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Reaching and violating thermodynamic uncertainty bounds in information engines
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Thermodynamic uncertainty relations (TURs) set fundamental bounds on the fluctuation and dissipation of
stochastic systems. Here, we examine these bounds, in experiment and theory, by exploring the entire phase space
of a cyclic information engine operating in a nonequilibrium steady state. Close to its maximal efficiency, we find
that the engine violates the original TUR. This experimental demonstration of TUR violation agrees with recently
proposed softer bounds: The engine satisfies two generalized TUR bounds derived from the detailed fluctuation
theorem with feedback control and another bound linking fluctuation and dissipation to mutual information and
Renyi divergence. We examine how the interplay of work fluctuation and dissipation shapes the information
conversion efficiency of the engine, and find that dissipation is minimal at a finite noise level, where the original
TUR is violated.
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Introduction. The progress of stochastic thermodynamics
in the last decades has borne fruit in the form of universal
laws, such as fluctuation theorems [1–5], which apply to vari-
ous far-from-equilibrium systems, artificial and living [6,7],
and were experimentally tested in several cases [8–12]. A
seminal result in this field is the thermodynamic uncertainty
relation (TUR) [13–17]. In analogy to Heisenberg’s uncer-
tainty principle, the TUR sets a fundamental lower bound on
the interplay between fluctuation and dissipation in stochastic
systems, which originates from the first principles, the in-
herent thermal fluctuations. The seminal TUR was confirmed
theoretically in several stochastic systems [17], and was found
to affect the performance of molecular engines [18] and bio-
logical synthesis circuits [19].

Recent studies suggest that the TUR bound is satisfied by
specific classes of stochastic processes driven by nonequi-
librium and time-independent forces that do not change sign
under time reversal [17], and several attempts have been made
to identify alternative lower bounds in terms of generalized
TURs (GTURs) [20–24]. The TUR has been experimentally
tested in nonfeedback systems, such as heat engines [25]. But
so far, there was no experimental study exploring the validity
of the TUR and other bounds in information engines [4,12,26–
30], which use measurement and feedback control to extract
work from the information on the microstate of a stochastic
system.

The TUR has special relevance to stochastic engines, and
in particular to information engines: A major question in this
field is how to optimize the engines such that the fluctuations
in their power and the energy they dissipate are minimal. A
direct outcome of the TUR is that these two performance
measures, fluctuation and dissipation, cannot be minimized
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independently, as they are constrained by a general tradeoff.
Another lower bound [31], links the fluctuation-dissipation
tradeoff of information engines to the mutual information
and the Renyi divergence, an information-theoretic distance
between the equilibrium and nonequilibrium distributions
[hence denoted as the information distance relation (IDR)].
Like the TUR, the IDR is also not well explored experi-
mentally, probably due to the challenge of measuring the
fluctuations of mutual information and extracted work.

All these motivated us to test the validity of these uni-
versal lower bounds by examining the fluctuation-dissipation
tradeoff in information engines. To this end, we constructed
a cyclic information engine made of an optically trapped
colloidal particle. We explored the entire phase space of the
engine, deep into the far-from-equilibrium regime. Our ap-
paratus can measure the noise—and thereby the fluctuations
of the thermodynamic variables—very accurately, and the
measurements agreed well with a simple theory. We found
that in certain regions of the engine’s phase space, the system
violates the original TUR bound. Yet, the softer version of
the generalized bounds derived from the generalized detailed
fluctuation theorems, the GTURs [22,23,32,33], still holds.
Note that the original TUR is found to be valid in nonequi-
librium steady state under constant driving. In contrast, our
system reaches a periodic steady state with a time-dependent
feedback-controlled driving. Indeed, we found that with an
appropriate backward protocol, the original TUR is satisfied
in a wider phase space and the GTURs are satisfied for the
entire phase space of the engine. We also discuss how an
optimal protocol achieves the Renyi-information lower bound
(IDR) [31]. Last, we found that dissipation is minimal near
the noise level where the efficiency peaks and the TUR is
violated, suggesting that the fluctuation-dissipation tradeoff
is the underlying reason for the maximal efficiency at finite
noise. Overall, our experiment provides a test of the original
TUR and the other tradeoff relations for feedback systems.
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FIG. 1. (a) The engine cycle for symmetric feedback control
protocol. At the beginning of the ith cycle, the particle is located
at x with respect to the trap center λi−1. The demon measures
the x as y = x + error, with a normally distributed error of vari-
ance N. Basing on the measured yi, the demon performs the
feedback control step by instantaneously shifting the trap center
to λi = yi. The particle then relaxes for a time τ in the shifted
potential until the next cycle begins. (b) Test of thermodynamic
uncertainty relation. The measured fluctuation-dissipation product
φ = [Var(βW )/〈βW 〉2] [〈βW 〉 + 〈I〉] as a function of error level
ε = √

