
PHYSICAL REVIEW E 102, 032128 (2020)

Particles confined in arbitrary potentials with a class of finite-range repulsive interactions
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In this paper, we develop a large N field theory for a system of N classical particles in one dimension at
thermal equilibrium. The particles are confined by an arbitrary external potential, Vex(x), and repel each other
via a class of pairwise interaction potentials Vint(r) (where r is distance between a pair of particles) such that
Vint ∼ |r|−k when r → 0. We consider the case where every particle is interacting with d (finite-range parameter)
number of particles to its left and right. Due to the intricate interplay between external confinement, pairwise
repulsion, and entropy, the density exhibits markedly distinct behavior in three regimes k > 0, k → 0, and k < 0.
From this field theory, we compute analytically the average density profile for large N in these regimes. We show
that the contribution from interaction dominates the collective behavior for k > 0 and the entropy contribution
dominates for k < 0, and both contribute equivalently in the k → 0 limit (finite-range log-gas). Given the fact
that this family of systems is of broad relevance, our analytical findings are of paramount importance. These
results are in excellent agreement with brute-force Monte Carlo simulations.
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I. INTRODUCTION

Systems of interacting particles confined in external poten-
tials are ubiquitous in nature. Particularly, pairwise repulsive
interactions with power-law divergences have taken a special
place in physics and mathematics. There have been sev-
eral theoretical investigations on such systems [1]. Examples
include one-dimensional one-component plasma [2], one-
dimensional Coulomb chains [3], Riesz gas [4–6], random
matrix theory, nuclear physics, mesoscopic transport, quan-
tum chaos, number theory [1,7–9], the Calogero-Moser model
[10–15], dipolar gas confined to one dimension [16–19], and
screened Coulomb or Yukawa gas [20,21] including finance
[22] and big-data science [23]. A common feature that most
of the above studies have is that the interaction among the par-
ticles is long ranged, which means every particle is interacting
with every other particle in the system. Such interactions
have led to developments of field theories which have been
successfully used to understand various properties like den-
sity profiles, number fluctuations, level-spacing distributions,
large deviations, etc., in equilibrium in the large N limit.
In the context of integrable models, such field theories have
also been used to understand nonequilibrium features such as
shock waves and solitons [24–26].

In most physical systems, however, interaction between a
pair of particles gets often screened, which essentially makes
the interaction finite ranged. This naturally raises the follow-
ing question: What are the effects of finite-ranged interactions
on the field theory and the consequences stemming from it?
In this paper, we precisely address this issue by studying a
collection of N classical particles with positions {xi} for i =
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1, 2, . . . , N in a confining potential Vex(x) in one dimension
such that Vex(x) → ∞ as |x| → ∞. Each particle interacts
with d particles on its right and left (if available) and does
so via a repulsive interaction Vint(r) (where r is the distance
between a pair of particles) such that Vint ∼ |r|−k when r → 0
for k > −k∗ where k∗ is the largest power in the Taylor series
expansion of Vex(r). For k � −k∗, even the ground state (ob-
tained from energy minimization) of the system is unstable
because the particles fly off to x = ±∞. It is important to
mention that recent cutting-edge developments in experiments
have generated a lot of interest in such finite-ranged sys-
tems„ e.g., cold atomic gases and ions [27], dipolar bosons
[16–18,28], and Rydberg gases [29].

II. MODEL AND PROPERTIES

The total energy of our system is given by

E ({xi}) = 1

2

N∑
i=1

Vex(xi ) + J sgn(k)

2

∑
|i − j| � d

j �= i

Vint(|xi − x j |)

(1)

where J > 0 and d is an integer. Note that the parameter d in
Eq. (1) determines the number of particles that each particle
is allowed to interact with. For example, by increasing the
value of d from 1 to N − 1, one can go from nearest neighbor
interaction to an all-to-all interaction scenario. This model is
a generalization of the so-called Riesz gas [4]. Since we are
interested in the equilibrium statistical properties of only the
position degrees of freedom, the kinetic energy term in the
Hamiltonian is omitted.

For the energy in Eq. (1), the equilibrium joint
probability distribution function of the positions of the
particles at finite temperature T = 1/β is given by
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P(x1, · · · , xN ) = 1
ZN (β ) e

−βE [{xi}], where the partition function

ZN (β ) = ∫ ∏N
i=1 dxi e−βE [{xi}]. While the confining potential

tries to pull all the particles to its minimum, the pairwise
repulsion as well as the entropy try to spread them apart.
Because of this intricate competition, it turns out that the
particles settle down over a finite region [−�N , �N ] for k > 0
and over the whole line for k � 0 with an average macro-
scopic density 〈ρ̂N (x)〉 = N−1 ∑N

i=1〈δ(x − xi )〉, where 〈. . .〉
denotes an average with respect to the Boltzmann weight. An
important question to ask is the following: What is the average
density for large N and how does it depend on T, k, and d?

