 0.16 0.021 0.38
512 5000 12 2.2 0.124 0.0326 0.196

0.2 1058 2500 12 1.91 0.13 0.023 0.209 0.8 4.216
512 5000 36 1.45 0.1205 0.0312 0.202

1058 2500 36 0.71 0.131 0.0237 0.2
512 5000 12 2.65 0.109 0.0486 0.068

0.07 1058 2500 12 2.39 0.116 0.035 0.072 0.66 3.7
512 5000 36 2.42 0.103 0.045 0.071

1058 2500 36 1.96 0.114 0.034 0.073

The above along with Eq. (11), with 	loc(e) = 2N〈I2〉
R1

, then leads to


e,P(b, e) = −R2
1

8γ N4 〈I2〉2

[
N∑

r=1

(N − r) ln

(
1 − 2γ

1 + (r/b)2

)2
]
. (23)

The spectral statistics of a chiral Gaussian ensemble with
power law decay (Ch-PE) therefore shows a crossover from
Poisson (for 
e,P → 0 as b → 0) to chiral GOE behavior (for

e,P → ∞ as b → ∞).

4. Chiral Gaussian ensemble with exponential decay

Here the ensemble of C matrices corresponds to an expo-
nential decay of the variances away from the diagonals Ckk but
with mean 〈Ckl〉 = 0 for all k, l . The ρ(H ) is again given by
Eq. (4) with

hkl = 〈
C2

kl

〉 = exp
(
−|k − l|

b

)2

, bkl = 〈Ckl〉 = 0 ∀ k, l

(24)

with b as an arbitrary parameter [the nonchiral variant of
Eq. (24) is discussed in many studies, e.g., [15,16,20,26]].
Henceforth this case is referred as Ch-EE.

Equation (6) now gives

Y = − β

2Mγ

[
N∑

r=0

gr (N − r) ln

(
1 − 2γ

exp( r
b )2

)]
+ c0 (25)

with M = βN2, r ≡ |k − l|, and gr = 2 − δr0.
To keep analogy with the other ensembles described above,

here again the initial ensemble for C is chosen to be that
of the diagonal matrices with a Poisson spectral statistics
which corresponds to Y0 = − Nβ

2Mγ
ln(1 − 2γ ) + c0 ≈ c0 (for

large N). Referring to the localization length as ξ and using

	loc(e) = 2N
ξ

	(e), the spectral complexity parameter now
becomes


e,E (b, e) = −ξ 2R2
1

8γ N4

[
N∑

r=1

(N − r) ln

(
1 − 2γ

exp( r
b )2

)]
.

(26)

B. Numerical analysis

For numerical analysis of local spectral fluctuations for
each case mentioned in Sec. IV A, we exactly diagonalize (us-
ing LAPACK, a standard software library for numerical linear
algebra subroutines for complex matrices [30]) the ensembles
for many system parameters but with a fixed γ = 1/4. The C
matrix chosen for all cases considered here is a N × N square
matrix which corresponds to ν = 0. The other system-related
details used in our numerics for each case are as follows (also
given in Tables I–V).

(i) For the case of Ch-AEs, we consider the ensembles of
2N × 2N matrix H [Eq. (14)] for a two-dimensional (d =
2) bipartite square lattice (of linear size L with L2 = 2N)
subjected to periodic boundary conditions; the ensemble pa-
rameters are given by Eq. (15) with z = 4. Variation of matrix
size and disorder strength leads to four different ensembles:
one consisting of 5000 matrices of size 2N = 1024 and an-
other consisting of 2500 matrices of size 2N = 2116, each
analyzed for two disorder strengths w2 = 12 and 36 (keeping
w2

s = 12 and t = 0 for both cases).
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TABLE II. Ensemble and spectral parameters used for 
e in Fig. 4 for Ch-BE. The details here are the same as in Table I, except now the
ensemble and spectral parameters refer to Eqs. (18) and (20). Here again γ = 1/4 is fixed for all cases. Note: In this case, 〈I2〉 is not required
for 
e calculation.


 N Ensemble size c −e F (e) 
calc βt Ct

500 5000 1 0.08 0.2856 0.326
0.33 864 2890 1 0.09 0.2846 0.324 1 4.7

500 5000 0.4 1.35 0.179 0.32
864 2890 0.4 1.345 0.181 0.327
500 5000 1 1.19 0.195 0.152

0.15 864 2890 1 1.22 0.195 0.152 0.93 4.82
500 5000 0.4 1.87 0.122 0.148
864 2890 0.4 1.82 0.122 0.148
500 5000 1 1.65 0.143 0.081

0.08 864 2890 1 1.66 0.142 0.08 0.83 4.52
500 5000 0.4 2.14 0.0897 0.08
864 2890 0.4 2.14 0.09 0.081
500 5000 1 2.3 0.073 0.021

0.02 864 2890 1 2.34 0.072 0.02 0.6 3.3
500 5000 0.4 2.75 0.045 0.02
864 2890 0.4 2.72 0.045 0.02

(ii) For the case of Ch-RPEs, we choose the ensemble
described by Eq. (18) with μ = c N2 [the choice is motivated
by previous studies of nonchiral Rosenzweig-Porter ensem-
bles (or Brownian ensembles) which confirm this μ value
as a critical point of the statistics [16,21]]. The ensemble is
exactly diagonalized for two different c values, i.e., c = 1 and
0.4, each case considered for two different ensembles: one
consisting of 5000 matrices of sizes 2N = 1000 and another
consisting of 2890 matrices of size 2N = 1728.