N/S for τ = 20 (olive circles), 3 (blue), and 0.5 (orange) ms,
for symmetric feedback. The solid curves are the theoretical values
of φ [Eqs. (1)–(3)]. The dashed horizontal line is the TUR lower
bound, φ � 2. Inset: An expanded view of the region where φ falls
below the TUR bound (olive and blue). The error bars of φ (black
whiskers) are about the same size as the symbols.

The mutual information engine. In the following, we briefly
revisit the information engine and its basic energetics, which
we use to test the uncertainty bounds. The engine consists
of a colloidal particle immersed in a bath of temperature
kBT = β−1 and diffusing in the harmonic potential V (x, t ) =
(k/2)[x − λ(t )]2 generated by an optical trap (see the Sup-
plemental Material [34] for experimental methods). Here, x
is the particle position at time t, k is the trap stiffness, and
λ(t ) is the center of the trap. Each engine cycle of period τ

includes (i) measurement of the particle position, (ii) shift of
the potential center, and (iii) relaxation. We employ two types
of feedback control protocols: symmetric and asymmetric.
Figure 1(a) shows the schematic of the ith engine cycle under
symmetric feedback control [30]. Here, the demon measures
the true particle position xi with respect to the potential center
λi−1. But due to Gaussian noise of variance N, the demon re-
ceives an inaccurate measurement outcome yi. The trap center

is then shifted instantaneously (that is very fast) to yi, and
the particle relaxes for the duration τ before the next cycle
begins. In the subsequent (i + 1)th cycle, the particle position
is measured with respect to the shifted potential center λi (the
origin is reset) and the same protocol is repeated. Since the
origin is reset, the process does not depend on all previous
measurements. In the asymmetric feedback control protocol,
the trap center is shifted to yi only if yi � λi−1, and otherwise
remains at λi−1 until the next cycle begins.

The dynamics of the particle during the relaxation is
described by the overdamped Langevin equation [12,35].
Without feedback, the particle position follows the Gaus-
sian equilibrium distribution of variance S from which we
calibrate the trap stiffness as k = (βS)−1. The characteristic
time it takes for the particle to relax towards equilibrium is
τR = γ /k ≈ 3.5 ms, where γ is the Stokes friction coefficient.
After repeating the feedback cycle many times, the system ap-
proaches a steady state. For the symmetric feedback scheme,
the steady state probability distributions of the particle posi-
tion p(x) and measurement outcome p(y) are also Gaussian
[30]. The work performed on the particle, when the potential
is shifted, is βW ≡ β�V = (1/2)βk[(x − y)2 − x2]. There-
fore the averge work performed on the particle per cycle in
steady-state 〈βW 〉 and its standrad deviation std(βW ) are

〈βW 〉 = N − S∗

2S
and std(βW ) =

√
N2 + S∗2

2S2
, (1)

where S∗(τ ) = S + (N − S) exp(−2τ/τR) is the variance of
p(x). During the relaxation, the steady state average heat
supplied to the system 〈βQ〉 is minus the average work per-
formed, 〈βQ〉 = −〈βW 〉. Similarly, the steady state average
gain of mutual information per cycle 〈I〉, between the true
particle position x and the measurement outcome y, and its
standard deviation std(I ) are

〈I〉 = 1

2
ln

(
1 + S∗

N

)
and std(I ) =

√
S∗

S∗ + N
. (2)

