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Lifshitz phase transitions in a one-dimensional Gamma model
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In this paper, we study quantum phase transitions and magnetic properties of a one-dimensional spin-1/2
Gamma model, which describes the off-diagonal exchange interactions between edge-shared octahedra with
strong spin-orbit couplings along the sawtooth chain. The competing exchange interactions between the nearest
neighbors and the second neighbors stabilize the semimetallic ground state in terms of spinless fermions, and
give rise to a rich phase diagram, which consists of three gapless phases. We find distinct phases are characterized
by the number of Weyl nodes in the momentum space, and such changes in the topology of the Fermi surface
without symmetry breaking produce a variety of Lifshitz transitions, in which the Weyl nodes situating at k = π

change from type I to type II. A coexistence of type-I and type-II Weyl nodes is found in phase II. The information
measures including concurrence, entanglement entropy, and relative entropy can effectively signal the second-
order transitions. The results indicate that the Gamma model can act as an exactly solvable model to describe
Lifshitz phase transitions in correlated electron systems.
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I. INTRODUCTION

The strong quantum fluctuations in low-dimensional mag-
nets often give rise to fascinating quantum phenomena, which
have been intensively investigated. Usually the underlying
exotic physics in these complex systems is hard to identify. In
this context, a few exactly solvable models provide particular
enlightenment for the analysis of enigmatic quantum phase
transitions (QPTs) in correlated electron systems. Experi-
mental realizations are, for example, the Ising-type materials
LiHoF4 [1], CoNb2O6 [2], XY-type materials Cs2CoCl4 [3,4],
and the Heisenberg-type magnetic insulator copper pyrazine
dinitrate Cu(C4H4N2)(NO3)2 (denoted by CuPzN for short)
[5], in which the spins at each transition metal ions are struc-
turally arranged along the crystallographic a axis to form a
spin-1/2 chain. Recently enormous research efforts have been
devoted to the celebrated Kitaev model [6], which has be-
come one of the prototype models that support the spin-liquid
ground state and the associated non-Abelian quasiparticles.
The Kitaev spin liquid is exactly realized in the Kitaev
honeycomb lattice, which is characterized by the Ising-type
interactions (∝ Sa

i Sa
j ) between nearest-neighbor spins with

different easy-axis directions depending on three types of
bonds (a = x, y, z) on the honeycomb lattice. The Kitaev
model was initially believed to be tractable mathematically,
and then become physically realistic since Jackeli and Khali-
ullin [7] demonstrated that the bond-directional interactions
could be realized in Mott insulators with strong spin-orbit
coupling.

*wlyou@nuaa.edu.cn

With the rapid progress in materials synthesis and het-
erostructure design, the growing interest in orbital degrees
of freedom and spin-orbital coupling for strongly corre-
lated electrons in transition metal oxides was amplified
by the exotic quantum state discovered. For instance,
the interfacial Dzyaloshinskii-Moriya interaction (DMI) in
graphene/ferromagnet heterostructures was observed [8]. In
this regard, various effective models for one-dimensional
(1D) and one-dimensional-analog architectures are devised.
In Ref. [9], one of the authors proposed a 1D compass model
of the sawtooth-chain ferromagnetic transition metal oxides
with active eg orbitals, which shared a similar characteris-
tic feature of bond-dependent Ising-like interactions with the
Kitaev model. Such one-dimensional-analog nanostructures
constitute flexible platforms for designing simplified models,
which provide a remarkable description of the characteristic
properties of low-dimensional frustrated systems. Studies of
the spin liquid state have been hampered by the lack of a
simple solvable model that can capture features of an exotic
topological state of matter.

In this paper, we consider an effective Hamiltonian by
taking into account the off-diagonal exchange interactions
for edge-shared octahedra structures with strong spin-orbit
couplings along a snake-like chain. Because of the sawtooth
architecture, the system is affected not only by the nearest-
neighbor interactions, but also by the second-nearest-neighbor
interactions. We study the QPTs in 1D system including both
the off-diagonal exchange interactions and the three-site inter-
actions. The merit of this model is that it depicts a quantum
spin chain with broken reflection symmetry, which is not only
physically realistic, but also tractable mathematically.