(iii) For the case of Ch-PEs, the numerics is considered for
the ensemble (21) of 5000 matrices of size 2N = 1000 and
another of 2500 matrices of size 2N = 2000; each ensemble
is analyzed for two b values, i.e., b = 0.5 and 0.75.

(iv) For the case of chiral Gaussian ensembles with expo-
nential decay (Ch-EEs), here again we consider an ensemble
(24) of 5000 matrices of size 2N = 1000 and another of 2500

of size 2N = 2000; both ensembles are analyzed for two b
values, i.e., b2 = 100 and 144.

The local fluctuations of the spectral density of a complex
system are often imposed on a smooth background, i.e., av-
erage spectral density, varying from one system to another.
It is necessary, for a meaningful comparison of the statis-
tics, to rescale the spectrum by the ensemble averaged level
density R1(e) (referred to as unfolding) [4]. Due to frequent
unavailability of the analytical form of R1(e) for complex
systems, the standard route is to determine it through numer-
ical calculation, but for systems, the R1(e) of which is not a
smooth function of energy the unfolding procedure becomes
nontrivial even if R1(e) is analytically known and the spectrum
is stationary. Further, in the case of nonstationary spectrums,
there are additional complications; this is because the fluc-
tuations remain energy dependent even after unfolding [as

TABLE III. Ensemble and spectral parameters used in Fig. 5 for Ch-PE. The details here are the same as in Table I, except now the
ensemble and spectral parameters refer to Eqs. (21) and (23).


 N Ensemble size b −e F (e) 〈I2(e)〉 
calc βt Ct

500 5000 0.5 1.53 0.1807 0.0184 0.1405
0.14 1000 2500 0.5 1.55 0.177 0.0125 0.146 1 5.32

500 5000 0.75 2.29 0.123 0.0179 0.138
1000 2500 0.75 2.3 0.118 0.01195 0.143
500 5000 0.5 1.69 0.164 0.0228 0.075

0.07 1000 2500 0.5 1.72 0.162 0.0163 0.072 1 5.434
500 5000 0.75 2.42 0.108 0.022 0.0706

1000 2500 0.75 2.46 0.10857 0.0159 0.068
500 5000 0.5 1.833 0.148 0.0287 0.038

0.037 1000 2500 0.5 1.85 0.147 0.02054 0.037 1 5.43
500 5000 0.75 2.55 0.098 0.0276 0.036

1000 2500 0.75 2.54 0.0968 0.0191 0.037
500 5000 0.5 2.04 0.1169 0.0433 0.0106

0.01 1000 2500 0.5 2.04 0.1217 0.0319 0.0106 0.95 5.09
500 5000 0.75 2.75 0.0785 0.0429 0.0098

1000 2500 0.75 2.7 0.08 0.0287 0.011
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TABLE IV. Ensemble and spectral parameters used in Fig. 6 for Ch-EE. The details here are the same as in Table II, except now the
ensemble and spectral parameters refer to Eqs. (24) and (26). Note here again, 〈I2〉 is not needed for 
e calculation.


 N Ensemble size b2 −e F (e) 
calc βt Ct

500 5000 100 0.116 0.085 0.297
0.3 1000 2500 100 0.11 0.084 0.29 0.856 4.17

500 5000 144 0.12 0.0774 0.298
1000 2500 144 0.127 0.0765 0.29
500 5000 100 2.14 0.0734 0.221

0.22 1000 2500 100 1.995 0.0734 0.222 0.836 4.16
500 5000 144 2.07 0.0674 0.225

1000 2500 144 2.36 0.0667 0.222
500 5000 100 4.86 0.0604 0.15

0.15 1000 2500 100 4.93 0.061 0.153 0.733 3.87
500 5000 144 5.29 0.0555 0.153

1000 2500 144 5.41 0.0549 0.1508
500 5000 100 7.93 0.0216 0.019

0.02 1000 2500 100 7.98 0.024 0.023 0.335 2.13
500 5000 144 8.75 0.01985 0.0196

1000 2500 144 8.66 0.0206 0.21

indicated by the energy dependence of 
e(e)] [16,17,24]. For
comparison of local statistics, therefore, ideally one should
consider an ensemble averaged fluctuation measure at a spe-
cific energy point, say e, without any spectral averaging. This
in general requires consideration of huge ensembles and runs
into practical technical issues. Fortunately, in the spectral re-
gions where 	loc varies very slowly, it is possible to choose
an optimized range in the neighborhood of e, sufficiently large
for good statistics but keeping a mixing of different statistics
at minimum. This is, however, not the case for the regions with
sharp change of 	loc; the latter leads to a rapidly changing 
e

and it is numerically difficult to consider a spectral range with
an appropriate number of levels without mixing of different
statistics. This compels us to consider, for numerical analysis,
only 1% of the total eigenvalues taken from a range 	loc(e)

around e if e is in the bulk. A rapid variation of the spectral
density (e.g., near e = 0 or the spectral edge) however permits
one to consider a very small spectral range ( 0.5–1%); this in
turn gives rise to errors in 
e calculations (as evident from
Figs. 7 and 8).

