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Surface hopping propagator: An alternative approach to diffusion-influenced reactions
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Dynamics of a particle diffusing in a confinement can be seen a sequence of bulk-diffusion-mediated hops on
the confinement surface. Here, we investigate the surface hopping propagator that describes the position of the
diffusing particle after a prescribed number of encounters with that surface. This quantity plays the central role in
diffusion-influenced reactions and determines their most common characteristics such as the propagator, the first-
passage time distribution, and the reaction rate. We derive explicit formulas for the surface hopping propagator
and related quantities for several Euclidean domains: half-space, circular annuli, circular cylinders, and spherical
shells. These results provide the theoretical ground for studying diffusion-mediated surface phenomena. The
behavior of the surface hopping propagator is investigated for both “immortal” and “mortal” particles.
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I. INTRODUCTION

In many natural phenomena, particles diffuse in a con-
finement toward its surface where they can react, permeate,
relax their activity, or be killed. Examples include heteroge-
neous catalysis, permeation across cell membranes, filtering
in porous media, surface relaxation in nuclear magnetic res-
onance, and animal foraging [1-9]. These phenomena are
conventionally described by diffusion equation (or more
general Fokker-Planck equation) with appropriate boundary
conditions [10,11]. In particular, most common properties of
diffusion-influenced reactions are derived from the propagator
G,(x,t]xp), i.e., the probability density of the event that a
particle, started from a bulk point x( at time 0, has not reacted
on the surface and is located at a bulk point x at time 7.
For normal diffusion, the propagator satisfies the diffusion
equation inside a confining domain €2,

0 Gg(x, tlxo) = D AxGy(x, tlxo)  (x € ), ey

subject to the initial condition G,(x,t = 0lxg) = 6(x — xp)
and the Robin boundary condition on the boundary 9£2:

—0,Gy(x, 1x9) = g G4(x, t|xg) (x € ), )

where A, is the Laplace operator acting on x, §(x) is the Dirac
distribution, and 9, is the normal derivative on the boundary
a2 oriented outward the domain 2. The parameter g = x /D
is the ratio between the surface reactivity (or permeability, or
relaxivity, etc.) « and bulk diffusivity D. In chemical physics,
the Robin boundary condition was put forward by Collins and
Kimball [12] and later explored by many researchers [13-32]
(see an overview in Ref. [33]). The major disadvantage of
the conventional description is that the surface reactivity «
(or g) enters implicitly as a parameter of the Robin boundary
condition (2).
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In a recent work [34], we proposed an alternative de-
scription based on the concept of boundary local time. The
boundary local time ¢, characterizes the fraction of time that
a diffusing particle spends in close vicinity of the reflecting
boundary, as well as the number of encounters with that
boundary [35]; see Egs. (4) and (5) below. This is a fundamen-
tal concept in the theory of stochastic processes [36,37], which
remains largely unknown and almost unemployed in physics,
chemistry, and biology. To incorporate ¢,, we introduced the
full propagator P(x, £, t|xg), i.e., the joint probability density
of finding a particle at point x at time ¢ with its boundary local
time ¢, given that it started from xy at time 0. The crucial
advantage of this alternative description is that P(x, £, t|xg)
characterizes diffusion in confinement with reflecting (inert)
boundary. In turn, the surface reactivity is introduced via a
stopping condition on the boundary local time. In particular,
we derived

oo
Gy(x, 1]x0) =f dte " P(x, £, t|xo), 3)
0

where the surface reactivity g appears explicitly as a parameter
of the Laplace transform with respect to the boundary local
time £. In this way, the single full propagator P(x, ¢, t|xg)
describes the whole family of partially reactive surfaces (char-
acterized by ¢). Moreover, one can replace the exponential
factor =9 by a more general function to implement other
surface reaction mechanisms far beyond the conventional par-
tial reactivity described by the Robin boundary condition (2);
see Ref. [34] for details. In this light, the full propagator
P(x, ¢, t|xo) turns out to be the intrinsic key quantity that
describes all sorts of diffusion-mediated surface phenomena
in a given confinement.

A successful implementation of this paradigm requires ef-
ficient methods for accessing the full propagator. In Ref. [34],
the Laplace transform of the full propagator was expressed
in terms of the so-called “surface hopping propagator”
X,(s, £]so), i.e., the probability density of the event that a
particle, started from a boundary point s¢, has survived against
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a “bulk killing” with the rate p and is located at a boundary
point s at the boundary local time ¢. The rate p > 0 ac-
counts for eventual disappearance of the particle during its
diffusion in the domain 2 due to a bulk reaction or spon-
taneous disintegration, relaxation, photobleaching or death.
In this scheme, one can consider both “mortal” (p > 0) and
“immortal” (p = 0) particles [38—40]. In other words, the sur-
face hopping propagator describes bulk-diffusion-mediated
displacements between two encounters with the boundary,
separated by the boundary local time £. The concept of
such a surface exploration by successive hops through the
bulk was formulated by Bychuk and O’Shaugnessy [41,42]
and later confirmed by single-particle tracking experiments
[43—45]. Former theoretical descriptions of surface hopping
diffusion in terms of effective surface propagators were based
on coupled bulk-surface diffusion equations with adsorption-
desorption kinetics [46-50]. In turn, the surface hopping
propagator X,(s, £|sg) is a conceptually different quantity,
which characterizes surface displacements not in terms of
physical time t (as earlier) but in terms of the boundary local
time £ (the number of encounters). To our knowledge, the
surface hopping propagator, introduced in Ref. [34] as an
efficient way to access the full propagator, is a new object,
and the present paper aims at uncovering its properties.

The paper is organized as follows. In Sec. II, we formu-
late the theoretical framework for diffusion-mediated surface
phenomena, build an intuitive ground for the surface hopping
propagator, and recall some general relations from Ref. [34].
Main results are reported in Sec. III, in which the surface
hopping propagator is computed and investigated for several
domains. Section IV summarizes and concludes the paper.

II. SURFACE HOPPING PROPAGATOR

How many reflections does a particle undertake up to a
given time ¢ or during its lifetime? Where is the particle af-
ter n reflections? For the common continuous-time Brownian
motion, these natural questions have old but disappointing
(trivial) answers. In fact, Brownian motion crossing a smooth
surface is known to return infinitely many times to that surface
within an infinitely short time period [51]. To get more satis-
factory answers, one needs to reformulate these questions in
a regularized way. For instance, one can substitute Brownian
motion by a sequence of independent jumps (e.g., a random
walk on a lattice). However, it is more convenient to keep con-
sidering continuous stochastic process X, but to introduce a
thin surface layer of width a, 02, = {x € Q : |x — Q| < a},
and to count the number N of crossings of this layer by
reflected Brownian motion up to time 7. As a — 0, the number
of crossings diverges but a N converges to the random pro-
cess, introduced by Lévy and called the boundary local time
[35]:

¢, = lima . “)
a—0

While the continuous time ¢ represents the number of jumps
of duration § that the particle undertakes in the bulk, the
boundary local time £ is the proxy of the number of encounters
with the boundary (reflections of amplitude a). Equivalently,
¢, is proportional to the fraction of time that a particle spent

YA
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FIG. 1. Simulated trajectory of Brownian motion in the upper
half-plane above the horizontal axis. A thin surface layer is delimited
by dashed line at y = a. The trajectory, started from (0, a) (yellow
filled square) is split into three colored parts (blue, green, red). Each
part is terminated when the particle hits the boundary (enumerated
filled circles), while the next part starts the distance a above the last
hitting point (“jumps” indicated by black arrows). While some bulk
explorations are short (blue and red parts), the other can be very long
(green part).

in the surface layer of width a up to time 7:

D t
£, = lim —/ dr' Tya, (X 1), 5)
a—0 a Jy

where the integral is the residence time of reflected Brownian
motion X in 9€2,, and [ _(x) is the indicator function of that
layer: [, (x) = 1 for x € 02, and O otherwise. While ¢, is
historically called “local time,” it has units of length (see also
Refs. [52,53]). In some definitions, the diffusion coefficient D
is removed from Eq. (5), yielding the boundary local time in
units of time per length, i.e., the time spent in the surface layer
rescaled by its width. We also stress that the boundary local
time should not be confused with a closely related notion of
the point local time, i.e., a fraction of time spent in an infinites-
imal vicinity of a fixed bulk point. The latter was thoroughly
investigated, in particular, for Brownian motion and Bessel
processes (see Refs. [54-56] and references therein).

The former two questions should thus be reformulated in
terms of the boundary local time: How large is the boundary
local time ¢, up to a given time ¢ or during the lifetime of
a particle? Where is the particle after a boundary local time
£? Answers to both these questions are given by the surface
hopping propagator X ,(s, £|s¢), as discussed below.