III. KEY FINDINGS

In this paper, we address the question of average density
for d ∼ O(1) and find three distinct fascinating scenarios. We
show that for k > 0 the average density is obtained from a
field theory where the interaction term dominates. On the
other hand, for k < 0 the entropy dominates. Remarkably, for
k → 0, both interaction and entropy contribute equivalently at
finite temperature.

In particular, for an external potential of the polynomial
form of nth order, Vex(xi ) = ∑n

p=1 apxp
i , we find that for

k > 0 the average density has the scaling form 〈ρ̂N (x)〉 =
�−1

N fk (x/�N ) in the large N limit where �N = N
k

k+n and

fk (y) = Ad (k)[2μd (k) − Vex(y)]1/k, for |y| � �[μd (k)].

(2)

The edge of the density �[μd (k)] can be obtained
from the real zero, closest to the origin, of the equa-
tion Vex(y) = 2μd (k) and Ad (k) = [2Jζd (k)(k + 1)]−

1
k with

ζd (k) = ∑d
n=1 n−k . The function μd (k) can then be deter-

mined by the normalization condition:

∫ �[μd (k)]

−�[μd (k)]
fk (y)dy = 1 . (3)

In order to make sure that all terms in the polynomial con-
tribute on an equal footing, the coefficients themselves need
to be scaled as ap ∼ N

k
k+n (n−p). It is important to mention that

external potentials in the form of polynomials are of relevance
both experimentally as well as theoretically [30,31] and for
such potentials we have k∗ = n. Note that no such finite bound
on k exists for those Vex(x) which have infinite series represen-
tations„ e.g., boxlike potentials such as Vex(x) = a cosh(bx)
[26,32–36].

In the k < 0 case, for any arbitrary external potential
Vex(x), we find that the entropy term dominates to yield

fk (y) = e−βVex(y)/C, for − ∞ � y � ∞, (4)

with �N = 1 (no scaling). The normalization constant C is
fixed by

∫ ∞
−∞ fk (y)dy = 1.

The k → 0 limit turns out to be very interesting and subtle.
To make sense of this limit, we choose Vint(r) = |r|−k . Re-
placing sgn(k) in Eq. (1) by ±1 for k → 0±, we use |r|−k ≈
1 − k log |r| and set J = 1/|k|. This up to an overall additive
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FIG. 1. Comparison of the densities with Monte Carlo simulation
for different values of k and d . The external potential for all the plots
is Vex(x) = 1

2 (x4 − N
2k

k+2 x2). The interaction potential used in plots
(a), (c), (d), (e), and (f) is Vint(r) = |r|−k whereas in plot (b) it is
Vint(r) = − ln |r|. The solid lines in each plot are from theory and
symbols are from numerical simulation. For plots with k > 0 (a, d, e),
the theoretical densities are given in Eq. (2). For the log-gas case (b),
k → 0, we compare simulation data with the analytical expression in
Eq. (6). The plots (c) and (f) on the right column correspond to k < 0
where we find the Boltzmann distribution given in Eq. (4). Excellent
agreement is seen in all cases with no fitting parameters.

constant provides

E ({xi}) = 1

2

N∑
i=1

Vex(xi ) − 1

2

∑
|i − j| � d

j �= i

ln |xi − x j | . (5)

We call this system the finite-range log-gas [37–39]. The
k → 0 limit can also be taken for some other choices of Vint(r)
such as 1/| sin(r)|k and 1/|sinh(r)|k , which yields general-
ized versions of the finite-range log-gas where the interaction
term inside the summation becomes ln | sin(xi − x j )| and
ln |sinh(xi − x j )|, respectively [1,7]. For all these cases, it
turns out that, contributions from both interaction and entropy
appear at the same order of N and one finally gets

fk (y) = e− βVex (y)
βd+1 /C0, for − ∞ � y � ∞ (6)

with �N = 1 and C0 being the normalization constant.
We also performed Monte Carlo (MC) simulations for

several values of k and find excellent agreement with our
analytical predictions (see Figs. 1 and 2). In what follows we
discuss the derivation of the large N field theory and the saddle
point calculations that lead to our results.