Almost all standard spectral fluctuation measures, e.g.,
nearest neighbor spacing distribution and number variance,
are sensitive to unfolding issues which cannot be ignored
especially in the case of a nonstationary spectrum. This
motivated the study [31] to introduce a new measure,
namely, the nearest neighbor spacing ratio distribution P(r) =∑N−1

i=1 〈δ(r − ri)〉 with r defined as the ratio of consecutive
spacings between nearest neighbor levels: ri = si+1/si where
si = ei+1 − ei is the distance between two nearest neighbor
eigenvalues [31,32]. As the ratio r does not depend on the

TABLE V. Ensemble and spectral parameters used in Fig. 7 for intersystem analogy for the β = 1 case. The details here are the same as
in Table I, except now the parameter given in column 4 refers to the ensemble mentioned in column 2 [given by Eqs. (15), (18), (21), and
(24)]. Similarly the spectral parameters given in columns 5–7 are used for 
e calculation of the systems in column 2 [with their 
e given by
Eqs. (17), (20), (23), and (26)]. Here the ensemble size is kept fixed (with 5000 matrices) for all cases.


 System N Disorder parameter −e F (e) 〈I2(e)〉 
calc βt Ct

Ch-AE 512 w2 = 12 2 0.128 0.0281 0.28
0.28 Ch-BE 500 c = 0.4 1.41 0.167 0.278 0.94 4.53

Ch-PE 500 b = 0.5 1.27 0.202 0.0145 0.282
Ch-EE 500 b2 = 100 0.116 0.084 0.0289
Ch-AE 512 w2 = 12 2.2 0.124 0.0326 0.196

0.2 Ch-BE 500 c = 0.4 1.65 0.142 0.2 0.92 4.62
Ch-PE 500 b = 0.5 1.41 0.191 0.0163 0.2
Ch-EE 500 b2 = 100 2.78 0.0715 0.209
Ch-AE 512 w2 = 12 2.36 0.1206 0.037 0.143

0.14 Ch-BE 500 c = 0.4 1.87 0.12 0.144 0.87 4.46
Ch-PE 500 b = 0.5 1.53 0.1807 0.0184 0.1405
Ch-EE 500 b2 = 100 5.09 0.0582 0.139
Ch-AE 512 w2 = 12 2.59 0.113 0.0457 0.082

0.08 Ch-BE 500 c = 0.4 2.14 0.0897 0.08 0.78 4.18
Ch-PE 500 b = 0.75 2.39 0.112 0.021 0.083
Ch-EE 500 b2 = 100 6.6 0.045 0.083
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TABLE VI. Ensemble and spectral parameters used in Fig. 8 for intersystem analogy for the β = 2 case. The other details here are the
same as given in the caption of Table V.


 System N Disorder parameter −e F (e) 〈I2(e)〉 
calc βt Ct

Ch-AE 512 w2 = 84 4.36 0.0693 0.017 0.12
0.12 Ch-BE 500 c = 0.4 2.7 0.111 0.123 1.89 22.445

Ch-PE 500 b = 0.3 1.67 0.1938 0.01316 0.121
Ch-EE 500 b2 = 144 1.04 0.04917 0.12
Ch-AE 512 w2 = 84 1.33 0.0693 0.0204 0.083

0.08 Ch-BE 500 c = 0.4 2.91 0.09 0.081 1.745 21.18
Ch-PE 500 b = 0.3 1.83 0.1841 0.01548 0.0795
Ch-EE 500 b2 = 144 7.26 0.0404 0.081
Ch-AE 512 w2 = 84 0.98 0.06585 0.025 0.05

0.05 Ch-BE 500 c = 0.4 3.08 0.072 0.051 1.6 19.145
Ch-PE 500 b = 0.3 1.96 0.1744 0.0183 0.051
Ch-EE 500 b2 = 144 9.76 0.0318 0.05
Ch-AE 512 w2 = 84 5.63 0.0606 0.0349 0.02

0.02 Ch-BE 500 c = 0.4 3.46 0.053 0.028 1.26 13.7
Ch-PE 500 b = 0.3 2.14 0.155 0.0248 0.021
Ch-EE 500 b2 = 144 11.8 0.0202 0.02

local density of states, an unfolding of the spectrum for P(r) is
not required [31]. Further, P(r) being a short range fluctuation
measure, it reduces the chances of mixing spectral statistics.
For the spectral statistics in the Poisson and Wigner-Dyson
limit, P(r) can be given as [32]

P(r) = cβ (r + r2)β

(1 + r + r2)1+(3/2)β
Wigner-Dyson (27)

= 1

(1 + r)2
Poisson (28)

with c1 = 27
8 and c2 = 81

√
3

4π
.