The organization of the rest of the paper is as follows.
In Sec. II, the Hamiltonian model is given and an analytical
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expression of the ground-state energy is obtained. We find
that the low-energy dispersions around k = π in momentum
space play a crucial role in determining the topology of the
Fermi surface. The phase diagram is then established in the
�2-η plane. In Sec. III, we show that the correlation func-
tions can be analytically obtained. In Sec. IV, based on the
exact solution of correlations, information measures including
concurrence, von Neumann entropy, and relative entropy are
adopted to locate the quantum critical points, which implies
that these information measures act as universal order pa-
rameters for Lifshitz phase transitions in many-body lattice
systems.

II. MODEL AND PHASE DIAGRAM

The Hamiltonian of the Gamma model is given by

H =
N∑

j=1

[
�1

(
σ x

j σ
y
j+1 + ασ

y
j σ

x
j+1

)
+�2

(
σ x

j−1σ
z
j σ

y
j+1 + βσ

y
j−1σ

z
j σ

x
j+1

)]
, (1)

where σ a
j (a = x, y, z) are Pauli matrices on the jth site of

an N-site system. �1 and �2 denote the strength of nearest-
neighbor and next-nearest-neighbor off-diagonal exchange
interaction; α and β represent the relative coefficients between
different terms of off-diagonal exchange couplings. For later
convenience, we define η = α/(2β ). Throughout the paper,
we take �1 = 1 as the energy unit. For α = 1, Eq. (1) becomes
the symmetric off-diagonal exchange interactions. It is found
that the off-diagonal exchange interactions play a significant
role in stabilizing the quantum spin liquid state [10,11] and or-
dered phases [12–14]. Such form of exchange can also emerge
from the truncated dipolar exchange [15,16]. Furthermore, for
α = −1, the antisymmetric form reduces to the DMI, which
was first proposed by Dzyaloshinsky and Moriya [17,18] and
has attracted continued interest [19–25]. The DMI has been
proved to be a key factor in explaining the magnetic properties
in LiMnPO4 [26], Ni3V2O8 [27], MnSi [28,29], CoFeB [30],
etc. Note that the emergence of three-site interactions has been
discussed in the context of nonequilibrium dynamics as an
energy current [31,32]. We derive the XZY-YZX term from
the first two terms of Eq. (1) in the Appendix. The three-site
interactions compete with the nearest-neighbor interactions
and generally induce the phase transitions. For instance, the
XZY-YZX-type three-site interactions in the anisotropic XY
spin chain give rise to gapless phases [33–35].

In this paper, we consider even N and impose periodic
boundary conditions (PBCs) with σ a

N+1 = σ a
1 . For conve-

nience, in terms of the raising and lowering operators σ±
j =

(σ x
j ± iσ y

j )/2, the Jordan-Wigner transformation converts the
spin operators into spinless fermion operators by the follow-
ing relations:

σ+
j = eiπ

∑ j−1
n=1 c†

ncn c j, σ−
j = e−iπ

∑ j−1
n=1 c†

ncn c†
j ,

σ z
j = e±iπc†

j c j , (2)

where c j and c†
j are annihilation and creation operators of

spinless fermions at site j which obey the standard anticom-
mutation relations, i.e., {ci, c j} = 0 and {c†

i , c j} = δi j . Thus,

the Hamiltonian (1) can be rewritten as a quadratic form of
the creation and annihilation operators of spinless fermions:

H =
N∑

j=1

i�1[(c†
j − c j )(c

†
j+1 − c j+1)

+α(c†
j + c j )(c

†
j+1 + c j+1)]

+ i�2[(c†
j−1 − c j−1)(c†

j+1 − c j+1)

+β(c†
j−1 + c j−1)(c†

j+1 + c j+1)]. (3)