IV. LARGE N FIELD THEORY

We are interested to compute 〈ρ̂N (x)〉 for large N , which is
formally given by the following functional integral:

〈ρ̂N (x)〉 =
∫

D[ρ(z)]P [ρ̂N (z) = ρ(z)] ρ(x), (7)

∀x, where P represents the joint probability density functional
(JPDF) that ρ̂N (z) = ρ(z), ∀ z ∈ [−∞,∞]. The JPDF, for
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FIG. 2. Demonstration of the validity of our theoretical results
in more general cases of interactions as well as external potentials.
For the plots in the top row, the external potential is Vex(x) = x4/2.
For the plots in the bottom row we have Vex(x) = 1

2 cosh( x
2 ), which

naturally sets a N independent length scale, i.e., �N ∼ O(1), because
it is not in the form of a finite-degree polynomial (diverges expo-
nentially at |x| → ∞). The interaction potential used for the plots
in the first column (a, d) is Vint(r) = 1

|Sinh(r)|k whereas in the second
column (b, e) it is Vint(r) = ln |Sinh(r)| and in the third column
(c, f) it is Vint(r) = √

r + r5/2

12 with r = |xi − x j |. The solid lines in
each plot correspond to our theoretical results and the symbols are
from numerical simulations. For plot (a), we find that the density is
given by Eq. (2). In plot (d) we compare our simulation data with
the analytical expression fk (x) = C−1/k[2μ − Ncosh(x/2)]1/k with
C = 2J (k + 1)ζd (k)Nk+1, where μ is fixed by normalization. The
solid lines of the plots in the second and third columns are given
in Eqs. (6) and (4), respectively. Once again we observe excellent
agreement with no fitting parameters.

large N , can be written as

P [ρ̂N (z) = ρ(z)] =
∫

dx1 . . . dxNδ[ρ̂N (z) − ρ(z)]e−βE ({xi})∫
dx1 . . . dxN e−βE ({xi})

= JN [ρ(z)]e−βEN [ρ(z)]δ[
∫

ρ(z)dz − 1]∫
D[h(z)]JN [h(z)]e−βEN [h(z)]δ[

∫
h(z)dz − 1]

where we have assumed that for large N the energy in Eq. (1)
can be expressed as a functional of the macroscopic den-
sity ρ̂N (z) = N−1 ∑N

i=1 δ(z − xi ), i.e., E ({xi}) ≈ EN [ρ̂N (z)].
In fact this is shown explicitly below [after Eq. (13)]. The
combinatorial factor JN [ρ(z)] counts the number of mi-
croscopic configurations compatible with given macroscopic
profile ρ(z). In fact JN [ρ(z)] is actually the exponential of
the entropy associated to macroscopic density profile ρ(z)
[40,41]:

JN [ρ(z)] = e−N
∫

dz ρ(z) ln ρ(z). (8)

The delta function δ[
∫

ρ(z)dz − 1] ensures the normaliza-
tion of the density functions. Replacing this normaliza-
tion constraint by its integral representation

∫ dμ

2π
e−μw =

δ(w) (where the integral is along the imaginary μ axis)

we get

P [ρ(z)] =
∫

dμ e−SN,μ[ρ(z)]∫
dμ

∫
D[h(z)]e−SN,μ[h(z)]

, with (9)

SN,μ[ρ(z)] = βEN [ρ(z)]+N
∫

dzρ(z) ln ρ(z)

+μ

[∫
ρ(z)dz − 1

]
. (10)

We find (shown below) that the functional SN,μ[ρ(z)] for large
N grows as Nγk with γk > 1. Hence the partition function in
the denominator of Eq. (9) can be performed using saddle
point method to give

P [ρ(z)] 
∫

dμ e−{SN,μ[ρ(z)]−SN,μ∗ [ρ∗
N (z)]} (11)

where ρ∗
N (z) and μ∗ are obtained by minimizing the action in

Eq. (10) with respect to ρ(z) and μ, i.e., solving the following
equations:

δSN,μ[ρ(z)]

δρ(z)

∣∣∣
ρ=ρ∗

N

= 0, with
∫

dz ρ∗
N (z) = 1. (12)

Using the JPDF P from Eq. (11) in Eq. (7) and again per-
forming a saddle point integration for large N we find that the
average density profile is the same as the most probable or the
typical density profile, i.e.,

〈ρ̂N (x)〉 = ρ∗
N (x). (13)