In the regime intermediate to Poisson and GOE or GUE,
our theory suggests P(r) to be governed only by 
e. A recent
study [33] has indeed postulated a one-parameter distribution
for P(r) in the intermediate regime:

P(r; βt , γ (βt )) = Cβt

(r + r2)βt

[(1 + r)2 − α(βt ) r]1+1.5βt
(29)

with Cβt as a normalization constant defined by the condition∫ ∞
0 dr P(r) = 1. Here α(βt ) is defined by the ideas based on

information entropy [33]: with α(βt ) = 0.92–1.42 (2 − βt ) +
0.01 (2 − βt )7 (for β = 2) and α(βt ) = 0.80–1.69 (1 − βt ) +
0.89 (1 − βt )5 (for β = 1) with βt as the fitting parameter:
0 � βt � β. The desire to understand the connection between
our 
e and α in Eq. (29) led us to fit our numerical results
for P(r) with Eq. (29); our analysis suggests a linear relation
between them (see Tables I–VI).

From Eq. (11), 
e for an ensemble can be determined if
R1(e) as well as ensemble averaged localization length ξ are
known. The latter can often be estimated (e.g., for Ch-AEs and
Ch-PEs) from the average inverse participation ratio 〈I2〉. The
theoretical formulations for R1(e) and 〈I2〉 for the cases used
in our numerics are, however, not known. (It is worth empha-
sizing here that such information is in general not available for
most of the multiparametric ensembles, especially those with
sparse matrix structures.) However, for the nonchiral BE case,
with μ = cN2, R1(e) is theoretically known to be a Gaussian

[34] but its validity for Ch-BE is not a priori obvious. Further,
while the average level density of the chiral Anderson Hamil-
tonian is discussed in previous studies (see, for example, [13]
and references therein), it is not exact and also based on
the numerical analysis for specific system parameters. In the
absence of a theoretical formulation, the option left to us is to
determine R1(e) and ξ by a numerical analysis. For the Ch-
EE-case, however, we find that the approximation ξ ∼ 〈I2〉−1

does not seem to be valid; instead using ξ ≈ √
2N (following

insight based on numerics) gives results consistent with our
theoretical claim about 
e.

Figure 1 illustrates the energy as well as system depen-
dence of the scaled level density F (e) = R1(e)/2N for the
ensembles (i)–(iv). As clear from Figs. 1(a), 1(c) and 1(d),
Ch-AE, Ch-PE, and Ch-EE show a strong dependence of F (e)
on the variances hkl of the matrix elements Ckl but insensitivity
to the matrix size N . In contrast, Fig. 1(b) for Ch-BE indicates
the independence of F (e) from both hkl as well as N . An
important point worth noting here is a weakly singular level
density near e = 0 in Fig. 1(a) (although ν = 0 for our case);
the behavior arises due to choice of zero mean off-diagonal
randomness in the C matrix (for its nonzero elements) and
is consistent with previous studies [13]. A weaker singularity
displayed in Figs. 1(c) and 1(d) is a result of weaker relative
sparsity of the C matrix elements in the case of Ch-PE and
Ch-EE. The absence of singularity in Fig. 1(b) results from the
lack of sparsity in the C matrix of Ch-BE; note the Gaussian
form in Fig. 1(b) is consistent with theoretical prediction of
[34] (although the latter study is on nonchiral BEs).

Figure 2 illustrates the energy as well as system depen-
dence 〈I2〉 for the four ensembles. As Figs. 2(a) and 2(c)
indicate, 〈I2〉 for Ch-AE and Ch-PE is sensitive to the variance
of the matrix elements but not to the matrix sizes N . Although
〈I2〉 does not appear in our 
e formulation for Ch-BE and Ch-
EE, its behavior for these cases is still displayed in Figs. 2(b)
and 2(d) for comparison with other cases.

Using F (e) and 〈I2〉 (the latter used only for Ch-AE and
Ch-PE) at a given e from Figs. 1 and 2, we calculate 
e(e) for
the four ensembles. As Eqs. (20), (17), (23), and (26) indicate,
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FIG. 1. Density of states. The determination of spectral com-
plexity parameter 
e requires a prior knowledge of the ensemble
averaged level density. The parts (a), (b), (c), (d) display the scaled
level density F (e) = R1(e)/2N for the cases Ch-AE, Ch-BE, Ch-PE,
and Ch-EE, respectively. As mentioned in the main text, C chosen
for our numerics is an N × N square matrix, thus implying ν = 0;
note that, however, does not imply that the level density will dip near
e = 0. As clear from the parts (a), (c), and (d), Ch-AE, Ch-PE, and
Ch-EE show a strong dependence of F (e) on the variances hkl of the
matrix elements but insensitivity to the matrix size N . In contrast,
part (b) for Ch-BE indicates an independence of F (e) from hkl as
well as N .


e for each ensemble not only depends on the energy range
e of interest but also on at least two other system parame-
ters. The analogy of the local spectral statistics among the
ensembles can then manifest in many ways. More clearly, if
indeed governed only by 
e as predicted by our theory, an
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FIG. 2. Ensemble averaged inverse participation ratio. As men-
tioned in the text, a prior knowledge of 〈I2〉 is needed to determine

e for some cases; the figure illustrates the e-dependence of IPR for
Ch-AE, Ch-RPE, Ch-PE and Ch-EE. As clear from each part, 〈I2〉(e)
behavior is sensitive to the variance of the matrix elements.

analogy for the local correlations at different energies can oc-
cur within the same ensemble but by varying other distribution
parameters. For example, if 
e,x(e1, s1) = 
e,x(e2, s2) with
s1 and s2 referring to two different sets of system parameters
for a specific ensemble “x” (e.g., x = A, B, P, E ), the local
correlations of the latter at e1, s1 are expected to be analogous
to those at e2, s2; below, this is referred to as the “intrasystem”
analogy. Similarly if 
e for different ensembles are equal (for
same or different e values), their local correlations should
be analogous too. For example, if 
e,x(e1) = 
e,y(e2) with
x, y = A, B, P, E , the local correlations for the ensemble x at
e1 are then predicted to be analogous to that of y at e2 (referred
to below as the “intersystem” analogy).