A. Intuitive picture

Before presenting main results for general domains, it is
instructive to provide the motivation and intuition for the
surface hopping propagator. Let us consider a particle dif-
fusing in the upper half-plane, 2 = R x R, with reflecting
horizontal axis a2 = {(x,0) : x € R}. If the particle started
from a boundary point sy = (xp, 0), its “next” encounter with
the boundary would occur exactly at s, as discussed above.
To overcome this problem, we introduce a thin surface layer
of width a (Fig. 1). Now, one can ask what is the position
of the next encounter with the boundary after crossing the
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horizontal line y = a (i.e., after exiting from the surface layer).
This regularization eliminates too short Brownian trajectories
that remain within the layer. As the first crossing of the line
y = a typically occurs near the starting point sy, one can
directly move the starting point from (xy, 0) to (xo, a) and then
search for the probability density of the first arrival onto the
horizontal axis. This is the harmonic measure density, which
for the upper half-plane takes the form of the Cauchy density,
(6)

a
nl(x —x0)? +d?]’

and can thus describe the first encounter position x after leav-
ing the boundary from xy and crossing the surface layer of
width a. After this encounter, the particle continues diffusion,
independently of its past, so that the second encounter position
is determined by the convolution of two Cauchy densities:

p1(x|(xo0, a)) =

p2(x|(x0, @)) = /RdxlPl(x|(xlaa))Pl(lex()aa))

2a
7l(x —x0)* + 2a)*]”

Similarly, the position of the nth encounter is determined by

)

na
ml(x —x0)* + (nay’]”

In the limit @ — 0 with any fixed n, this density converges to
the Dirac distribution, p, (x|(xo, a)) — §(x — xp), illustrating
the above statement that (reflected) Brownian motion returns
infinitely many times to the first hitting point within an in-
finitely short period. As the right-hand side of Eq. (7) depends
on a via the product na, a nontrivial result can only be ob-
tained in the limit a — 0 when na is fixed. Setting ¢ = na,
one obtains the surface hopping propagator for the upper half-
plane:

Pu(x|(x0, @) =

¢
ml(x = x0)* + €21’

with boundary points s = (x, 0) and 59 = (xp, 0). As eventual
death of the particle during its bulk diffusion was ignored, we
set p = 0 in the subscript.

While the above construction can be performed in any
confining domain, its practical realization involves numerous
convolutions of the harmonic measure density which in gen-
eral are difficult to compute (the above explicit computation
was possible due to the explicit form of the Cauchy distri-
bution and its specific “infinite divisibility” property, i.e., the
invariance of its form upon convolutions). In the next sub-
section, we present a general approach to access the surface
hopping propagator.

So(s, £lso) = (3

B. General approach

We consider a particle diffusing in an Euclidean domain
Q c R? with a smooth boundary 9€2. In Ref. [34], the surface
hopping propagator X, (s, £|sg) (with p > 0) was shown to
be the kernel of the semigroup exp(—M,{) generated by
the Dirichlet-to-Neumann operator M,,. This is a pseudod-
ifferential self-adjoint operator acting on functions on the
boundary €2 (see rigorous definitions and mathematical de-
tails in Refs. [57-61]). For a given function f on 9€2, this

operator associates another function g on 92, M, : f —
g = (9,w))pq, where w satisfies the Dirichlet boundary value
problem:

(p — DA)U) =0 in Q, Wpo = f (9)

(if 2 is unbounded, one also needs to impose the regularity
condition: w — 0 as |x| — oo; see below). For instance, if
f describes a concentration of particles maintained on the
boundary 9€2, then M, f = (3,w);pe is proportional to the
diffusive flux of these particles into the bulk. Note that there
is a family of Dirichlet-to-Neumann operators parameterized
by p (or p/D). As the kernel of the semigroup exp(—M ),
the surface hopping propagator satisfies

A Tp(s, Llso) = =M, X,(s, Llso), (10)

subject to the initial condition X,(s, £ = Olsg) = 8(s — s0).
This equation resembles the diffusion Eq. (1), in which the
physical time ¢ is replaced by the boundary local time ¢, and
the Laplace operator A is replaced by —M,,.

When the boundary 92 of the domain is bounded, the
Dirichlet-to-Neumann operator has a discrete spectrum, i.e., a
countable set of positive eigenvalues ,u,({’ ) and eigenfunctions
P 0) forming a complete orthonormal basis in the space
Ly(092):

Mo (s) = P vP(s). (11)

The surface hopping propagator admits thus the spectral ex-
pansion

X ,(s, Llso) = Z [v,(f’)(so)]* vP)(s) e (12)

n

where the asterisk denotes complex conjugate. In other words,
finding X ,(s, £|so) is equivalent to studying the spectral prop-
erties of the Dirichlet-to-Neumann operator M.

When p > 0, all eigenvalues ,uﬁ,” ) are strictly positive, and

the surface hopping propagator vanishes as £ increases. This is
a direct consequence of bulk reaction that may lead to eventual
death or disappearance of the diffusing particle during its
motion. In particular,

/ ds 3,5, lso) < 1 (£ > 0); (13)
Q2

i.e., this density is not normalized to 1, in the same way as the
conventional propagator G,(x, t|xo) is not normalized to 1 in
the presence of a reactive boundary (g > 0).

In turn, the case p =0 is more subtle. For restricted
diffusion in a bounded domain, the ground eigenfunc-
tion is constant, v(()o)(s) = |9$2|~ /2, whereas the associated

eigenvalue is zero: u((,o) = 0. The orthogonality of other eigen-

functions to v(()o) ensures that the surface hopping propagator

is normalized to 1:
/ ds Xo(s, Llsg) =1 (£ > 0). (14)
a0

In contrast, if diffusion is transient, all eigenvalues u(” are
strictly positive, and the normalization is lost again, here, due
to the possibility of escaping at infinity. This is the case of
diffusion in the exterior of a bounded domain in R¢ with d >
3 (for d = 2, see a short discussion in Appendix A 4).
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C. Relation to other quantities

As shown in Ref. [34], the surface hopping propagator
opens the door to access most common diffusion-reaction
characteristics such as the full propagator, the conventional
propagator, the first-passage time distribution, and the reaction
rate. In particular, the Laplace transform of the full propagator
with respect to time reads

P(x, €, plxo) = Goo(x, plxo) 8(£)

+ / dso f ds Joo(s. plx)
I Q2

2,05, £1s0) ~
x pTOJoo(sO,plxo), (15)

where Goo(x,f|xg) 1is the propagator for perfectly
reactive boundary (with Dirichlet boundary condition
Goo(x, txo)jpe = 0),

joo(svt|x0) = _D(anGoo(x»”xO))x:s (16)

is the probability flux density on that boundary, and the tilde
denotes the Laplace transform with respect to time 7, e.g.,

o0
P(x, ¢, plxg) = / dte " P(x, £, t|xg). (17)
0

Substituting the spectral expansion (12) into Eq. (15), one
also gets

P, £, plxo) = Goolx, pl0) 8(0)
1 % P
+52nj[v;"><xo>] VP e (18)
with
VO(x) = / ds Jao(s, pho) v (s). (19)
Q

In turn, the full propagator determines most common
quantities of diffusion-influenced reactions, in particular, the
conventional propagator via Eq. (3). Moreover, one gets the
marginal probability density of the boundary local time ¢, (see
also Refs. [52,53]):

p(Z,t|x0)=/de(x,E,t|x0), (20)
Q

and the probability density of the first-crossing time 7; =
inf{t > 0:¢, > ¢} of alevel £ by ¢,:

UL, tlxo) =D/ ds P(s, £, t|x). 2D
a0
The latter determines the probability density of the conven-
tional first-passage time to a partially reactive boundary as

H,(t]xo) =/ dlge UL, t)xp). (22)
0

In the Laplace domain, one can use the spectral expansion (18)
to write

0L, plxo) = Y [VP0xo)] e / dsvP(s). (23)
R

n

Inverting the Laplace transform, one gets U (¢, t|x¢) and thus
gains access via Eq. (22) to the whole family of probability
densities H,(]xo).

The surface hopping propagator also determines the spread
harmonic measure density, w,(s|xp), which characterizes the
boundary point on a partially reactive boundary, at which
reaction occurs [62-64]. For a particle started from x,
one has

w0, (s/x0) = / dso 0, (s150) Joo(s0, O1x0),  (24)
Q2
where
wq(s|s0)=/ deqe 1 Ty(s, L]so). (25)
0

More generally, the Laplace transform of ¢gX,(s, £]sg) with
respect to the boundary local time ¢ yields the probability
density of the reaction point s on the boundary in the presence
of bulk reactions with the rate p.

D. Extension

In the above construction of the surface hopping prop-
agator X, (s, £|sg) and the full propagator P(x, ¢, t|xg), the
boundary local time £ is counted on the whole boundary 92
of the confining domain €2. This boundary local time is then
used to incorporate surface reactions, like in Eq. (3). In certain
applications, however, only a subset of the boundary, I’ C 9€2,
is reactive, whereas the remaining part d2\I" is inert and just
passively confines the diffusing particle inside the domain.
This is a typical case of an escape through a hole I', or of
a target I' surrounded by a reflecting surface. As encounters
of the particle with the passive part of the boundary do not
matter, one needs to count the boundary local time only on
the reactive part I'.