Note that the boundary term in Eq. (3) has an extra phase fac-
tor cN+1 = c1(−1)(Np+1) with the total fermion number Np =∑N

j=1 c†
j c j . Such subtle boundary effect leads to either PBC

or antiperiodic boundary condition (APBC) for the spinless
fermion chain [36–38]. The boundary contribution becomes
negligible after the thermodynamical limit has been taken
owing to the 1/N correction. To diagonalize the Hamiltonian
in Eq. (3) in the APBC channel with even fermion-number
parity, a Fourier transformation c j = 1√

N

∑
k e−ik jck is intro-

duced with the discrete momenta given as follows:

k = nπ

N
, n = −(N − 1),−(N − 3), . . . , N − 1. (4)

The Hamiltonian can be written in the following form:

H =
∑

k

2�1(α − 1) sin kc†
kck

+ �1(α + 1) sin k(c−kck + c†
kc†

−k )

+ 2�2(β − 1) sin 2kc†
kck

+ �2(β + 1) sin 2k(c−kck + c†
kc†

−k ). (5)

Then we write it in a symmetrized matrix form with respect to
the k ↔ −k transformation within the Bogoliubov–de Gennes
(BdG) representation,

H =
∑

k

	
†
k M̂k 	k, (6)

where

M̂k =
(

Ak Bk

B∗
k −A−k

)
,

(7)

with Ak = �1(α − 1) sin k + �2(β − 1) sin 2k, Bk = �1(α +
1) sin k + �2(β + 1) sin 2k, and 	

†
k = (c†

k , c−k ). Note that
A−k = −Ak and B−k = −Bk . Finally, it can be diagonalized
by using the Bogoliubov transformation. In this way, the
ground-state energy can be obtained and the Hamiltonian can
be transformed into the diagonal form

H =
∑

k

εk

(
b†

kbk − 1

2

)
, (8)

where the energy spectrum is given by

εk = 2(Ak + |Bk|)
= 2[�1(α − 1) sin k + �2(β − 1) sin 2k

+ 2|�1(α + 1) sin k + �2(β + 1) sin 2k|]. (9)
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FIG. 1. The ground-state phase diagram of the Gamma model
with three-site interactions. The critical lines correspond to (�2)c,1 =
0.5 and (�2)c,2 = η.

With the excitation energy at hand, we have precisely de-
termined the ground-state phase diagram of the generalized
Gamma model with respect to η and �2 in Fig. 1. One finds
ε0 = επ = 0, which implies the ground state is always gap-
less. For the low-energy spectrum around the Fermi point
kF = 0 with |k| � 1, we have

εk ≈ [2�1(α − 1) + 4�2(β − 1)]k

+ [2�1(α + 1) + 4�2(β + 1)]|k|, (10)

which implies the bands near the band crossing point disperse
linearly. The anisotropy is quite similar to a tilted Weyl cone
in the context of Weyl semimetals (WSMs). The velocity of a
left-going spinless fermion is vI

l = −4�1 − 8�2 and that of a
right-going spinless fermion is vI

r = 4�1α + 8�2β.
On the other hand, for the low-energy excitation around the

Weyl node kF = π with |δk| � 1, in which δk = k − π ,

εk ≈ [4�2(β − 1) − 2�1(α − 1)]δk

+ |4�2(β + 1) − 2�1(α + 1)||δk|. (11)

In phase I, the velocity of a left-going spinless fermions
is vI

l = −4�1α + 8�2β and that of a right-going spinless
fermions is vI

r = 4�1 − 8�2. The dispersion around π shows
an upright tapered shape in the energy-momentum space,
resembling a conventional type-I Weyl point [see Fig. 2(a)].
With increasing �2, one of two branches will become
dispersionless at either (�2)c,1 = 0.5 or (�2)c,2 = η. After
surpassing the critical point, the system enters phase II with
three Fermi points. In contrast to phase I, the Weyl cone is
tipped over; that is, the two crossing bands have the same
sign of their slopes along certain directions in the k-space,
forming a type-II Weyl point. Thus a change in the topology of
the Fermi surface without symmetry breaking from the type-I
Weyl point in Fig. 2(a) to the type-II Weyl point in Figs. 2(b)
and 2(d) represents a Lifshitz transition. Upon further in-
creasing �2, the system is driven into phase III, consisting of
four Fermi points through another Lifshitz phase transition,
in which one of the branches becomes again dispersionless.
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FIG. 2. The energy spectrum for four representative sets of
{η, �2} parameters which correspond to different regions as depicted
in Fig. 1. (a) η = 0.25, �2 = 0.2; (b) η = 0.25, �2 = 0.4; (c) η =
0.25, �2 = 0.75; and (d) η = 1, �2 = 0.75. Insets in (a), (c) illustrate
the type-I dispersions around k = π and insets in (b), (d) show
type-II dispersions around k = π .