Testing the thermodynamic uncertainty relation (TUR).
In a Markovian and overdamped system driven into
nonequilibrium steady state by time-independent forces,
the TUR bound on a current X (t ) is constrained by
{Var[X (t )]/〈X (t )〉2}〈σ 〉 � 2, where 〈σ 〉 is the average total
entropy production [13,14,25]. According to the generalized
second law of thermodynamics, the entropy production per
cycle in a system with measurement and feedback control
includes three contributions, 〈σ 〉 = 〈�Ssys〉 + 〈�Sm〉 + 〈�I〉,
where �Ssys is the system entropy change, �Sm is the bath
entropy change, and �I is the net information gain per cy-
cle [36]. For the current protocols, 〈�Ssys〉 = 0, 〈�Sm〉 =
−〈βQ〉 = 〈βW 〉, and 〈�I〉 = 〈I〉. The TUR for the average
power (i.e., work current) per cycle, P ≡ 〈βW 〉/τ then be-
comes

φ ≡ Var(βW )

〈βW 〉2 (〈βW 〉 + 〈I〉) � 2. (3)

Figure 1(b) shows the experimental test of the TUR pre-
diction, φ � 2 [Eq. (3)], for the symmetric feedback, as a
function of error level ε = √

N/S at three periods, τ = 0.5, 3,
and 20 ms (the characteristic relaxation time is τR = 3.5 ms).
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Faster engines (τ � τR), with nonequilibrium initial and final
states, always satisfy the TUR, φ � 2. Similarly, the TUR
is always satisfied for all values of τ in the ε > 1 region
where the average extracted work is negative. However, for
τ � τR and for error level in the range 0.28 < ε < 0.62, φ

falls below the lower bound set by the TUR [Fig. 1(b) inset].
The minimal φ was found to be about ≈ 1.6 at ε ≈ 0.47 for
τ � 5τR. The value of φ diverges near ε = 1 as the average
work 〈βW 〉 vanishes while the information gain 〈I〉 remains
finite (for error-free measurements, ε = 0, φ diverges due to
the divergence of 〈I〉). Interestingly, for smaller error level,
ε < 0.2, the TUR bound for short period τ = 0.5 ms is lower
than that for longer cycle periods [Fig. 1(b) inset].

In contrast, the TUR is always valid for the asymmetric
feedback scheme (Fig. S2 in the Supplemental Material [34]).
In both protocols, the global minimum of the TUR measure
φ is achieved for slow cycles τ 	 τR where initial and final
states are in equilibrium. Note that for the asymmetric feed-
back scheme, work is extracted only when the measurement
outcome is positive (y � 0). As a result, while the information
gained is the same, the average extracted work 〈βW 〉 and its
fluctuations Var〈βW 〉 [see the Supplemental Material [34],
Eq. (S1)] are always less than the symmetric feedback control.
This is the reason why TUR is not violated for the asymmetric
feedback scheme.

The recently reported generalized thermodynamic uncer-
tainty relation (GTUR) sets a softer bound on an observable
X, [Var(X )/〈X 〉2](e〈σ 〉 − 1) � 2 [22]. The GTUR can be rig-
orously drived from the strong detailed fluctuation theorem,
P(σ )/P(−σ ) = eσ . It is therefore valid for systems in a peri-
odic steady state for any observable X that is antisymmetric
under time reversal. While this condition may appear to re-
strict the applicability of the GTUR, we find that it is obeyed
in our feedback protocol throughout its phase space (Fig. 2).
In our system, the GTUR for the steady state average work
current takes the form

φG ≡ Var(βW )

〈βW 〉2 [e〈βW 〉+〈I〉 − 1] � 2 . (4)

The global minimum value of φG [Eq. (4)] is found to be
2.03 at ε = 0.5, for slow engines that fully relax to equilib-
rium at the end of each cycle (Fig. 2 inset).

The GTUR in Eq. (4) is satisfied for the above feedback
protocol of shifting the trap center to the measured outcome,
λ = y. However, we found that φG falls below the bound for a
general feedback protocol of λ = ay, for any 0 < a < 1 [red
curves in Fig. 3(a)].