An extension to this setting is straightforward. In fact, one
can redefine ¢, through the residence time in a close vicinity
of the reactive part, 'y = {x € Q: |x — | < a}:

a—0 a

D t
£, = lim —/ dr' Ir, (X 1). (26)
0

The associated surface hopping propagator can be constructed
as earlier by modifying the definition of the Dirichlet-to-
Neumann operator. In fact, as the passive part of the boundary,
dQ\T, is irrelevant, one can define the Dirichlet-to-Neumann
operator My, acting on functions on I' as M} : f — g=
(0, w)r, where w is the solution of the mixed Dirichlet-
Neumann boundary value problem:

- wr = f,
-DAw =0 inQ, | 27
(p—DAYW=0 in { AP
Here, the Neumann boundary condition on d2\I" implements
explicitly the reflecting character of the passive part of the
boundary. In the following, we will present several examples
of the surface hopping propagator for a subset of the boundary.

III. EXPLICIT RESULTS FOR SEVERAL
CONFINING DOMAINS

In this section, we illustrate the properties of the sur-
face hopping propagator and related quantities for several
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confining domains, for which the eigenbasis of the Dirichlet-
to-Neumann operator can be explicitly derived. Even though
these spectral properties are known to experts, we will pro-
vide some clarifications to guide readers. We start with the
half-space, for which all quantities, including the full prop-
agator, will be derived in closed explicit forms. Then we
consider two-dimensional circular annuli between two con-
centric circles that include as limiting cases the interior and
the exterior of a disk. An extension of these results to three-
dimensional circular cylinders is briefly presented. Similarly,
we discuss spherical shells between two concentric spheres
that include the interior and the exterior of a ball. A numerical
computation of the eigenmodes of the Dirichlet-to-Neumann
operator in nonconcentric perforated spherical domains is dis-
cussed in Ref. [32,65]. Technical derivations are moved to the
Appendixes.

A. Half-space

It is instructive to start with the case of the half-space
Q={x=(,...,x5) € R :x; > 0}, for which all quanti-
ties of interest can be obtained in a closed analytic form. Even
though the boundary 92 of the half-space is not bounded, the
derived formulas can be adapted. In this case, the spectrum of
the Dirichlet-to-Neumann operator is continuous, and sums
over eigenmodes should be replaced by integrals. Moreover,
the solutions of Eq. (11), vf,” ), are not L,(02)-normalized and
thus cannot be called “eigenfunctions.” Nevertheless, we will
keep this term for P, bearing in mind its limitations.

To clarify the ideas, we start again with the planar case
(d =2). The translational symmetry of the boundary im-
plies that v,(s) = ¢ //27 are the eigenfunctions of the
Dirichlet-to-Neumann operator M. In fact, since w(x, y) =

M INHPID gatisfies the modified Helmholtz Eq. (9) in the
upper half-plane, ¢ is an eigenfunction, associated to the
eigenvalue ,uf,p )= /2 + p/D. Note that this eigenfunction
does not depend on p due to the above symmetry. The prefac-
tor 1/+/2 comes from the orthogonality of eigenfunctions:

/ " ds n(s) [op )T = 81— 1), 28)

o0

Skipping technical details, we formally rewrite the spectral
expansion (12) of the surface hopping propagator as

£, (s, Elso) = / dn [, (s0)]" vas) exp (—uP6),  (29)

where the former summation index n now takes real values
in R. As a consequence, we get

oo
dn ..o
Xp(s, £]so) = / 2_” o"(s0=5)—=tx/n+p/D
oo 2T
y4
= o SKi©), (30)

(02 4 (s — 50)?)
with

£ =/p/DVE + (s —s0)?, G1)

and K, (z) is the modified Bessel function of the second kind.
At p =0, we retrieve the Cauchy density (8). In this case,

10

10°

107

10

10°

107

FIG. 2. The surface hopping propagator X,(s, £|0), given by
Eq. (30), for diffusion in the upper half-plane for p = 0 (a) and p =
0.1 (b), and 64 values of ¢, logarithmically spaced in the range from
10~! (blue curves) to 10! (red curves), with D = 1 (as £ increases,
the distribution is getting wider).

the surface exploration up to the boundary local time ¢ is
equivalent to the first arrival onto that surface of Brownian
motion started from (sg, £), i.e., the distance £ above the sur-
face. Figure 2 illustrates the behavior of the surface hopping
propagator. Changing progressively the boundary local time ¢,
one observes the spreading of the surface hopping propagator.

For “immortal” particles (p = 0), the surface hopping
propagator exhibits heavy tails, Xo(s, £|sg) o |s — so|7%; in
particular, the variance of the arrival point s is infinite (the
mean is so due to the symmetric form of this propagator). Such
displacements with infinite variance resemble Lévy flights
[66]. This is the consequence of unbounded exploration region
that allows for very long and far-reaching trajectories. The
situation is drastically different for “mortal” particles (p > 0),
for which long trajectories are penalized by tiny chances of
survival. In fact, the central part of this distribution (when
0> + |s — sp|> < D/p) resembles again the Cauchy density
[Fig. 2(b)], which is, however, truncated by exponential tails at
large s (when ¢ 3> 1): 2,(s, £]sp) o e7¢ ~ e~ $=%IVP/D The
bulk rate p (or, more precisely, p/D) controls this truncation.
As a consequence, all the positive moments of the arrival
boundary point are finite. Expectedly, the surface hopping
propagator is not normalized to 1 for p > 0:

/ ds (s, ]so) = e~ VPP (32)
R
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Interestingly, even the conditional surface hopping propagator
that accounts only for the survived particles after renormaliza-
tion by e"V?/P shows an exponential decay with s.

In higher dimensions, the eigenfunctions and eigenvalues
of the Dirichlet-to-Neumann operator have similar forms:

i(n-s)

e
m, M,(,p) \/|n|2+p/D, (33)

with the “multi-index” n = (ny, ..., ng_;) € R4, The sur-
face propagator can thus be written as

2,(s, Llso) = f n__ ot/ P/ (34)
P Ri-1 (27r)d-1

In spherical coordinates, the integral over all orientations
gives

vp(s) =

s — 50l
Q)=
e—€4/112+p/D

£ Ky(2)

d\~d—

(425!

o0
(s, £lso) = / dn nd%J# (nls — so)
0

= (s, £]so) , (35)

where ¢ is given by Eq. (31), and
rd/2) 14
Td/2 (2 + |s — so[2)d/2

is again the harmonic measure density on the hyperplane R¢~!
(see also Ref. [64]), and J, (7) is the Bessel function of the first
kind. In the right-hand side of Eq. (35), one can recognize the
Laplace-transformed probability flux density jo (s, p|(so, £))
onto a perfectly absorbing hyperplane from the bulk point
xo = (8o, £). The inverse Laplace transform with respect to p
yields then

L7HE (s, €150)} = joo(s, t](s0, £))

_ exp(=g50) € exp(—45)
T @rDn@DR T JanDp

We emphasize that this relation is specific to the case of the
half-space.

Using this relation and the representation (34), one can
easily compute the double integral over s; and s, in Eq. (18)
to get

Zo(s, £lso) = (36)

(37

X, 24 20 + £lyg)
(x, plxo)8 (L) + =2 D° o

(38)

where x = (y, z) and xo = (¥, 20)- The inverse Laplace trans-
form with respect to p yields then

P(x, ¢, tlxo)

P(x, ¢, plxo) = G

Joo U, t1(¥g, 2+ 20 + £))

Gool(x, tx0)5(£) +

D
ly—=yol?
. exp(— D ) (e—(z—zo)z/(4Dt) _e—(z+zo)2/(4Dt))5(£)
"~ (4wDryi?
14 2
+ +;t—‘r 0 e*(Z#’Z{H’Z) /(4Dt) } . (39)

This is the explicit exact form of the full propagator for the
half-space.

One can easily check that the integral over x € ]Ri
gives the marginal probability density of the boundary local
time £;:

_(Z(H-Z)z
(L, t|x0) = erf( )5(3) + M. (40)
4Dt 1Dt

This expression does not depend on the dimension d and the
lateral coordinate y, of the starting point xo, given that the
boundary local time is independent of lateral displacements
and determined by the transverse motion (on the half-line).
The distribution of the boundary local time ¢, was studied in
Refs. [52,53].