An important point to note here is the following: for 
 →
0,∞ (stationary limits), P(r) is expected to approach Poisson
and GOE or GUE limits, respectively, for almost all e ranges
and becomes e independent. A variation of the statistics from
Poisson to GOE or GUE limits, as e varies, occurs only
for finite nonzero 
e(e) (the latter corresponds to a critical
regime of the statistics for finite N and a critical point in
large N limits). The condition 
e,x(e1, s1) = 
e,x(e2, s2) can
therefore be satisfied only if 
e remains finite, nonzero, as
well as e dependent for both cases.

To confirm our theoretical prediction, here we numerically
verify both these analogies by comparing P(r) for a number
of combinations. The details are as follows.

1. Intrasystem analogy

Here we are concerned with the local spectral statistics
of the ensembles consisting of the same Hamiltonian matrix
representing a system, say x. The ensemble parameters for
the analogs can then be obtained by invoking the following
condition:


e,x(e1, s1) = 
e,x(e2, s2) = 
e,x(e3, s3) = 
e,x(e4, s4)

(30)

with 
e,x given by Eqs. (17), (20), (23), and (26) for x =
A, B, P, E , respectively. As mentioned above, the ensembles
chosen should be nonstationary. The above analogy being
sensitive to error in 
 calculation, we avoid mixing of the
statistics by taking only 1% of the eigenvalues from the
chosen energy range if |e| > 0; the percentage of levels con-
sidered for e ∼ 0, however, is less (between 0.5 and 1%).

For comparisons of the ensembles in different energy
regimes, it is preferable to choose the same number of levels
for each case. For this purpose, the number of matrices M in
the ensemble for each matrix size N is chosen so as to give
approximately 2.5 × 104 eigenvalues for the analysis. Further
as Eqs. (16), (19), (22), and (25) indicate, Y is β independent.
Thus 
e depends on β only through 	loc (more specifically
through average localization length ξ ). The effect, however,
is quantitative only and does not lead to any qualitatively
new insights in the case of intrasystem analogy. To avoid
repetition, here we consider the β = 1 case only.

Figure 3 displays a comparison of P(r) behavior for Ch-AE
obtained from four different combinations of disorder w and
system size N at a specific energy e. Here the parametric
combinations are chosen such that Eq. (30) is satisfied (with
γ = 1/4). (The numerical procedure used for the purpose is
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FIG. 3. Intrasystem analogy: nearest neighbor spacing ratio dis-
tribution for Ch-AE. As 
e for Ch-AE depends on many system
parameters, e.g., w, ws, t , and N , their different combinations can re-
sult in the same 
e value [see Eq. (30)]. The figure here displays the
analogies for four different 
e values, the latter spanning from Pois-
son (
e → 0) to Ch-GOE (
e → ∞) type spectral statistics. Each
part of the figure displays the P(r) behavior for different Ch-AEs,
corresponding to four different combinations of e, w, and N (keep-
ing ws and t fixed) which keeps their 
e equal. The theoretical limits
of Poisson (
e = 0) and GOE (
e = ∞) are also shown for compar-
ison. The convergence of P(r) for each case to the same curve and for
all values of 
e lends support to our theoretical prediction about the
latter being the only parameter governing the spectral fluctuations.
The details of system and spectral parameters used here are given in
Table I. The numerical results for P(r) for each 
 value are also fitted
with Eq. (29) with α(βt ) = 
 − 1.69 (1 − βt ) + 0.89 (1 − βt )5 and
the fitting parameters βt and Ct given in Table I; for clarity, the fitted
curves are not displayed here.

as follows: we arbitrarily choose a set of system parameters,
say s1; numerically obtain the corresponding Ch-AE spec-
trum, say “AE1,” by exact diagonalization and its P(r) at an
arbitrary spectral value, say e = e1; find R1(e) and 〈I2〉 at e1

from Figs. 1 and 2; and substitute them in Eq. (17) to obtain

e(e1, s1). The same procedure is then repeated to generate
the Ch-AE spectrum, say “AE2” for the system parameter set
s2 again chosen arbitrarily, but the P(r) for AE2 is numerically
considered at an e = e2 value (taking levels within �1% of e2)
such that the equality 
e(e1, s1) = 
e(e2, s2) is ensured. Note
the latter condition limits the choice of s2; it is arbitrary only
to the extent that the relation 
e(e1, s1) = 
e(e2, s2) can be
satisfied within the available spectral range for the system.
The same procedure is then repeated for the Ch-AEs with
parameters s3 and s4.