Next we compute the functional EN [ρ(z)] for the energy
function given in Eq. (1). To do so we adapt the main idea
of Ref. [5]. We first define a smooth function x(s) such that
x(i) = xi. This function x(s) becomes unique in the thermo-
dynamic limit [25] and for a given density profile ρ(x) the
position function x(i) is given explicitly by

i = N
∫ x(i)

−∞
dz ρ(z). (14)

Taking the single derivative with respect to x on both sides,
we get di/dx = Nρ(x), using which it is easy to see that for
any smooth function g(xi ) of the coordinate xi∑

i

g(xi ) = N
∫

dx g(x)ρ(x). (15)

This can be directly applied to the external potential term in
Eq. (1) to get Eex

N [ρ(x)] = (N/2)
∫

dx Vex(x)ρ(x). Expressing
the interaction term in terms of the density profile ρ(x) is
far from obvious and is discussed below. Using Eq. (14), we
write the interaction term in Eq. (1) as Eint = ∑∑

Vint[|i −
j|x′(i) + . . .] where we have used the Taylor series expansion
x( j) = x(i) + ( j − i)x′(i) + . . .. Assuming x′(i) is small in
the large N limit (see Appendices) and using Vint(r)|r→0 ∼
|r|−k we get Eint = J ζd (k)sgn(k)

2

∑
i[x

′(i)]−k where we have ne-
glected the higher order terms in the Taylor series expansion
as they are subleading. Now inserting x′(i) = 1/[Nρ(x)] and
using Eq. (15) we have

Eint = J ζd (k)sgn(k)Nk+1
∫

dxρk+1(x). (16)
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Hence the total energy functional EN = Eex + Eint is given by

EN [ρ(x)] = N

2

∫
dx Vex(x)ρ(x)

+ J ζd (k)sgn(k) Nk+1
∫

dxρk+1(x).

(17)

Following the same procedure it is possible to show from
Eq. (5) that in the k → 0 limit one gets

EN [ρ(x)] = N

2

∫
dx Vex(x)ρ(x) + Nd

∫
dxρ(x) ln ρ(x).

(18)

This result can also be obtained directly from Eq. (17) in the
k → 0 limit after setting J = 1/|k|. We now discuss the three
regimes separately.

V. DISCUSSIONS

A. Regime 1: k > 0

Inserting the above expression of the energy functional
in Eq. (10), we observe that in the leading order one can
neglect the entropy contribution [42]. For an external potential
of nth order polynomial form, minimizing this action one
finds that 〈ρ̂N (x)〉 = ρ∗

N (x) = �−1
N fk (x/�N ) with �N = N

k
k+n

and fk (y) given in Eq. (2). This result is verified numeri-
cally. Using this scaling form of the density in the action in
Eq. (10), it is easy to see that SN,μ∗ ∼ Nγk with γk = k(n+1)+n

k+n .
In fact, for k > 1, the formula in Eq. (2) holds for any d
even when d = N − 1, for which ζd (k) becomes the usual
Riemann zeta function ζ (k). This happens because, for k >

1, the contribution from all-to-all interaction comes only at
O(N2), which is still subdominant [5]. It is to be noted that
the above analysis fails for very high temperatures of the order
≈ O(N− 2k

k+n ) when entropy becomes important. In the special
case of a quadratic potential (i.e., n = 2 with a1 = 0 and
a2 = 1), we get the following result for the support: μd (k) =
1
8 [Ad (k)B(1 + 1/k, 1 + 1/k)]−

2k
k+2 and �[μd (k)] = √

2μd (k).

B. Regime 2: k < 0

In this regime, interestingly, as pairwise interaction is of
O(N1−|k|), it becomes irrelevant in comparison to the entropy
term, which is of O(N ). Therefore, minimizing the action,
which now involves only the external potential and entropy,
gives us the usual Boltzmann distribution in Eq. (4) with �N =
1 for any external potential. It is noteworthy that the density
profile becomes independent of the details of the interaction
although it plays an important role to have a description in
terms of macroscopic particle densities.

C. Regime 3: k → 0

In the case of finite-range log-gas, as can be seen using
Eq. (18) in Eq. (10), there is an intricate interplay between
pairwise interaction and entropy because they contribute at the
same order. Minimizing this action Eq. (10), we get Eq. (6) for
any external potential. This result was also recently obtained
via a microscopic method [38]. Interaction energy and entropy

contributing equivalently has also been observed in log-gas
with all-to-all interactions [43,44].