In turn, the integral of Eq. (39) over £ € R, yields the
marginal probability density of the position, i.e., conventional
propagator Gy (x, t|x¢) in the half-space with reflecting bound-
ary:

=yol®
expl—=75,—
Go(x. t]xo) = W

% (e*(Z*Zo)2/(4Df) +e*(z+Zo)2/(4Df)). (41)

Moreover, with the general expression (3), one retrieves the
propagator G,(x, t|xo) for reactive boundary:

=yl
exXpl\—
G, (x,t)xy) = (ZSTD;;J);2 ) {e(zzo)z/(4Dt) + o (@H20)*/(4Dr)
—2gvm terfcx( L g~ D ))}
< ! JaDr

(42)

where erfcx(z) = & erfc(z) is the scaled complementary error
function. Expectedly, the propagators in Egs. (41) and (42)
exhibit translational invariance along the y coordinate and are
factored into the lateral Gaussian (free) propagator and the
transverse propagator on the half-line (0, co). Note that its
integral over the arrival point x yields the survival probability

+ cn/D_t),
(43)

20 _@ 20
S, (t|x )=erf< )—i—e 4Drerfcx(
e Nz JaDr

which does not depend on y, and coincides with the survival
probability for the semiaxis with the partially reactive end-
point. The classical expression for the associated probability
density of the reaction time is then retrieved:

1
H,(t]xo) = De13/<4D’>{—
L (tlx0) =¢q —
_p erfcx<—Z_ODt + q\/Dt> } (44)

Finally, Eq. (21) yields

(0 + z0)e—(EH0*/4DD)
~4mr D3 '

i.e., we retrieved the classical formula for the probability
density of the first crossing time of a level £ by the boundary

U, tlxg) = (45)
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local time of reflected Brownian motion on the half-line (see,
e.g., Ref. [54]).

To complete this section, we briefly mention that the above
computations can be easily extended to a slab domain between
parallel hyperplanes, one of which is reflecting (see Ref. [67]
for more details). In other words, one can consider 2 = {x €
R? : 0 < x; < L} and study the Dirichlet-to-Neumann opera-
tor on the hyperplane x; = 0 in the presence of the reflecting
hyperplane x; = L. The eigenfunctions of such a Dirichlet-to-
Neumann operator remain unchanged due to the translational
symmetry, whereas the eigenvalues are

u? = /In]> + p/D tanh(L/[n]> + p/D).  (46)

As L — oo, one retrieves the former case of the half-space.
The former integral representations for the surface hopping
propagator and related quantities remain valid if Eq. (46) is
used for /Lf,p ). In contrast, the presence of tanh(z) prevents us
from getting simple closed formulas for these quantities in the

case of a slab.

B. Circular annuli and spherical shells

In Appendixes A and B, we provide explicit formulas
for the eigenfunctions and eigenvalues of the Dirichlet-to-
Neumann operator in several rotationally invariant domains:
circular annuli, the interior and the exterior of a disk, circular
cylinders, spherical shells, and the interior and the exterior of
a ball. These formulas allow one to get the surface hopping
propagator X, (s, £|so) via the spectral expansion (12), as well
as the full propagator P(x, ¢, t|xo) and all the related quanti-
ties, as discussed in Sec. II C. From these basic results, one
can thoroughly investigate various diffusion-mediated surface
phenomena in the above domains. In this paper, we keep
our focus on the surface hopping propagator and illustrate its
properties for these domains.

Figures 3(a) and 3(b) shows the surface hopping propaga-
tor for the interior of a disk of radius R. At p = 0 [Fig. 3(a)],
the surface hopping propagator (s, £|s¢) coincides with the
harmonic measure density on the circle; see Eq. (A14). Ex-
pectedly, it evolves from the Dirac distribution at £ = 0 to
the uniform distribution 1/(27R) as £ — oco. When p > 0
[Fig. 3(b)], eventual death of the particle during its bulk
explorations affects this propagator. At small ¢, the particle
spends short time in the bulk so that there is almost no effect
of the bulk rate p (at moderate p): Blue curves in Figs. 3(a)
and 3(b) are almost identical. As ¢ increases, the effect of p
becomes more prominent. At large ¢, the particle has enough
time to explore the interior of the disk, leading again to the
uniform distribution of the arrival point. This can also be seen
from the spectral expansion (12), in which the contribution
from higher order eigenmodes of the Dirichlet-to-Neumann
operator vanished. The surface hopping propagator becomes

almost flat again, X,(s, £]so) = e‘“gp)z/(ZnR), but its level is

now attenuated by bulk reactions. As ,uf{’ =00 ~ 0.0494, the

. Py . .
attenuation factor e~ ¢ is not strong even at £ = 10 in the

considered example. However, one can still see a qualitative
difference between p = 0 and p = 0.1 cases: In the former
case, the curves approach the limit 1/(2w R), whereas in the
latter case, they are progressively shifted downward.

10! 10 10 10’

o 1 2 4 5 6 o 1 2

3 3
s/R s/R
FIG. 3. [(a), (b)] The surface hopping propagator X,(s, £|s),
given by Eq. (A6), for diffusion inside a disk of radius R, for p =0
(a) and p = 0.1 (b), and 64 values of ¢, logarithmically spaced in
the range from 10~ (blue curves) to 10" (red curves), with D =1
and so/R =7 (as ¢ increases, the distribution is getting wider).
[(c), (d)] The surface hopping propagator X, (s, £|so) for diffusion
outside a disk of radius R, with the same parameters. Note that the
propagators on panels (a) and (c) are identical but the vertical axis is
cut differently. The series in Eq. (A6) is truncated above |n| = 100.

Figures 3(c) and 3(d) show the surface hopping propagator
for the exterior of a disk of radius R. We note that Eq. (A14)
for the surface hopping propagator at p = 0 remains the same
for diffusion outside the disk. This reflects the conformal in-
variance of the harmonic measure with respect to an inversion
mapping of the interior of the disk to its exterior. In contrast,
for p > 0, the behavior of the surface hopping propagator is
different for diffusion inside and outside the disk, especially
for large ¢. In fact, the particle diffusing outside the disk
undertakes much longer bulk excursions between successive
encounters with the boundary and thus has higher chances
to be killed by a bulk reaction. This leads to much smaller
values of the surface hopping propagator (we recall that the
propagator is not normalized to 1 for p > 0).

Figure 4 presents the surface hopping propagator
Yo(s, £|sg) for a circular annulus with both reactive circles
of radii R and L. As the boundary is composed of two circles,
there are two distinct choices of the starting point 5o (shown
by red dot): either on the inner circle of radius R or on the
outer circle of radius L (and one can set so = 0 in both cases
due to rotational invariance). For convenience of presentation,
the curvilinear coordinate s runs here from —27 R to 0 for the
inner circle, and from 0 to 2w L for the outer circle. On the
horizontal axis, s is rescaled by R for negative values and by
L for positive values so that the horizontal axis varies from
—2m and 2. Let us first consider the particle started on the
inner circle [Fig. 4(a)]. At small £ (blue curves), this particle
does not move far away from the starting point sy, so that
¥o(s, €]sg) rapidly decays when s/R varies from 0 to —m
(its later increase for s/R ranging from —m to —2m is due
to the symmetry). Similarly, bulk excursions of the particle
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FIG. 4. The surface hopping propagator X, (s, £|so), given by Eq.
(12), for diffusion inside a circular annulus with both reactive circles
of radii R and L, for 64 values of ¢, logarithmically spaced in the
range from 10~! (blue curves) to 10" (red curves), with p =0, L =
SR, D =1 (as ¢ increases, the distribution is getting wider). (a) The
starting point so = 0 (red dot) is on the inner circle; (b) the starting
point so = 0 is on the outer circle. The spectral expansion (12) is
truncated above |n| = 1000.

rarely terminate at the outer circle so that the surface hopping
propagator remains small on that boundary (the range of pos-
itive s). Clearly, the minimum corresponds to the boundary
point s = L on the outer boundary which is located behind
the starting point sy. As the boundary local time increases, the
particle explores further boundary regions, both on the inner
and outer circles. In the limit £ — oo, the surface hopping
propagator approaches the uniform density, 1/[27 (R + L)],
on both circles, as expected. When the starting point is on
the outer circle [Fig. 4(b)], the picture is very similar, i.e.,
the particle remains on the outer circle (close to the starting
point) at small £ but then spreads away. Note that the stronger
decay of the surface hopping propagator is caused by the fact
that the outer circle is much longer than the inner one. For
this reason, a large truncation order was needed to accurately
compute (s, £|so) in this case.

For mortal particles (not shown), eventual death due to the
bulk rate p > 0 penalizes long trajectories, as in the case of
diffusion inside a disk. Moreover, in highly reactive media,
the particle has tiny chances to move from one circle to the
other, and these parts of the boundary become decoupled. In
other words, as there are almost no surviving particles that

FIG. 5. [(a), (b)] The surface hopping propagator X,(s, £|so),
given by Eq. (B22), for diffusion inside a ball of radius R, for p = 0
(a) and p = 0.1 (b), and 64 values of ¢, logarithmically spaced in
the range from 107! (blue curves) to 10' (red curves), with D = 1
(as £ increases, the distribution is getting wider). Here, we set sg =
(0, 0, R) (the North pole) and s = (Rsin 0, 0, Rcos9) (i.e., 0 is the
angle between sy and s). [(c), (d)] The surface hopping propagator
%,(s, £|so) for diffusion outside a ball of radius R, with the same
parameters. The series in Eq. (B22) is truncated above n = 100 that
results in small oscillations seen for blue curves.

crossed the annulus, the properties of the boundary far away
from the starting point do not matter.