One can find in phase III that the two crossing bands at either
k = 0 or π always have slopes with opposite signs in k-space
[see Fig. 2(c)].

The ground state corresponds to the configuration in which
all states with εk < 0 (∈ �−

k ) are filled and states with εk > 0
(∈ �+

k ) are empty. Therefore, the ground-state energy density
is given by

e0 = − 1

2N

∑
k∈�+

k

εk + 1

2N

∑
k∈�−

k

εk . (12)

In the thermodynamic limit N → ∞, one can obtain

e0 = − 1

π

∫ π

−π

(|�1α sin k + �2β sin 2k| + |�1 sin k

+�2 sin 2k|)dk

= −|�1α|
π

[
1 + 4�̄2

2

�̄2
�(−0.5 − �̄2) + 4�(0.5 − |�̄2|)

+ 1 + 4�̄2
2

�̄2
�(�̄2 − 0.5)

]

− |�1|
π

[
1 + 4�̃2

2

�̃2
�(−0.5 − �̃2) + 4�(0.5 − |�̃2|)

+ 1 + 4�̃2
2

�̃2
�(�̃2 − 0.5)

]
, (13)

where �̃2 = �2/�1, �̄2 = �2β/�1α, and �(·) is the Heaviside
step function, whose value is zero for negative arguments and
one for positive arguments.

Symmetry analysis. It is easy to find that Eq. (13)
remains invariant for �2 → −�2 and k → π − k.
Therefore, e0(�2, α, β ) = e0(−�2, α, β ) = e0(�2,−α, β ) =
e0(�2, α,−β ). Without any loss of generality, we set α � 0,
β � 0, and �2 � 0. One can easily observe in Fig. 3 that
the second-order phase transitions at both (�2)c,1 = 0.5 and
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FIG. 3. The second-order derivative of energy density e0 as a
function of �2 for (a) η = 0.25 and (b) η = 1.

(�2)c,2 = η are characterized by a discontinuity in the second
derivatives of the energy density. In fact, two QPTs are
triggered by different types of competitions due to a hidden
symmetry behind the model H, which can be unveiled by
exploring the corresponding Majorana Hamiltonian. Regard-
ing the Majorana modes γ2 j−1 = c†

j + c j , γ2 j = i(c j − c†
j ),

Eq. (3) with open boundary conditions can be rewritten as

H =
N−1∑
j=1

(−i�1γ2 jγ2 j+2 + i�1αγ2 j−1γ2 j+1

− i�2γ2 j−2γ2 j+2 + i�2βγ2 j−3γ2 j+1). (14)

A schematic diagram of Majorana modes is shown in Fig. 4,
in which two Majorana chains are decoupled in the absence
of the magnetic field. Along the odd (even) chain, the inter-
actions between nearest-neighbor sites are −i�1α (i�1) and
the interactions between the next-nearest-neighbor sites are
i�2β (−i�2). Hence, the Hamiltonian in Eq. (1) can be rewrit-
ten as a sum of two commuting parts, i.e., H = Ho + He,

FIG. 4. Auxiliary snake chain representation for the Hamiltonian
in Eq. (1) in terms of Majorana fermions.

where

Ho =
N∑

j=1

�1ασ
y
j σ

x
j+1 + �2βσ

y
j−1σ

z
j σ

x
j+1, (15)

He =
N∑

j=1

�1σ
x
j σ

y
j+1 + �2σ

x
j−1σ

z
j σ

y
j+1. (16)