As mentioned above, a variation of bulk statistics between
two end points can only be seen if the ensemble is nonstation-
ary. In the infinite N limit, the nonstationarity in AEs occurs
only at some critical system parameter (e.g., critical disorder)
or spectral point (e.g., mobility edge) [16,35], implying very
few nonzero finite 
e values, which leaves very few options
for satisfying Eq. (30). For finite system sizes, however, the
AEs are known to have a critical regime of statistics different
from Poisson and GOE or GUE and one can analyze the
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FIG. 4. Intrasystem analogy: nearest neighbor spacing ratio dis-
tribution for Ch-BE. The details here are the same as in Fig. 3 but now
only two parameters, namely, c and N , are available to achieve same

e value for different Ch-BEs. The details of system and spectral
parameters used here are given in Table II.

validity of Eq. (30) for many 
e values; here we consider the
comparison for four different 
e values. To indicate that the
statistics is indeed changing with 
e, the two stationary limits,
namely, P(r) for Poisson and GOE cases [Eqs. (27) and (28)],
are also displayed in each part of the figure.

The system parameters for four Ch-AEs as well as the
spectral parameters [i.e., e, R1(e), and 〈I2〉], used in Fig. 3
satisfying Eq. (30), are given in Table I. The eighth column
of the latter gives the 
e values calculated from Eq. (17);
here a small deviation can be seen due to unavailability of the
exact analytical form of R1(e) and 〈I2(e)〉, needed to invert

e(e1, s1) to find exact system parameters for other AEs.
(Note column 1 of Table I mentions only the approximate 
e

used as a label in Fig. 3.)
In contrast to Ch-AEs, with many system parameters, Ch-

BEs, CH-PEs, and Ch-EEs depend only on one parameter
besides matrix size N (see Sec. IV A). Figures 4–6 show P(r)
for four different Ch-BEs (obtained by changing μ, N, and e),
Ch-PEs (different combinations of b and size N and e), and
Ch-EEs (different combinations of b2, N, and e), respectively.
Here again the P(r) analogies are obtained by repeating the
same procedure as for Ch-AEs mentioned above [now 
e in
Eq. (30) given by Eqs. (20), (23), and (26) for Ch-BE, Ch-
PE, and Ch-EE, respectively]. The corresponding parametric
values and spectral ranges leading to almost the same 
e

values are given in Tables II, III, and IV (for Figs. 4, 5, and 6,
respectively).

Note, for smaller 
 values, Figs. 3–6 may seem to indicate
a different rate of crossover from Poisson to GOE. This may
seem to suggest a violation of our theory which predicts sta-
tistical analogy if 
e is the same. We believe, however, this is
due to numerical errors originating from (i) spectral averaging
used in the numerics and (ii) lack of exact information about
R1(e) and 	loc(e). Also note 
e(e) calculation is quite prone
to errors for regions where R(e) changes rapidly, e.g., e ∼ 0,
as well as in the spectral-edge region and near inflection points
for Ch-AE and Ch-PE (see Fig. 1).
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FIG. 5. Intrasystem analogy: nearest neighbor spacing ratio dis-
tribution for Ch-PE. The details here are the same as in Fig. 3
but again only two parameters, namely, b and N , are available to
achieve same 
e value for different Ch-PEs. The details of system
and spectral parameters used here are given in Table III.

Although not displayed in Figs. 3–6, we also fit P(r) for
each 
 with Eq. (29) with βt and Ct as the fitting param-
eters and find α(βt ) = 
 − 1.69 (1 − βt ) + 0.89 (1 − βt )5.
The fitting parameters βt and Ct for each case are given in
Tables I–IV.

2. Intersystem analogy

In contrast to Ch-AEs, with many system parameters,
Ch-BEs, CH-PEs, and Ch-EEs depend only on one param-
eter (besides matrix size N). It is therefore natural to query
whether Eq. (31) can successfully be used to map their statis-
tics onto each other. The condition for the ensemble and
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FIG. 6. Intrasystem analogy: nearest neighbor spacing ratio dis-
tribution for Ch-EE. The details here are the same as in Fig. 3
but again only two parameters, namely, b and N , are available to
achieve same 
e value for different Ch-EEs. The details of system
and spectral parameters used here are given in Table IV.
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FIG. 7. Intersystem analogy: nearest neighbor spacing ratio dis-
tribution for β = 1. The figure displays the comparison of P(r)
for four different ensembles, namely, Ch-AE, Ch-BE, Ch-PE, and
Ch-EE. Using Eqs. (17), (20), (23), and (26), respectively, the system
parameters in each case are chosen such that they lead to the same 
e

[see Eq. (31)]. A good convergence of P(r) for each case to the same
curve for large 
 and an almost convergence for small 
 once again
confirm the insensitivity of the spectral fluctuations to microscopic
system details. The details of system and spectral parameters used
here are given in Table V.

spectral parameters leading to the analogs now becomes


e,A(s1, e1) = 
e,B(s2, e2) = 
e,P(s3, e3) = 
e,E (s4, e4)

(31)

with 
e,B, 
e,A,
e,P, and 
e,E given by Eqs. (20), (17), (23),
and (26), respectively (with γ = 1/4). Here again the analogy
is obtained by varying e values (note the analogy can also be
studied for the same e values by a careful choice of ensemble
parameters). As illustrated in Fig. 7, P(r) for all the four cases
with β = 1 overlap with each other if their 
e are equal.
The details of each ensemble used in numerics for Fig. 7 are
given in Table V. Although the overlap seems to be poor for
small 
 values, this is again due to numerical errors associated
with 	loc(e) estimation (in contrast to intrasystem analogy, the
error in the latter becomes crucial for comparisons of different
systems). These errors can be reduced if an exact theoretical
formulation of ξ is available for the system of interest. [Note
that although ξ ∼ 〈I2〉−1 seems to work for Ch-AE and Ch-PE
it is not an exact relation. Further, although intuitive reason-
ing in Sec. III B indicates that 	loc(e) = 	(e) for RPE and
	loc(e) = √

2N 	(e) for Ch-EE are supported numerically,
an exact formulation of 	loc(e) for RPE and Ch-EE is still
missing.]