Figure 5 shows similar results for the interior and exterior
of a ball. As previously, X,(s, £]so) behaves differently for
diffusion inside and outside the ball. However, this difference
is considerably enhanced in three dimensions due to the recur-
rent versus transient character of diffusion. In fact, the particle
diffusing outside a ball can escape to infinity with a finite
probability. As a consequence, the surface hopping propagator
is not normalized to 1 here even for p = 0. Actually, the
normalization constant is e~%/%, i.e., the escape probability is
1 — e~%R_On Fig. 5(c), one can see that the surface hopping
propagator becomes again uniform (as the contribution of
higher order eigenfunctions vanishes) but attenuated by the
factor e /R,

Finally, Fig. 6 illustrates the surface hopping propagator
on a spherical target of radius R, surrounded by an outer
reflecting sphere of radius L. This setting is qualitatively in
between the interior and the exterior of a ball. On one hand,
as this domain is bounded and diffusion is recurrent, the sur-
face hopping propagator evolves toward the uniform density
1/ (47 R?), as for the interior case. On the other hand, the outer
reflecting sphere is located relatively far from the target and
thus allows for long trajectories, as for the exterior case. For
p = 0, Fig. 6(a) resembles Fig. 5(a), even so diffusion occurs
in different regions in these two settings. In contrast, when
p = 0.1, Fig. 6(b) is much closer to Fig. 5(d). In fact, in both
cases, the particle is allowed to undertake long trajectories
between successive encounters with the target.
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(s, £]s0)
ao
¥, (s, £]s0)

107 107!

FIG. 6. The surface hopping propagator X,(s, £|sy), given by
Eq. (B6), on a spherical target of radius R, surrounded by an outer
reflecting sphere of radius L, for p =0 (a) and p = 0.1 (b), and
64 values of £, logarithmically spaced in the range from 10~ (blue
curves) to 10! (red curves), with L = 10R, D = 1 (as £ increases, the
distribution is getting wider). Here, we set so = (0, 0, R) (the North
pole) and s = (Rsin#, 0, Rcos0) (i.e., 6 is the angle between s, and
s). The series in Eq. (B6) is truncated above n = 100.

IV. DISCUSSION AND CONCLUSION

In this paper, we investigated the properties of the sur-
face hopping propagator X,(s, £|so) recently introduced in
Ref. [34]. This is a conceptually new quantity that de-
scribes bulk-diffusion-mediated exploration of a surface. In
contrast to former works [46-50], which relied on coupled
bulk-surface diffusion equations and aimed to characterize
the position of the particle on a surface after some phys-
ical time ¢, here we operate with the boundary local time
£, which is a proxy of the number of encounters with that
surface. The surface hopping propagator turns out to be
dual to the conventional propagator G,(x,t|xo). In fact, as
G,(x, t|xo) characterizes displacements between bulk points
xo and x in physical time ¢ (i.e., after a number of bulk
jumps), X,(s, £]so) characterizes effective displacements be-
tween boundary points so and s in boundary local time ¢
(i.e., after a number of reflections on the boundary). While
G,(x,t]xg) is the semigroup of the Laplace operator —A
(acting in the bulk), X,(s, £|so) is the semigroup of the
Dirichlet-to-Neumann operator M, (acting on the boundary).
In this light, the spectral expansion (12) is dual to the spectral
expansion for the conventional propagator:

Gq(x, tlxg) = Z [ul(1Q)(x0)]* u’(lq)(x) g*)\.,(;/)t’ (47)

n

where A and u'?(x) are the eigenvalues and L,(Q)-

normalized eigenfunctions of the diffusion operator —DA:

—DAUD =1 DU (x € Q), (48a)
3l +qu? =0 (x € 9Q), (48b)

where we highlighted the dependence on the reactivity param-
eter g through the Robin boundary condition (48b). Similarity
and duality of Eqgs. (12) and (47) are remarkable. We recall
that the spectral expansion (47) is valid for a bounded do-
main €2, whereas the spectral expansion (12) is valid for a
bounded boundary 92. As a consequence, Eq. (12) seems to
be more general, as it is also valid when 2 is the exterior
of a bounded domain, for which Eq. (47) is not applica-
ble anymore. In spite of this considerable advantage, the
Dirichlet-to-Neumann operator and its eigenbasis were not

earlier employed to describe diffusion-influenced reactions
and other diffusion-mediated surface phenomena. The present
paper, along with Refs. [34,68], aim to shift the theoretical
description of these phenomena toward a fundamentally new
ground. Using the formulas derived in this paper, one can
access directly not only the surface hopping propagator, but
all the related quantities, including the full propagator, first-
passage time distribution, the survival probability, and the
reaction rate.
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APPENDIX A: CIRCULAR ANNULUS

Here, we consider a circular annulus between two con-
centric circles of radii R < L: Q@ = {x e R? : R < |x| < L}.
There are four possible combinations of surface reactivity: (i)
both circles are reactive, (ii) the inner circle is reflecting while
the outer circle is reactive, (iii) the inner circle is reactive
while the outer circle is reflecting, and (iv) both circles are
reflecting. As surface reaction is not possible in the last case, it
is excluded. The first case corresponds directly to our general
setting when the whole boundary is reactive. However, as this
case involves two disjoint parts of the boundary (the inner and
the outer circles), its analysis is the most complicated. For this
reason, we start with case (ii), then briefly discuss case (iii),
and finally give the solution for case (i).

1. Reactive outer circle

In order to determine the spectrum of the Dirichlet-to-
Neumann operator associated with the outer circle I' = {x €
R? : |x| = L}, one needs to solve the mixed boundary value
problem (27). Its general solution can be searched in polar
coordinates (r, ¢) as

oo
wr. )= Y e g,(r), (A1)
where ¢, are unknown coefficients (to be fixed by the bound-
ary condition),
K, (aR),(ar) — I («R)K, (ar)
K/ (aR)I,(aL) — I'(aR)K, (L)

gn(r) = (A2)
are radial functions with o = /p/D, prime denotes the
derivative with respect to the argument, and 1, (z) is the modi-
fied Bessel functions of the first kind. One can easily check
that g/, (R) = 0 by construction. For convenience, we have
chosen a particular normalization g,(L) = 1. As the normal
derivative is equal to the radial derivative, the action of the
Dirichlet-to-Neumann operator M, does not affect the an-
gular part. In other words, the rotational symmetry of this
domain implies that Fourier harmonics are the eigenfunctions
of M, defined on the outer circle I',

ins/L

v, (s) = \/m

(neZ), (A3)
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where the curvilinear coordinate s is related to the polar angle
¢ as s = ¢L. The associated eigenvalues are

P =gl (nel). (A4)

The eigenfunctions do not depend on p, whereas the eigenval-
ues are twice degenerate, except for n = 0. Here, the index n
runs over all integer numbers. In the limit p — 0, one gets
© _ Inl 1= (@®R/Ly"
" L 1+ (R/L)*n "
The spectral decomposition (12) of the surface hopping
propagator reads

(A5)

o ein(sofs)/L

EP(S, Llsg) = Z W

n=—0o0

exp(—uPe). (A6)

To access the full propagator, one also needs to compute
Vn(” )(xo) from Eq. (19). Using the summation formulas from
Ref. [69], the Laplace-transformed propagator G (x, p|xo)
and thus ]'oo(s, plxo) for a circular annulus with Dirichlet

boundary condition on the outer circle and Neumann bound-
ary condition on the inner circle read

. 1 <,
Goolx, plxo) = 5— D """ g,(ry)
2nD —~

x [Ky(aL),(ar) — L(aL)K,(ar)], (A7)
. 1 & .
Joo(s: pl¥0) = 5— 2 O™ g (rg),  (A8)

where x = (r, ¢) and xo = (79, ¢o) in polar coordinates, R <
ro <r<L,s=¢L,and we used the Wronskian

LK, (2) — K, (2)](2) = % : (A9)

The projection of foo(s, plxo) onto an eigenfunction v,(s)

from Eq. (A3) reads then
VP (x0) = va(h0) &a(ro) -

The orthogonality of Fourier harmonics to a constant function
reduces Eq. (23) to

(A10)

U (L, plxo) = go(ro) exp (—Mf)”)ﬁ), (Al1)

from which Eq. (22) gives the Laplace-transformed probabil-
ity density of the reaction time as

H,(plxo) = go(ro) n (A12)

+ul/q

2. Interior of a disk

In the limit R — 0, the inner boundary shrinks to a point,
and one gets the solution for the interior of a disk of radius
L: Q={xeR?:|x| <L} (see also Ref. [68]). The radial
functions become