We are aware that the reflection symmetries in Eqs. (15) and
(16) are both broken. It becomes evident that two critical
points (�2)c,1 = 0.5 and (�2)c,2 = η originate from two split
Majorana chains. For α = 0 and β = 0, Ho turns out to vanish
and one can notice that the ground state is 2N/2−1-fold degen-
erate with PBCs and 2N/2-fold degenerate with open boundary
conditions. The macroscopic degeneracy can be interpreted
either by the intermediate symmetry operators [9,39,40] or by
the free Majorana modes [41]. Once a finite local transverse
magnetic field gl (1 � l � N ) is turned on, an lth tooth will
hybridize the even Majorana chain with a Majorana mode in
the odd Majorana chain since glσ

z
l = iglγ2l−1γ2l . It is intrigu-

ing to involve more finite external fields, but in this paper we
will restrict the discussion to the zero field limit.

III. CORRELATION FUNCTION

In order to characterize the phase instability, we study the
two-site correlation function Ga,b

i, j = 〈σ a
i σ b

j 〉, where a, b = x,
y, z. A simple calculation reveals that

Gxy
j, j+1 =

{− 2
π
, �2 � 0.5,

− 1
π�2

, �2 > 0.5,
(17)

Gyx
j, j+1 =

{− 2
π
, �2 � η,

− 2η

π�2
, �2 > η.

(18)

The nearest-neighbor correlations Gxy
j, j+1, Gyx

j, j+1 show abrupt
changes at (�2)c,1 = 0.5 and (�2)c,2 = η. It is obvious that the
QPTs at (�2)c,1 can be attributed to Eq. (15) while the one at
(�2)c,2 originates from Eq. (16). Similarly, the next-nearest-
neighbor correlations are defined on three consecutive spins
Ga,b,c

j−1, j, j+1 = 〈σ a
j−1σ

b
j σ

c
j+1〉. We then find that

Gxzy
j−1, j, j+1 =

{
0, �2 � 0.5,
1
π

(
1

2�2
2

− 2
)
, �2 > 0.5,

(19)

Gyzx
j−1, j, j+1 =

{
0, �2 � η,
1
π

( 2η2

�2
2

− 2
)
, �2 > η.

(20)

The correlation functions with respect to �2 are portrayed
in Fig. 5. In phase I, the dominating nearest-neighbor
correlations are Gxy

j, j+1 = Gyx
j, j+1 = −2/π . Meanwhile, the

next-nearest-neighbor correlations Gxzy
j−1, j, j+1 and Gyzx

j−1, j, j+1
vanish. However, the correlations become intricate in phase
II, in which the dominant correlations are determined by η.
For η < 0.5 the magnitude of Gyx

j, j+1 declines and the cor-
relation Gyzx

j−1, j, j+1 develops with respect to �2. Analogously,
for η > 0.5 the correlation Gxzy

j−1, j, j+1 gradually prevails over
Gxy

j, j+1 with increasing �2. The growing �2 eventually leads to
the domination of corresponding next-nearest-neighbor corre-
lations.
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FIG. 5. The correlation functions Gxy
j, j+1, Gyx

j, j+1, Gxzy
j−1, j, j+1,

Gyzx
j−1, j, j+1 as a function of �2 for (a) η = 0.25 and (b) η = 1.

IV. QUANTUM ENTANGLEMENT AND COHERENCE

Since the exact solution of the Gamma model with three-
site interactions is at hand, it is straightforward to obtain its
complete information measures such as concurrence and von
Neumann entropy. Concurrence is a pairwise entanglement
measure for any bipartite system that relates to a two-site
reduced density matrix ρi j , which is defined as

C(ρi j ) = max{0, r1 − r2 − r3 − r4}, (21)

where rn (n = 1, 2, 3, 4) are the square roots of the matrix R
in descending order,

R = ρi j (σ
y ⊗ σ y)ρ∗

i j (σ
y ⊗ σ y). (22)