VI. NUMERICAL METHOD AND DETAILS

Our analytical predictions were tested against brute-force
MC simulations for N = 501 and β = 1. In our simulations
we collect data after every ten MC cycles and averages were
performed over around 107–108 samples to compute the par-
ticle densities in different cases discussed above. We compare
these results with our theoretical expression in Figs. 1 and 2
and observe excellent agreement in all cases. To make sure
that we collect data after the system has relaxed to an equi-
librium state, we checked for the equipartition by computing
virial 〈x j

∂E ({xi})
∂x j

〉. The excellent agreement with the equipar-
tition, thereby benchmarking our numerics, is given in the
Appendices.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we derive a large N field theory for a sys-
tem of N particles repulsively interacting over a finite range
and confined in arbitrarily external potentials. We discuss a
family of interaction potentials Vint(r) such that they behave
as ≈1/|r|k for small r. We identify three distinct regimes
depending on the value of k and for each regime we derive the
action in the large N limit. Minimizing this action provides
us explicit expressions of the densities in arbitrary confining
potentials. Our analytical results of densities are in excel-
lent agreement with our brute-force numerical simulations.
It is pertinent to mention that such densities of finite-ranged
systems can be experimentally observed in a broad range of
experiments such as ions [45,46] and dusty plasma [47] to
name a few. This paper is of paramount importance since
it is essentially a starting point for any analysis on a broad
class of interacting classical systems. For example, if one
wants to study nonlinear hydrodynamics [48,49], interacting
overdamped Langevin particles [50], single-file motion [51],
or large deviations [40,41,52,53] then writing a large N field
theory is the very beginning step and a correct form of the
energy functional is crucial.

Our paper paves the path for several future studies such
as nontrivial extension to higher dimensions, extreme value
statistics, level spacing distributions (i.e., statistics of gaps
between successive particles), and large deviation functions
of these externally confined pairwise interacting particles. Our
paper acts as a genesis and provides a foundation for embark-
ing in these exciting directions. Furthermore, the connection
between these models and random matrix theories remains
an open and interesting question. Finally, it would also be
interesting to understand the crossover from finite-ranged in-
teraction to all-to-all coupling [5].
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APPENDIX A: CONTINUUM APPROXIMATION FOR THE
FINITE-RANGE INTERACTION TERM

In Eq. (1) of the main text, we defined the energy of a
microscopic configuration {xi} as

E ({xi}) = 1

2

N∑
i=1

Vex(xi ) + J sgn(k)

2

∑
|i − j| � d

j �= i

Vint(|xi − x j |),

(A1)

where J > 0 and d is an integer. We want to express the
interaction term

Eint = Jsgn(k)

2

∑
|i − j| � d

j �= i

Vint(|xi − x j |)

as a functional of the macroscopic density ρ(z). As noted in
the main text, for large N one can define a smooth function
x(i) such that

i = N
∫ x(i)

−∞
dz ρ(z). (A2)

Using this equation, we can write

Eint = J sgn(k)

2

∑
|i − j| � d

j �= i

Vint

[∣∣∣∣∣
∞∑

n=1

(i − j)n

n!
x[n](i)

∣∣∣∣∣
]
, (A3)

where x[n](i) = dnx(i)
din . It easy to see (also justified later) that

|x[n+1](i)|
|x[n] (i)| ∼ O(1/N ). Hence keeping only the leading order

term in the Taylor series expansion in the argument of Vint we
have

Eint ∼ J sgn(k)

2

N∑
i=1

∑
|i − j| � d

j �= i

Vint[|i − j|x[1](i)]

∼ J sgn(k)

2

N∑
i=1

∑
|i − j| � d

j �= i

Vint

( |i − j|
Nρ[x(i)]

)
,

using x[1](i) = 1

Nρ[x(i)]

∼ J sgn(k)

2

N∑
i=1

∑
|i − j| � d

j �= i

Nkρ[x(i)]k

|i − j|k . (A4)

In the last step we used the fact that x[1](i) is small, which
is because of the following. We expect that ρ(x) should have
the following scaling form:

ρ(x) = 1

�N
f

(
x

�N

)
, with lim

N→∞
�N

N
→ 0. (A5)

Assuming that the limit in Eq. (A5) is true we proceed and
compute ρ(x) performing the action minimization procedure
explained in the main text and finally check that this as-
sumption is indeed true—thereby making the whole argument
self-consistent.