_ L(r/pID)
L,(L\/p/D)’

while the eigenvalues and eigenfunctions of the Dirichlet-to-
Neumann operator are still given by Egs. (A3) and (A4). Other

gn(r) (A13)

expressions are also valid; in particular, Eqs. (A7) and (AS8)
are applicable.
At p = 0, Eq. (AS) yields 1”) = |n|/L and thus

n
1 — p2UL

27 L(1 — 2cos (52 )et/L + e=20/L)

2o (s, L]so) = (A14)

As expected, this propagator evolves from the Dirac distribu-
tion (s — so) at £ = O to the uniform distribution 1/(27L) as
¢ — oo. Setting p = Le~*/L, one can recognize in this form
the Poisson kernel in the disk of radius L. The Poisson kernel
describes the harmonic measure density on the disk, i.e., the
probability density of the first arrival onto the circle of radius
R at point (L, s/L) for Brownian motion started from a point
(p, so/L) (written in polar coordinates). As in the planar case
discussed in Sec. IIT A, the distribution of the position of the
diffusing particle at the boundary local time ¢ (i.e., after a
prescribed number of encounters with the reflecting circle) is
identical to the distribution of the first arrival point on the fully
absorbing circle, where the boundary local time ¢ determines
the starting point in the latter setting. Figures 3(a) and 3(b)
illustrate the behavior of the surface hopping propagator.

3. Reactive inner circle

We briefly discuss the case (iii) when the inner circle is
reactive and surrounded by a reflecting outer circle. This is a
typical setting of a small reactive target confined in a domain
surrounded by an outer reflecting boundary [70]. Here, we
search for the spectrum of the Dirichlet-to-Neumann opera-
tor associated with the inner circle: I' = {x € R? : |x| = R}.
Repeating the above construction step by step, one realizes
that the eigenfunctions are the Fourier harmonics on the inner
circle

ins/R

vu(s) = \/27T_R

where the curvilinear coordinate s is related to the polar angle
¢ as s = ¢R. The associated eigenvalues are

Y =—g,R)

where sign minus appears due to the direction of the normal
derivative, 9, = —9,, and

K (aL),(ar) — I (aL)K, (ar)
K (a«L)],(¢R) — I (aL)K,,(a¢R)

(n e ), (A15)

(ne?)), (A16)

gn(r) = (A17)

are the radial functions satisfying g,(R) =1 and g/, (L) = 0.

In the limit p — 0, one gets
o _ Inl 1= R/L}" Als)
" R 14 (R/L)2n"

The spectral decomposition (12) of the surface hopping
propagator reads

0 ein(SO—.v)/R

Xp(s, £so) = Z xR

n=—0o0

exp(—uPe). (A19)

_ The Laplace-transformed propagator Goo(x, plxo) and thus
Joo(8, plxo) for a circular annulus with Dirichlet boundary
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condition on the inner circle and Neumann boundary condi-
tion on the outer circle read

1 o0
Goo(x, — in(@—¢0) o

(x, plxo) 7D e gn(ro)

n=—oo
x [Ky(aR),(ar) — L(aR)K,(ar)], (A20)

1 o0

Joo (s, plx0) = >— "= g, (rp), (A21)
TR [

where x = (r, ), xo = (ro, ), R<r<rg <L, s=¢R.
In turn, Egs. (A10)-(A12) remain unchanged. Some first-
passage properties in this setting were studied in Ref. [34].

4. Exterior of a disk

In the limit L — oo, the outer boundary is pushed away to
infinity, and one deals with diffusion in the exterior of a disk
of radius R: Q = {x € R? : |x| > R}. In this limit, the radial
functions from Eq. (A17) are reduced to

_ K, (ra/p/D)
K,(R\/p/D) "

The eigenvalues and eigenfunctions of the Dirichlet-to-
Neumann operator are still given by Egs. (A15) and (A16),
with g,(r) from Eq. (A22). Other earlier expressions are ap-
plicable as well; in particular, Eqs. (A20) and (A21) are valid.
Figures 3(c) and 3(d) illustrate the behavior of the surface
hopping propagator.

The exterior of a disk presents a convenient example to
illustrate subtle points of recurrent diffusion outside a planar
bounded domain. As the radial functions g,(r) in Eq. (A22)
for p > 0 vanish exponentially fast in the limit »r — oo, a
general solution w(r, ¢) of the modified Helmholtz Eq. (27)
also vanishes, in agreement with the regularity condition.
In the case p =0, the radial functions for n % 0 become
g.(r) = (R/r)""! and vanish again. However, the limit of go(r)
as p — 0 is equal to 1 that does not vanish at infinity, thus
violating the regularity condition. This is a consequence of
the simple fact that the rotationally invariant Laplace equation
in the plane, w” + %w/ = 0, has a general solution ¢; + ¢, Inr
that does not vanish as r — 00, except for the trivial choice
c1 = ¢ = 0. This is a well-known problem for such planar
domains, for which, in particular, there is no steady-state
reaction rate [71,72]. In the remaining part of the paper, we
do not discuss this subtle case.

gn(r) (A22)

5. Both reactive circles

When both circles are reactive, one needs to consider the
Dirichlet-to-Neumann operator on the whole boundary com-
posed of two disjoint circles: I'j = {x € R? : |x| = R} and
'y ={x e R? : |x| =L}. A general solution of Eq. (9) can
be searched in the form

w(r, @)=Y (cu1 gn1(r) + Cn2gna(r))e™,  (A23)

n=—0oo

where the unknown coefficients ¢, ; and ¢, » are set by bound-
ary conditions, and the radial functions

Ky (aD),(ar) — L,(aL)K,(ar)
K,(aL)L,(aR) — I,(aL)K, (aR)’
K, (aR)I,(ar) — I,(aR)K, (ar)
Ky (aR),(aLl) — I,(aR)K,(aL)
satisfy g,1(L) =0, g,,1(R) =1, and g,2(R) =0, g,2(L) =
1 for convenience [other linear combinations of I,(«r) and
K, (ar) could also be used]. Note that g, () monotonously
decreases, whereas g, »(r) monotonously increases on the
interval (R, L).

As the inner and outer circles are concentric, one can

expect that an eigenfunction of the operator M, can be
written as

gn,l(r) =

gn.Z(r) =

(p) ing —
vilﬂ)(s) — a?p) e_ sell (¢ =5/R), (A24)
b e"? seTy (¢ =s/L),
where aff’ ) and bff ) are some coefficients. In fact, as the space

of functions on the whole boundary a2 = Iy U I'; is the di-
rect product of spaces of functions on the inner (I';) and outer
(I',) circles, the eigenfunction v,(lp )(s) can be thought of being
composed of two components. Here, these two components
are proportional to ¢® due to the rotational symmetry (note
that this claim can be shown rigorously by representing each
component as a Fourier series and then using the orthogonality
of Fourier harmonics). Substituting such v,ﬁp )(s) to the right-
hand side of the Dirichlet condition in Eq. (9), one gets its
solution as

w(r, @) = [af gu1(r) + b gu2(r)]e™, (A25)
while its normal derivative on 92 reads
Mpv, = (Bw)pe
—[a? g, \(R) + b g, ,(R)]e"™  sely,
- { [0 g, (L) + b g, ,(L)]e"? sel.
(A26)
If the right-hand side is proportional to v, then v is indeed

an eigenfunction of M,,. In other words, we get two equations

! —[a? g, R+ b g, ,(R)] = w af,
[ g, (L) + B g, ,(L)] = uiP b,

where the proportionality coefficient wP is the associated

eigenvalue, and we used the particular form of functions
gn.1(r) and g, »(r). These equations can be written in a matrix

(A27)

form as
_g/n, 1 (R) _g/n,z(R) a’(lp) ailp)
(g;,l(L) ga(L) )(b;,,) =pul W | (A28)

Solving this eigenvalue problem for the 2 x 2 matrix on the

left-hand side, one determines the eigenvalue ;Lf{’ ), as well as

one of the coefficients (e.g., aff’ )). The other coefficient (e.g.,
b)) is fixed by imposing the L,(9€2) normalization of the

eigenfunction v .
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The Wronskian (A9) yields

8na(R) = — (A29)

g (L)—A
gn,] _La

where
1

- K, (aL)I,(aR) — I(aL)K,(aR)

(A30)

The eigenvalue u is then obtained as a solution of the
quadratic equation

1+ u(g, (R) — g, ,(L) +B =0, (A31)
where
B=—g, (R)g,,(L)+g,,(L)g,,(R)
K (aD)I'(aR) — I'(«L)K' («R
_ —(){2 n(a )n(a ) n(a ) n(a ) (A32)

K, (aL),(aR) — I,(aL)K,(aR)

With the help of Eq. (A29), it is easy to check that the deter-
minant of this equation is positive, so that there are two real
roots. Moreover, as B > 0, both roots are positive:

=g - g, ®

£ I8, (R) + &, (LIP — 48, (L)g, (R ).
(A33)

As a consequence, for each index n, there are two distinct
eigenmodes. For each of them, the coefficients are determined
by the corresponding eigenvalue. To avoid rounding errors
in practical implementation, it is convenient to use slightly
different (but formally equivalent) representation for 4+ and —
modes. In fact, we set

al = —c\ (g, L) — 1)), b =l g, (L),
(A34)

where c(” ) is fixed by the normalization of the eigenfunction

1=/ ds [v?). (5|
191

= [T @nR[g, (L) — w7 T +27L[g, ,L]).
(02)]

In turn, for the mode with p,;””, one can use
A = g B, B = el (g1 + ),

(A35)
with
1 =[] (27RIg, ;R +27L[g, ,(R) + w!' ).
In the limit p — 0, one has

(1 1 LGP
n,1

= (R/L)yM
1)~ L 2
Galh) > 2 %
gt > 21 %

so that
o _ ity 1
Mt =5 17 ,|L TR
11\ 41— y,)2
c (L l) S 20 s
L R LR(1 + y,)?
where y, = (R /L)2|”|. In the case n = 0, one can take the limit

n — 0 to get

1/L+1/R
(0) (0)
=0, = A37
Ho-= 0+ = TIn(L/R) (A37)
We also get

A = p0 = 1

0= 70" 2rR+D)’

o e -t

0+ S27RA+R/L) Y V2zLA+L/R)

Using the asymptotic behavior of the modified Bessel func-
tions, one can check that

N
VeI oD

111’1’1 M([’)

. (p)
Nty = oo
K' (R D
W /57D KnBVP/D)
’ K.(R/p/D)

lim ), =/p/D.
L—o0 ’
where we used that K/ (z)/K,(z) < —1. In the limit R — 0,

,(1” ) approach the eigenvalues of M, for the interior of a disk
(»)

.
Jim

of radius L, whereas u,, . diverge and thus do not contribute.

The opposite limit L — oo is more subtle: ;L,(f’ i approach the

eigenvalues of M, for the exterior of a disk of radius R

however, u(p ) accumulate near / p/D.
Finally, the Dirichlet propagator in the Laplace domain is

o0

Goolx, P|xo)—ﬁ M=) g o (ro) K (L)L, (ar)

—h(aL)Ky(ar)]  (ro <7),

1 oo

(A382)

=75 MO0 g (ro) Ky (R, (etr)

n=-—00

—L(aR)K, (ar)]  (r < 19), (A38b)

where x = (7, ¢) and xo = (rp, ¢o). The probability flux den-

sity reads then

1 o0
Joo(s, P|xo)—ﬁ "M g 1(rg) (s €T,
e

(A39a)
o0
! £M(@—90)

&n2(ro) (s €M),

- 2L

n=—0o0

(A39b)
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As a consequence, one gets
Vi o) = [4; g1 (ro) + biI” gn2(r0) Je™

that gives access to the full propagator P(x, £, t|xg).

(A40)

6. Cylindrical domains

The above analysis can also be extended to cylindrical do-
mains. Let us first consider an infinite cylinder, 2 = Qo x R,
where € is a disk of radius L. As the boundary 0€2 is un-
bounded, the spectrum of the Dirichlet-to-Neumann operator
M, is not discrete anymore. Nevertheless, the symmetries
of this domain admit the separation of variables and allow
for getting “eigenfunctions” and “eigenvalues” in cylindrical
coordinates as

ein¢+ikz
(@, 2) = —— WmelZ, keR), Adla
(¢, 2) VT ( ) ( )
I'(aL
- = % o« =/p/D+K2. (A4lb)
L (a

The surface hopping propagator reads then

in(¢o—)
¢ / dk eF@—=2) e—uL’;)E’

2rL 2

Zp(s, Lso) = ) =

n=—0oo

(A42)

where s = (L, ¢, z) and so = (L, ¢o, z0) in cylindrical co-
ordinates. If Q¢ is a circular annulus, one has to use the
appropriate radial function g, (r), witha = /p/D + k2. Other
related quantities can also be obtained.

When the cylinder is finite, Q2 = Q¢ x (0, b), the spectrum
of M, is discrete again, but the analysis is more subtle. In
fact, as in the case of a circular annulus, different combina-
tions of reactivity patterns are possible: All the boundary is
reactive; only the lateral boundary is reactive but the top and
bottom disks are reflecting; only the top disk is reactive but
the remaining boundary is reflecting; etc. When only one part
of the boundary is reactive, the analysis is rather simple. For
instance, if only the lateral boundary is reactive, the eigen-
functions and eigenvalues are

ein(b /D — 87:,0

Ve (P, 2) = ol T cos(rwkz/b), (A43a)
I'(aL)
W #:L) « =/p/D + (k/b)?, (A43b)

withn € Z andk = 0, 1, 2, .. .. However, the analysis is more
involved when the whole boundary is reactive.

APPENDIX B: SPHERICAL SHELL

In three dimensions, one can consider a spherical shell be-
tween two concentric spheres of radii R < L: Q = {x ¢ R3 :
R < |x| < L}, with three combinations of boundary condi-
tions. As the analysis is rather similar to the two-dimensional
setting, the results are presented in a concise form.

1. Reactive outer sphere

As previously, we start with the case of the Dirichlet-
to-Neumann operator M, associated with the reactive outer

sphere I' = {x € R3 : |x| = L}. The rotational invariance im-
plies that the eigenfunctions of M, are the (normalized)
spherical harmonics,

Unm(s)= %Ymn(ey ¢) (I’l=0, L2,..., |m| <n) (Bl)

The eigenvalues are obtained by solving the mixed boundary
value problem (27):

wd =g, R) (n=0,1,2,...), (B2)
where
2,(r) = llzﬁ(aR).l'n(OlV) - l:%(OtR)kn(OlV) 7 (B3)
' (aR)i,(aL) — i) (aR)ky, (L)
o = +/p/D, and
in(2) = /7 /(22) Iy 12(2),
kn(z) = 2/ (7 2) Kyt1/2(2)

are the modified spherical Bessel functions of the first and
second kinds, respectively. The eigenfunctions do not depend
on p, whereas the eigenvalues w do not depend on the
second index m and are thus (2n 4 1) times degenerate. In

the limit p — 0, one gets

n(n+1) 1—(R/L)¥"!
) = e (BY)
L n+14nR/Ly>+

The surface hopping propagator from Eq. (12) reads

1 ad " ()
(s, £150) = 75 3 > Y (Bo. $0) Yon (8, @) .
n=0 m=—n

(BS)

Since the eigenvalues do not depend on the index m, one can
apply the addition theorem for spherical harmonics to evaluate
the sum over m:

%, (s, Llso) = 4# Z(Z” + I)Pn((s ~so))e—ufm’ (B6)
n=0

mL? Is Isol

where P,(z) are Legendre polynomials.

One also needs to compute VP (x) from Eq. (19).
Using the summation formulas from Ref. [69], the Laplace-
transformed quantities G, (x, plxo) and thus j. (s, p|xo) for
a spherical shell with Dirichlet boundary condition on the
outer sphere and Neumann boundary condition on the inner
sphere read

]

Gocl, phey = Y 2E°F 1)Pn((" 'x“)>gn<ro>

o anD "\ el ol

X [kn(aL)in(ar) — in(aL)ky ()], (B7)

o0

Jools, plxo) =Y

n=0

2n+1 (s -x0)
42 "\ Is| x|

>gn(ro), (B8)

where r = |x|, 1o = |xo|, R < rg < r <L, and we used the
Wronskian

1
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The projection of joo(s, plxo) onto an eigenfunction v, (s)
from Eq. (B1) reads then

VP (x0) = vy (B0, $0) gu(10),

where xo = (7o, 6y, ¢o) in spherical coordinates. The orthog-
onality of spherical harmonics reduces Eq. (23) to

(B10)

U (¢, plxo) = go(ro) exp (—iuge), (B11)
while the probability density of the reaction time reads
H,(plxo) = go(ro) ) (B12)

+ug/q

2. Interior of a ball

In the limit R — 0, the inner boundary shrinks to a point,
and one gets the solution for the interior of a ball of radius L:
Q = {x € R?: |x| < L}, with radial functions

o) = WVPID)
! in(L\/p/D)
The eigenvalues and eigenfunctions of the Dirichlet-to-
Neumann operator are still given by Egs. (B1) and (B2), and
other earlier expressions remain valid; in particular, Eqs. (B7)
and (B8) are applicable. At p = 0, the eigenvalues are simply
pn® = n/L, for which Eq. (B6) can be evaluated explicitly
using the generating function of Legendre polynomials:

L 1—e 2t
o (s, £so) = oy —

This expression coincides with the harmonic measure density
on the sphere when the starting point is soe~*/~. It can also be
written in terms of the angle 6 between vectors sy and s:

1 — 2UL
A L? [1 —2e tLcosh + e 2/L]3/2°
Figures 5(a) and 5(b) illustrate the behavior of the surface

(B13)

(B14)

Xo(s, £lso) = (B15)

hopping propagator.