We therefore tested the bound set by another thermo-
dynamic uncertainty relation derived for systems under
measurement and feedback control with broken time-reversal
symmetry (GITUR1) [32],

φGI ≡ Var(βW ) + Var(βW )B

(〈βW 〉 + 〈βW 〉B)2 [e(〈σ 〉+〈σ 〉B )/2 − 1] � 1, (5)

where 〈〉B denotes the ensemble average taken over the
backward probabilities. Following the backward experi-
ment suggested by Sagawa and Ueda, where no mea-
surement or feedback is performed, the equilibrium joint
probability distributions in forward experiment, p(x, y),

FIG. 2. The measured φG = Var(βW )[exp(〈βW 〉 + 〈I〉) −
1]/〈βW 〉2 as a function of the error level ε = √

N/S for τ = 20
(olive circles), 3 (blue), and 0.5 (orange) ms, for the symmetric
feedback. The solid curves are the theoretical model [Eq. (4)]. Inset:
Expanded view of the main panel showing that φG satisfies the
GTUR and achieves the tight bound of φmin

G = 2.03 for τ = 20 ms
and ε = 0.5.

and in backward experiment, pB(x, y), satisfy the gen-
eralized detailed fluctuation theorem pB(x, y)/p(x, y) =
exp(−βW − I ) [37]. The corresponding generalized inte-
gral fluctuation theorem, 〈exp(−βW − I )〉 = 1, is satisfied
by our feedback protocol [30]. Any observables X in the
backward experiment can then be calculated as 〈X 〉B =
− ∫

dxdyX (x, y)p(x, y) exp(−βW − I ). For λ = ay, the in-
formation gain at the time of measurement remains the same;
however, the work performed on the system during shifting
is given by βW = (k/2)[(x − ay)2 − x2]. Unlike the GTUR,
the GITUR1 is satisfied for our feedback protocol for all
λ = ay [green curves in Fig. 3(a)]. In particular, the squared
relative uncertainty θ ≡ Var(βW )/〈βW 〉2 is always bounded
by Z (θ � Z), where

Z ≡ (1 + 〈βW 〉B/〈βW 〉)2

e(〈σ 〉+〈σ 〉B )/2 − 1
− Var(βW )B

〈βW 〉2 , (6)

as shown in Fig. 3(b).
Note that by choosing the specific backward experiment

that includes the measurement and feedback control in the
backward path as well [33,38], the GTUR bound in Eq. (4)
is also satisfied for the general feedback protocol λ = ay. The
total entropy production for such a protocol should include
the entropic cost of the measurement in the backward ex-
periment, 〈�〉 = 〈�Ssys〉 + 〈�Sm〉 + 〈�Si〉, where 〈�Si〉 =
〈I〉 − 〈ln[p(y|xτ )/p(y)]〉 and xτ is the particle position at the
end of the relaxation (when the next cycle begins for the
current feedback protocol) [38]. However, for such back-
ward protocol, the tighter bound on θ ≡ Var(βW )/〈βW 〉2 is
given by the following generalized thermodynamic relation
(GITUR2) [33]:

Var(βW )

〈βW 〉2 � csch2

[
f

( 〈�〉
2

)]
, (7)
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FIG. 3. (a) Plot of φG [Eq. (4)] as a function of error level ε = √
N/S for τ = 20 ms with feedback control of λ = 0.1y (red dotted curve)

and 0.5y (red solid curve). The green curves are the corresponding plots of φGI [Eq. (5)]. (b) Plot of θ ≡ Var(βW )/〈βW 〉2 as of function of ε

for λ = 0.1y (magenta dotted curve), 0.5y (magenta solid curve), and y (magenta dashed dotted curve). The blue curves are the corresponding
plots of Z [Eq. (6)].

where f (x) is inverse function of x tanh(x). The bound in
Eq. (7) is analogous to the generalized TUR bound derived
from the exchange fluctuation theorem [23]. Equation (7) is
satisfied by our engine, as shown in Fig. S3 in the Supple-
mental Material [34]. Interestingly, with this total entropy
production 〈�〉, the original TUR in Eq. (3) is also satisfied
for λ = ay with a � 0.5.

The work fluctuation-dissipation tradeoff and the engine’s
efficiency. The TUR [Eq. (3)] explains a tradeoff between the
squared relative uncertainty of an observable current, ε2 ≡
VarX/〈X 〉2, and the total dissipation 〈σ 〉. It sets a tighter
bound to the dissipation (〈σ 〉 � 2/ε2) than that set by the
second law of thermodynamics (〈σ 〉 � 0). However, as shown
above, information engines often fall below the TUR bounds.
Very recently, Funo and Ueda reported a general tradeoff
relation (IDR) between the fluctuation of the extracted work

and the dissipation in an information engine [31]:

〈σ 〉 � (1 − α)(〈I〉 − 〈Iα〉), (8)

where α = std (βW )/std (I ) is the work fluctuation
normalized by the information fluctuation, and 〈Iα〉 =
{ln ∑

x,y p(x, y)α[p(x)p(y)]1−α}/(α − 1) is the Renyi
generalized mutual information. Figure 4(a) shows the
tradeoff between the normalized work fluctuation α and the
dissipation 〈σ 〉 in the positive average work extracting region
of the engine (ε < 1), for τ = 3 ms. Similar tradeoff behavior
is observed for all τ , particularly for α � 1 which correspond
to ε � 0.74 [see Fig. 4(a) inset].

Finding the protocol that simultaneously minimizes the
dissipation and the uncertainty in the extracted work is crucial
for the design of efficient engines. The dissipation is minimal

FIG. 4. (a) The normalized work fluctuation α = std (−βW )/std (I ) (olive), work dissipation 〈σ 〉 = 〈I〉 + 〈βW 〉 (orange), and efficiency
η = −〈βW 〉/〈I〉 (blue) as a function of the error level ε = √

N/S for τ = 3 ms for the symmetric feedback protocol. The solid curves are the
theoretical plots. Inset: work dissipation 〈σ 〉 as a function of normalized work fluctuation α for τ = 20 (red), 3 (blue), and 0.5 (green) ms. (b)
〈σ 〉 (red) and (1 − α)(〈I〉 − Iα ) (green) as a function of error level ε for τ = 3 (closed circles), and 0.5 (open squares) ms for the symmetric
feedback. The red solid curves are the theoretical 〈σ 〉. The green solid curve is guide to the eyes. The dashed horizontal line is the second-law
bound 〈σ 〉 = 0.
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for slower engines at finite error level ε ≈ 0.78. The infor-
mation utilization efficiency, η ≡ −〈βW 〉/〈I〉 of this engine
is found to be maximal for slower engine at ε ≈ 0.6, close
to the minimal dissipation point [Fig. 4(a)]. Note that the
original TUR is violated near this error level of maximal effi-
ciency. We also demonstrated that the IDR trade off in Eq. (8)
is always satisfied for our protocol as shown in Fig. 4(b).
The tighter bound can be achieved by a protocol optimized
for maximal work extraction, such as one described in [39].
The optimal protocol combines an instantaneous shift of the
trap center to a new position yS/(S + N ) and a simultane-
ous stiffening of the trap k → k′ = (1 + S/N )k, followed by
an adiabatic softening back to the original spring constant,
k′ → k. With this protocol all the available information is
utilized as work 〈−βW 〉 = 〈I〉 and the dissipation vanishes,
〈σ 〉 = 0. The work fluctuation remains unity, α = 1, irrespec-
tive of error size, thus achieving the sharp IDR [an equality in
Eq. (8)].

Conclusion. The original TUR provides a fundamen-
tal lower bound on the fluctuation-dissipation tradeoff of
nonequilibrium processes. This bound constrains the effi-
ciency of the system. We show that, in a certain range of the
parameters, the information engine violates the original TUR
and satisfies the softer GTUR bounds only for λ = y, while
for λ = ay, the GTUR violated. We show that the engine

always satisfies the GITUR and the IDR bounds. The GITUR
requires the design of backward experiments in which the
thermodynamic observables and their fluctuations are mea-
sured along the backward trajectory. However, realizing the
backward experiments for a cyclic information engine oper-
ating in a nonequilibrium steady state is often challenging.
Nevertheless, the IDR bound that links the work fluctuation,
mutual information, and Renyi entropy may serve as an alter-
native uncertainty relation for the work fluctuation-dissipation
tradeoff. The role of fluctuation and dissipation in shaping the
efficiency of the engine was also studied, and we found that
the tradeoff gives rise to a peak efficiency when the dissipa-
tion is minimal or when the fluctuation and dissipation are
of similar magnitude. The present work may inspire further
studies on the connections between uncertainty relations and
the efficiency bounds in feedback systems. Finally, we note
that a recently reported generalized TUR, for systems with
arbitrary initial states, suggests original TUR is violated in
our information engine because the average work current per
cycle decreases with time due to relaxation; as a result, the
instantaneous current at the end of the relaxation is always
smaller than the total current per cycle [40].
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