Simplifying Eq. (A4) further we get

Eint ∼ J sgn(k)

2

N∑
i=1

Nkρ[x(i)]k
∑

|i − j| � d
j �= i

1

|i − j|k

∼ J sgn(k)

2

N∑
i=1

Nkρ[x(i)]k
d∑

n=1

1

nk

∼ J sgn(k)ζd (k)
N∑

i=1

Nkρ[x(i)]k

∼ J sgn(k) ζd (k) Nk+1
∫

dxρ(x)k+1,

using
∑

i

g(xi ) = N
∫

dx g(x)ρ(x). (A6)

The above calculation is true for k > −k∗ (see main text).
However, for k → 0 (finite-range log-gas) the above expres-
sion gets simplified as follows: Setting J = 1/|k| and writing
[Nρ(x)]k = ek ln[Nρ(x)] and finally taking the k → 0 limit, we
obtain

Eint ∼ d N
∫

dx ρ(x) ln ρ(x) (A7)

up to an overall additive constant where we have used
ζd (0) = d . Now adding this functional form of Eint[ρ(z)]
to Eex[ρ(z)] we get the total energy functional EN [ρ(z)]
for k �= 0:

EN [ρ(x)] = N

2

∫
dx Vex(x)ρ(x)

+ J ζd (k)sgn(k) Nk+1
∫

dxρk+1(x). (A8)

Following a similar calculation one can show that the energy
functional for k → 0 becomes

EN [ρ(x)] = N

2

∫
dx Vex(x)ρ(x) + Nd

∫
dxρ(x) ln ρ(x).

(A9)

Inserting these expressions of the energy functionals in the
expression of the action SN,μ[ρ(z)] below,

SN,μ[ρ(z)] = βEN [ρ(z)] + N
∫

dzρ(z) ln ρ(z)

+μ

[ ∫
ρ(z)dz − 1

]
, (A10)
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FIG. 3. Virial plots obtained from Eq. (B1) for the corresponding
plots in Fig. 1.

and minimizing it we get the following saddle point equations:

1
2Vex(x) + J (k + 1)ζd (k)sgn(k) Nkρk (x) + μ = 0,

for k > 0, (A11)

1
2Vex(x) + (βd + 1)[ln ρ(x) − 1] + μ = 0, for k = 0,

(A12)

1
2Vex(x) + [ln ρ(x) − 1] + μ = 0, for k < 0, (A13)

in the leading order in N . Solving these equations we find that
the saddle point density is given by Eq. (A5) with

�N =
{

N
k

k+n , for, k > 0
1, for, k � 0

(A14)

and

fk (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ad (k)[2μd (k) − Vex(y)]1/k, |y| � �[μd (k)],
for k > 0,

e− βVex (y)
βd+1 /C0, −∞ � y � ∞, for k = 0,

e−βVex(y)/C, −∞ � y � ∞, for k < 0

as announced in Eqs. (2), (4), and (6) in the main text. Here C
and C0 are normalization constants. This clearly justifies the
limit in Eq. (A5). It is easy to see that for boxlike potentials
this limit is trivially true since there is a length scale set by the
potential itself.

It is important to note that Eq. (A14) holds only when the
system is stable and there is a notion of a density profile, i.e.,

FIG. 4. Virial plots obtained from Eq. (B1) for the corresponding
plots in Fig. 2.

Eq. (A5). The most suitable way to visualize this is as follows.
If k < k∗, then even for a finite number of particles N there is
no finite solution for the particle positions that minimize the
energy in Eq. (A1). All particles in such a scenario fly away
to ±∞, making the discussion on density void.

APPENDIX B: VIRIALS (EQUIPARTITION)

To make sure that we collect data after the system has re-
laxed to the equilibrium state, we checked for the equipartition
by computing virial 〈x j

∂E ({xi})
∂x j

〉. Below we show the virials for
all the plots in Figs. 1 and 2 in the main text. The equipartition
was tested by checking that〈

x j
∂E ({xi})

∂x j

〉
= kBT . (B1)

Figures 3 and 4 show remarkable agreement, thereby validat-
ing all our numerical results.

Note that for k > 0 when T ∼ O(1) the finite temperature
results match with the density profile obtained by minimizing
the total energy Eq. (1) in the main text. In other words, we
have N equations ∂E ({xi})

∂xi
= 0, i = 1, 2, . . . , N from which

we can solve for N unknowns {xmin
i ; i = 1, 2, . . . , N}. Recon-

structing a density function from this (say, by using the inverse
of interparticle distance) will give a density profile which also
will agree with the one obtained from minimization of the
action described above. This in turn is in perfect agreement
with brute-force finite temperature Monte Carlo. Needless to
mention, this of course does not encode any information about
fluctuations.
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