The orthogonality of spherical harmonics reduces
Eq. (21) to

~ R sinh(ro+/p/D

O(¢. pixy) = = S0V P/D) Yo, (®16)

ro sinh(Ry/p/D) “PCH
with u7’ = /p/D ctanh(R/p/D) — 1/R. Similarly, one has

R sinh(rg/p/D) 1
1o sinh(R«/p/D) 1+ Mé)p)/q ’

from which the inverse Laplace transform yields the standard
spectral expansion for H,(t|xo).

Ay(plxo) =

(B17)

3. Reactive inner sphere

The analysis for the reactive inner sphere is very simi-
lar. The eigenfunctions of the Dirichlet-to-Neumann operator
associated with the inner sphere I' = {x € R3 : |x| = R} are
again the spherical harmonics but with the prefactor 1/R for a
proper normalization:

1
—Yum@,¢) (n=0,1,2,..., |m| < n).

R (B18)

V() =

The eigenvalues are

P = _¢d((R) (n=0,1,2,...), (B19)
where
k (aL)iy(ar) — i, (aL)k,(ar)
gn(r) = — - " . (B20)
ki (aL)i,(aR) — i (aL)k,(aR)
In the limit p — 0, one gets
1 1 —(R/L 2n+1
;0) _ n(n+1) (R/L) . B21)
R n+ (n+ 1)(R/L)*+!

The expression for the surface hopping propagator is almost
identical to Eq. (B6):

1

(s, Llso) = IR

Y en+ 1)P,,<(s ’s°)>e—ﬂff " (B22)

rar 1 Iso]

The Laplace-transformed propagator G (x, p|xo) and thus
Joo(s, plxo) for a spherical shell with Dirichlet boundary con-
dition on the inner sphere and Neumann boundary condition
on the outer sphere read

an+1) (x - x9)
47D "\ x| xol

o0

Goolx, plxo) =)

n=0
X [kn(aR)in(ar) - in(()lR)kn(()ll’)],

)gn(r())

(B23)

o0

. 2n+1 (s -xo)

Joo(s,plxo)zz A7 R2 "<|s||xo|
n=0

>gn(ro), (B24)

where r = |x|, ro = |xo|, R < r < rp < L, from which

VP (x0) = Vpn(Bo, o) &n(r0).

These quantities determine the full propagator P(x, £, t|x).

(B25)

4. Exterior of a ball

In the limit L — oo, the outer boundary is pushed away to
infinity, and one deals with diffusion in the exterior of a ball
of radius R: @ = {x € R? : |x| > R}. The radial functions are
reduced to

_ ku(ry/p/D)
ki(R\/p/D)’

while the eigenvalues and eigenfunctions of the Dirichlet-to-
Neumann operator are still given by Eqs. (B18) and (B19).
Interestingly, the eigenvalues are just polynomials of /p/D,
eg., ,u(()P) = (1 + R/p/D)/R. The above expressions are ap-
plicable as well; in particular, Eqs. (B23) and (B24) are valid.

At p = 0, the eigenvalues in Eq. (B21) are simplified as
w® = (n+ 1)/R, and the surface hopping propagator can be
computed explicitly as

gn(r) (B26)

Re—tR | _ o—2UR

Zols. Llso) = = Ry —sp -

(B27)

If L is replaced by R, this expression coincides with Eq. (B14),
except for an extra factor e ~*/R that accounts for the possibility
of escaping to infinity. Figures 5(c) and 5(d) illustrate the
behavior of the surface hopping propagator.
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The orthogonality of spherical harmonics reduces Eq. (23)

to
- R
UL, plxo) = — exp[—(ro = R+ £)y/p/D — t/R]. (B28)
0
from which the inverse Laplace transform yields
—¢/R . _
Ut thee) = R 0 = REL go-reersaon (gpo)
o /4nDt?

This is a rare example when the probability density U (¢, t]xo)
is found in a simple closed form. Setting £ = 0, one retrieves
the probability density of the first-passage time for a perfectly
absorbing sphere [73]. In turn, the integral (22) yields the
probability density of the first-passage time to a partially
reactive sphere [12,70]

gD R
Hy(tlxo) = = o~ (=R’ /(4D1) { —
0
—R Dt
—(1 +qR)erfcx(r0 + (1 +qR)T)}.
t

(B30)

5. Both reactive spheres

Finally, the analysis for both reactive spheres is the most
involved but very similar to the planar case. For this reason,
we just reproduce the main formulas adapted to the three-
dimensional case. Here, one employs two families of radial
functions,

kn(aL)in(ar) - in(aL)kn(ar)

gn,l(r) = k . N )
w(@L)i,(aR) — ip(aL)k,(aR)
kn(aR)in(ar) - l.n(OlR)kn(OlV)

gn,2(r) = k . . s
n(@R)in(aL) — in(aR)ky (L)

J
0 _
ST ()

where B = R/L and y, = (R/L)*'*'. We also get

148
© ©
Mo =0, =——, (B36)
0, 0,+ R(l _ ’3)
and
W@ = b0 = 1
" VAR + 1Y)

0 _ 1 o _ —p '
Ot RAr(1+ 1) Y RJ4n(1+ )

In the limit L — 00, one retrieves M(O) — (n+ 1)/R and

,uflo)_ — 0. In turn, as R — 0, one has un,_

0
1y = 0.

— n/L, whereas

which satisfy g, 1(R)=1, g,1(L)=0 and g,»(L)=1,

gn2(R) = 0. The eigenfunctions are searched in the form
(p)
an” Yun(0, @) sely,
unE =1 1 (B31)
br(1 Ymn(es ¢) RS F27

where '} and I'; are the inner and outer spheres forming the
boundary 9€2. The Wronskian (B9) implies

A
! (L) = — ' (R) = ——, B32
Gl =~ go®) =03 (B32)

where
1
= ; ; . (B33)
ki (aL)in(aR) — in(aL)k,(aR)
In this case, one also has
B=—g, (R)g,,(L)+g, (L)g,,(R)

2k,’l(ozL)t (xR) — i/ (aL)k) (aR) (B34)

ky(aL)i,(aR) — i(aL)ky(aR)
Using these expressions, one deduces again Eqs. (A33) and

(A34) for the eigenvalue /L(p ) and the coefficients a(p ) and

b;’f ). The normalization coefficient c(p )

ization:
=[G (4R, (1) = L] +4n L2l (LF).
1= [ T (4n R, ,(ROP + dnL[g, ,(R) + ) TP).
In the limit p — 0, one gets

n+1+n(R/L)>!

is fixed by normal-

gn,l(R) - = R(1 — (R/L)Z”H) ’
1y CnE DR/
St L(T = (R/L™T)
¢ (R 2 DR/LY
n,2

R(1 — (R/Ly>+1)”
n+ (n+ 1)(R/L)>*!
L(1 — (R/L)**1)

[and B — n(n + 1)/(LR)], from which

g;,z(L) g

’

{nB+ D+ 1+yn+ 0+ DB £ VInB+ 1)+ 1+ y(n+ (n+ DP)P

—4pn(n+ 1)},  (B35)

(

Using the asymptotic behavior of the modified spherical
Bessel functions, one can also check that

» _ i (LVP/D)
R o= =PI oDy

lim n'”). = 00,
R Homt

k,(R\/p/D)
Jim i = —/p/D o
k,(R\/p/D)
lim " =./p/D,
L—o0 ’

where we used that & (z)/k,(z) < —1. As a consequence, in
the limit R — O, one retrieves the eigenvalues of M, for the
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interior of a ball of radius L. In turn, in the limit L — oo, u(p )
approach the eigenvalues for the exterior of a ball of radius R,

while /ﬁ” ) accumulate near /p/D.
Finally, the Dirichlet propagator in the Laplace domain is

N © an+1 .
Goolr, plie) = 3 2L )Pn<(x XO))gn,z(ro)

= 4nD x| |xo]
X [kn(@L)in(@r) — in(@L)ky(ar)] - (rg < 1),
(B37a)
_Nx~a@nt 1) (x-xo)
—; D P(le |x0|)gn,1(ro>
X [kn(@R)in(ar) — in(@R)kn(@r)]  (r < 1),

(B37b)

wherex = (1,0, ¢) andxg =
density reads then

(r0, 6o, o). The probability flux

jOO(sv p|x0)
_ 2n + 1 (x . xo)
lZ 4 R? <|x| %ol ) gni(ro) (s €Th). (B3Sa)
. 2n 4+ 1 (x . xo)
Z 47 R? <|x| o] ) &n2(ro) (s €M),

(B38b)

As a consequence, one gets

V" (x0) = [@ gn1(r0) + b 81,2(0) Y (B0, d0)  (B39)
that gives access to the full propagator P(x, €, t|xg).
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