We consider the intersystem analogy for β = 2 case too.
The results are displayed in Fig. 8 along with Poisson and
GUE limits; the parametric details for this figure are given in
Table VI. [Although the figures for R1(e) and 〈I2(e)〉 for the
β = 2 case are not included in this paper, their values used for

e calculation are given in Table VI.] The figure reconfirms
our theoretical prediction regarding the insensitivity of local
spectral statistics to specific system details and the role played
by 
e.
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FIG. 8. Intersystem analogy: nearest neighbor spacing ratio dis-
tribution for β = 2. As in Fig. 7, here again we compare the four
ensembles but now P(r) for each case is analyzed for β = 2. The
theoretical limits of Poisson (
e = 0) and GUE (
e = ∞) are also
shown for comparison. The other details are the same as in Fig. 7
with details of system and spectral parameters used for this figure
given in Table VI.

We fit P(r) with Eq. (29) for all cases displayed in Figs. 7
and 8 and again find α(βt ) = 
 − 1.69 (1 − βt ) + 0.89 (1 −
βt )5 for β = 1 and α(βt ) = 
 − 1.42 (2 − βt ) + 0.01 (2 −
βt )7 + 0.01 (2 − βt )6 for β = 2. The fitting parameters βt and
Ct for each case are given in Tables V and VI.

V. CONCLUSION

In the end, we summarize with a brief discussion of our
main results and open questions. Extending the complex-
ity parameter formulation for Hermitian ensembles without
chirality to those with chirality, we analyze, for the latter,
the statistical response of the eigenvalues to multiparamet-
ric variations and its reduction to the complexity parameter
formulation. As the chiral cases include non-Hermitian ma-
trix blocks, this not only renders the technical analysis more
complicated but also leads to the diffusion equations for
the spectral JPDF different from the case without chirality.
However, as in the nonchiral case, the spectral complexity
parameter in the chiral case is again a function of energy
as well as ensemble parameters. This predicts an important
connection hidden underneath the local spectral fluctuations
of a complex system: its statistics at an energy for a given
set of system conditions can be analogous to that at another
energy but with different system conditions. For two differ-
ent complex systems, however, the analogy can occur even
at the same energy if their complexity parameters are equal
and both belong to the same global constraint class (i.e.,
same symmetry class and conservation laws). Our theoretical
predictions are confirmed by a numerical comparison of the
spectral statistics of four multiparametric Gaussian ensembles

with different sets of ensemble parameters and at different
energies.

Although, in the present paper, we have confined our anal-
ysis to spacing ratio distributions only (so as to minimize any
error due to unfolding issues of the spectrum), previous stud-
ies on nonchiral ensembles have analyzed other measures too,
e.g., nearest neighbor spacing distribution, number variance,
etc. [16,18,20,27,36,38]; wave-function statistics [20]; and
conductance distribution [37], etc.. These studies also support

e based universality of the local fluctuations. As discussed
in [24], the multiparametric chiral ensembles are connected
to some other complex systems too, e.g., the systems repre-
sented by multiparametric Wishart ensembles and the CSH.
The results and insights in the statistics of any one of them
have therefore important implications for the others. Further,
the appearance of Wishart matrices [23,39] in wide ranging
areas makes the results derived for Chiral ensembles useful for
these areas too. Considering that not many theoretical results
so far are available for system-dependent random matrix en-
sembles (e.g., sparse ensembles of disordered Hamiltonians),
the theoretical predictions based on complexity parametric
formulation can be very useful and therefore need detailed
investigations as well as experimental verifications if feasible.

Our paper still leaves many questions unanswered. The
first and foremost among them is a theoretical formulation of
	local(e) used in Eq. (11). Although we have given an intuitive
reasoning in Sec. III B, its exact formulation is still missing.
Further, the present paper is confined only to spectral statis-
tics; a similar comparison for the eigenfunction fluctuations
especially near zero energy is also very desirable (see [24]
for more details). Another important question is about the
transition from multiparametric chiral ensembles to nonchiral
ensembles as chiral symmetry is partially broken. We intend
to pursue some of these studies elsewhere.

APPENDIX A: SPECTRAL RESPONSE TO CHANGE
IN SYSTEM CONDITIONS

As mentioned in Sec. III, the derivation of the diffusion
equation for the eigenvalues in chiral cases, i.e., Eq. (9), is
essentially similar to the nonchiral ones but their final re-
sponses turn out to be different. The difference arises from
the response of the pairwise symmetric eigenvalues, chirality
induced relations between eigenfunction components, as well
as existence of zero modes in a chiral matrix. The chiral spec-
tral responses needed to derive Eq. (9) (discussed in Appendix
B) can be given as follows.