The reduced density matrix ρi j of qubits i and j can be
expressed as

ρi j =

⎛
⎜⎝

u+ 0 0 z1

0 ω+ z2 0
0 z∗

2 ω− 0
z∗

1 0 0 u−

⎞
⎟⎠. (23)

with

u± = 1
4

(
1 ± 〈

σ z
i

〉 ± 〈
σ z

j

〉 + 〈
σ z

i σ z
j

〉)
, (24)

z1 = 1
4

(〈
σ x

i σ x
j

〉 − 〈
σ

y
i σ

y
j

〉 − i
〈
σ x

i σ
y
j

〉 − i
〈
σ

y
i σ x

j

〉)
, (25)

z2 = 1
4

(〈
σ x

i σ x
j

〉 + 〈
σ

y
i σ

y
j

〉 + i
〈
σ x

i σ
y
j

〉 − i
〈
σ

y
i σ x

j

〉)
, (26)

ω± = 1
4

(
1 ± 〈

σ z
i

〉 ∓ 〈
σ z

j

〉 − 〈
σ z

i σ z
j

〉)
. (27)

The concurrence for such a two-qubit state ρi j [Eq. (23)] can
be simplified into C = 2 max {0, ς1, ς2}, where ς1 = |z1| −√

ω+ω− and ς2 = |z2| − √
u+u−. To this end, a compact form

for the nearest-neighbor concurrence can be given by

Cj, j+1 = max {0,C0}, (28)

where for η > 0.5

C0 =

⎧⎪⎨
⎪⎩

2
π

(
1 + 1

π

) − 1
2 , �2 � 0.5,

1
2

(
1

π�2
+ 2

π
+ 2

π2�2
− 1

)
, 0.5 < �2 � η,

1
2

(
1

π�2
+ 2η

π�2
+ 2η

π2�2
2

− 1
)
, �2 > η,

(29)

and for η < 0.5

C0 =

⎧⎪⎨
⎪⎩

2
π

(
1 + 1

π

) − 1
2 , �2 � η,

1
2

( 2η

π�2
+ 2

π
+ 4η

π2�2
− 1

)
, η < �2 � 0.5,

1
2

(
1

π�2
+ 2η

π�2
+ 2η

π2�2
2

− 1
)
, �2 > 0.5.

(30)

The concurrence Cj, j+1 of nearest-neighbor qubits for a few
sets of typical parameters is exhibited in Fig. 6(a). One finds
that Cj, j+1 remains a constant in phase I and then will mono-
tonically decrease with an increase in �2 until it vanishes. We
can observe the pairwise entanglement undergoes an abrupt
change across the critical points.

The von Neumann entropy S(ρi j ) = −Tr(ρi j log2 ρi j ) is
another popular measure for bipartite correlations. In addition,
the relative entropy of coherence measure admits a distance
measure between a bipartite state and its incoherent state
defined as [42] CRE (ρi j ) = S(ρdiag) − S(ρi j ), where S(ρdiag)
represents the von Neumann entropy of the new density ma-
trix after the nondiagonal terms are removed. Figures 6(b)
and 6(c) show the von Neumann entropy S and the relative
entropy of coherence CRE as a function of �2. One can see
that they remain a constant in phase I and then present kinks
at the critical points. After surpassing the first critical point,
S increases monotonically with increasing �2, showing an
opposite trend compared to CRE . In the large-�2 limit, CRE

eventually approaches 0.

V. DISCUSSION AND CONCLUSION

In this paper, we study the Gamma model with three-site
interactions, which describes off-diagonal exchange interac-
tions between edge-shared octahedra with strong spin-orbit
couplings along a zigzag chain. The sawtooth structure re-
sults in the second-nearest-neighbor interactions becoming
nonnegligible compared to the nearest-neighbor interactions.
Although the Hamiltonian seems intricate, the symmetry
analysis reveals it can be decoupled into two independent
Majorana snake chains. In this context, we scrutinize the
ground-state properties and the associated quantum phase
transitions. In terms of the Jordan-Wigner transformation,
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FIG. 6. (a) The concurrence C12, (b) the von Neumann entropy
S, and (c) the relative entropy CRE with respect to �2 for η = 0.25,

0.5, 0.75, 1.