The eigenvalue equation for the matrix H can be given as
HU = λU with λ as the diagonal matrix with eigenvalues λi

of H as its matrix elements and U as the eigenvector matrix
(unitary for the complex Hermitian case and orthogonal for
the real-symmetric case).

Assuming the variation of system conditions leaves the chi-
rality of H unaffected, the eigenvalues λ2N+k for k = 1 → ν

therefore remain zero throughout the dynamics. The dynamics
of λn, with n = 1 → N , can then be given as

∂λn

∂Hk,N+l;s
= is−1[U ∗

knUN+l,n + (−1)s+1U ∗
N+l,nUkn]. (A1)
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The above in turn gives

N,N+ν∑
k,l=1

β∑
s=1

∂λn

∂Hk,N+l;s
Hk,N+l;s = λn. (A2)

Further,

N,N+ν∑
k,l=1

β∑
s=1

∂λn

∂Hk,N+l;s

∂λm

∂Hk,N+l;s
= β δmn 1 � m, n � N, (A3)

N,N+ν∑
k,l=1

β∑
s=1

∂2λn

∂H2
k,N+l;s

= β(ν + 1/2)

λn
+

N∑
m=1�=n

2 β λn

λ2
n − λ2

m

. (A4)

By replacing the subscript n by N + n, the above equations
can directly be used to derive the response for the negative
eigenvalues λn+N . Note in this context that chirality leads
to the condition UN+l,N+n = −UN+l,n and, consequently, the
replacement of λn → −λN+n leaves Eqs. (A1)–(A4) invariant.

As discussed in Appendix B, the above relations lead to
Eq. (9), essentially following the same steps as used in [15,17]
for the nonchiral case.

APPENDIX B: DERIVATION OF EQ. (9)

The probability density PN (E ,Y ) of finding posi-
tive eigenvalues λi between ei and ei + dei at a given
Y can be expressed in terms of the matrix elements

distribution:

PN (E ,Y ) =
∫ N∏

i=1

δ(ei − λi ) δ(ei + λN+i ) ρ(H,Y ) dH.

(B1)

Here E refers to a diagonal matrix with elements e1, . . . , en.
As the Y dependence of PN in Eq. (B1) enters only through ρ,
a derivative of PN with respect to Y can be written as follows:

∂PN

∂Y
=

∫ N∏
i=1

δ(ei − λi ) δ(ei + λN+i )
∂ρ

∂Y
dH. (B2)

Substitution of Eq. (7) in Eq. (B2) leads to

∂PN

∂Y
= I1 + I2 (B3)

where

I1 = γ
∑

μ

∫ N∏
i=1

δ(ei − λi ) δ(ei + λN+i )
∂ (Hμ ρ )

∂Hμ

dH,

(B4)

I2 =
∑

μ

∫ N∏
i=1

δ(ei − λi ) δ(ei + λN+i)
∂2ρ

∂H2
μ

dH (B5)

with Hμ ≡ Hk,N+l;s with 1 � k, l � N . I1 can further be sim-
plified by integration by parts:

I1 = −γ
∑

μ

∫
∂

∂Hμ

[
N∏

i=1

δ(ei − λi ) δ(ei + λN+i)

]
Hμ ρ dH (B6)

= 2 γ

N∑
n=1

∂

∂en

∫ N∏
i=1

δ(ei − λi ) δ(ei + λN+i )

[∑
μ

∂λn

∂Hμ

Hμ

]
ρ dH. (B7)

Here the second equality follows from the relations (i) ∂δ(en−λn )
∂Hμ

= ∂δ(en−λn )
∂en

∂λn
∂Hμ

and (ii) ∂δ(en+λN+n )
∂Hμ

= − ∂δ(en+λN+n )
∂en

∂λN+n

∂Hμ
=

∂δ(en+λN+n )
∂en

∂λn
∂Hμ

. Now using Eq. (A2) of Appendix A in Eq. (B7), we have

I1 = 2γ
∑

n

∂

∂en
(enPN ). (B8)

I2 can similarly be reduced as follows:

I2 =
∑

μ

∫
∂2

∂H2
μ

[∏
i

δ(ei − λi ) δ(ei + λN+i )

]
ρ dH (B9)

= 2
∑
m,n

∂2

∂en∂em

∫ ∏
i

δ(ei − λi ) δ(ei + λN+i )

[∑
μ

∂λm

∂Hμ

∂λn

∂Hμ

]
ρ dH

− 2
∑

m

∂

∂en

∫ ∏
i

δ(ei − λi ) δ(ei + λN+i )

[∑
μ

∂2λn

∂H2
μ

]
ρ dH. (B10)

Further, using Eqs. (A3) and (A4), I2 can be expressed in terms of eigenvalue derivatives of ρ:

I2 = 2
N∑

n=1

∂

∂en

[
∂

∂en
− (ν + 1/2)β

en
−

N∑
m=1

2βen

e2
n − e2

m

]
PN . (B11)

A substitution of I1 and I2 in Eq. (B3) leads to Eq. (9), describing the single parametric evolution of the eigenvalues of the
ensemble ρ(H ).
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