Hamiltonian (1) is transformed into a model of spinless
fermions, which stabilizes a semimetallic state. In particular,
due to the frustrating nature of the second-neighbor interac-
tions [43], the number of Weyl nodes can be tuned through
Lifshitz phase transitions. Lifshitz transitions have important
applications in many areas of physics, such as high-energy
physics, cosmology, black hole physics, and the search for
room-Tc superconductivity. For example, a black hole horizon
serves as the surface of the Lifshitz transition between vacua
with type-I and type-II Weyl points [44]. We have obtained
the complete phase diagram in the �2-η plane. The critical
lines correspond to (�2)c,1 = 0.5 and (�2)c,2 = η, which in-
tersect at a multicritical point. Although the system remains
a multi-Weyl semimetals with finite density of states, there

are continuous phase transitions from type-I to type-II WSMs
occurring in the Brillouin zone. Phase I is characterized by
the linear dispersions at k = 0 and k = π , which are both
type-I Weyl points. As �2 increases, the Weyl cones situated
at k = π are completely tilted until the Weyl node becomes
a type-II node in phase II, which will revert to type-I node
again in phase III. It is a significant task to develop realistic
WSMs containing both type-I and type-II Weyl nodes simul-
taneously. The coexistence of type-I and type-II Weyl nodes
in topological materials can result in intriguing properties. A
hybrid WSM with coexisting type-I and type-II Weyl nodes
by using the tight-binding model was constructed [45], and
the disorder was found to induce phase transitions from type I
to type II in WSMs [46]. Recently, the material OsC2 hosting
24 type-I Weyl nodes and 12 type-II Weyl nodes was reported
[47].

Based on the exact solutions, the analytical expressions of
the spin-spin correlation functions are obtained. We show that
all these measures are capable of detecting the second-order
transition. To complete the analytic approach, we present a
comparative study of diverse measures of quantum correla-
tions including concurrence and von Neumann entropy as well
as relative entropy of coherence, which undergo a sudden
change in the wake of quantum phase transitions, similar to
the behaviors of correlation functions. Despite formal similar-
ity, different measures of quantumness have their respective
trends as the strength of three-site interactions �2 increases.

To summarize, we emphasize that the advantage of the
model considered here is its exact solvability that implies in
particular the possibility to calculate accurately various dy-
namic quantities. Our results suggest that the Gamma model
can act as a minimal model to describe Lifshitz phase transi-
tions in correlated electron systems. The figures of merit of
this model might be crucial to understanding off-diagonal ex-
change interactions with broken reflection symmetry and pro-
vide an ideal benchmark for other computational methods and
approximate techniques used to study more realistic models.
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APPENDIX: ENERGY DYNAMICS

Here we show the XZY-YZX-type three-site interactions
can emerge from the nearest-neighbor off-diagonal exchange
interactions in the nonequilibrium steady states. The Hamil-
tonian HNN describes a one-dimensional lattice with only
nearest-neighbor off-diagonal exchange interactions:

HNN =
N∑

l=1

[
�1

(
σ x

l σ
y
l+1 + ασ

y
l σ x

l+1

)] =
N∑

l=1

ĥl,l+1. (A1)

For simplicity, we assume that �1 = 1. The energy current ĵl
in the nonequilibrium steady states is calculated by taking a
time derivative of the energy density operators and follows
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from the continuity equation:

dĥl,l+1

dt
= i[HNN, ĥl ]

= −2α2σ
y
l−1σ

z
l σ x

l+1 + 2α2σ
y
l σ z

l+1σ
x
l+2

+ 2σ x
l−1σ

z
l σ

y
l+1 − 2σ x

l σ z
l+1σ

y
l+2

= −( ĵl+1 − ĵl ) = −div ĵl . (A2)

Immediately one arrives at

ĵl = −2α2σ
y
l−1σ

z
l σ x

l+1 + 2σ x
l−1σ

z
l σ

y
l+1. (A3)

This energy current operator acts on three adjacent sites and
has the z component of spin-1/2 operators between two next-
nearest-neighbor sites.
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