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Classical Goldstone modes in long-range interacting systems
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For a classical system with long-range interactions, a soft mode exists whenever a stationary state spon-
taneously breaks a continuous symmetry of the Hamiltonian. Besides that, if the corresponding coordinate
associated to the symmetry breaking is periodic, then the same energy of the different stationary states and finite
N thermal fluctuations result in a superdiffusive motion of the center of mass for total zero momentum, that tends
to a normal diffusion for very long times. As examples of this, we provide a two-dimensional self-gravitating
system, a free electron laser, and the Hamiltonian mean-field (HMF) model. For the latter, a detailed theory for
the motion of the center of mass is given. We also discuss how the coupling of the soft mode to the mean-field
motion of individual particles may lead to strong chaotic behavior for a finite particle number, as illustrated by
the HMF model.
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I. INTRODUCTION

Most of the literature on classical statistical mechanics and
thermodynamics deals with systems with short-range interpar-
ticle interactions, in the sense that the interaction energy at
interfaces is negligible with respect to the energy of the bulk
of the system. This ensures that energy, as well as entropy,
are additive and extensive, two fundamental properties for
the theoretical framework of equilibrium statistical mechan-
ics and thermodynamics [1–3]. Yet many real systems fall
outside this scope, such as self-gravitating systems, charged
plasmas, wave-plasma interaction, dipolar systems, and two-
dimensional turbulence [4–9], where the interaction is long-
range, i.e., with an interparticle potential v(r) that decays at
large distances as 1/rα , with α < d and d the spatial dimen-
sion. As a consequence, the total energy is no longer additive,
which can lead to some interesting phenomena as ensemble-
inequivalence, negative specific heat, non-Gaussian stationary
states (in the limit of an infinite number of particles), and more
importantly for the present work, anomalous diffusion.

Let us consider an N-particle systems with Hamiltonian

H =
N∑

i=1

p2
i

2m
+ 1

N

N∑
i< j=1

v(|ri − r j |), (1)

where ri and pi are the position and conjugate momentum of
the ith particle, respectively. The 1/N factor in the potential
energy term is a Kac factor [10] introduced for the energy
to be extensive quantity (on this point see for instance the
discussion in chapter 2 of Ref. [9]). Under suitable condi-
tions, in the N → ∞ limit the dynamics described by the
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Hamiltonian in Eq. (1) is mathematically equivalent to a
mean-field description with the one-particle distribution func-
tion satisfying the Vlasov equation [11–13], i.e., all particles
are uncorrelated.

If the original Hamiltonian is invariant with respect to
translation of one coordinate, and the equilibrium (or station-
ary) state spontaneously breaks this symmetry, then a soft
mode, i.e., a Goldstone mode, exists with zero energy cost to
go from one equilibrium state to another [14–16]. Besides, if
the coordinate associated to the broken symmetry is periodic,
then thermal excitations of this soft mode lead to a diffusion
of the center of mass of the equilibrium state, as discussed
below. Our aim in the present work is then to show how clas-
sical Goldstone modes are realized in long-range interacting
systems when a symmetry of the Hamiltonian is broken, either
for an equilibrium or a nonequilibrium stationary state, and
how, in the case of a cyclic coordinate, thermal fluctuations
lead to a superdiffusive, ballistic in an initial regime, motion of
the center of mass of the system. This behavior is expected to
be ubiquitous for all systems with long-range interactions and
periodic coordinates, under the stated conditions. We illus-
trate this phenomenology for three paradigmatic models with
long-range interactions: the Hamiltonian mean-field (HMF)
model [9,17], two-dimensional self-gravitating particles [18],
and the single-pass free-electron laser [9,19–22]. Due to its
inherent simplicity, yet retaining the main characteristics of
systems with long-range interactions, the HMF model has
been extensively studied in the literature. This simplicity will
allow us here to present a more detailed theoretical description
of this soft mode and of the superdiffusive motion of the center
of mass of the system.

The paper is structured as follows: In Sec. II we explain
the physical mechanism for the diffusive motion of the center
of mass of a statistical stationary state, the thermal excitation
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of the Goldstone mode, and its relation to the diffusion of
individual particles. In Sec. III we illustrate this for the HMF
model, for both equilibrium and nonequilibrium states, and
present a theoretical approach for determining the properties
of the diffusive motion of the center of mass. The enhance-
ment of chaos due to the presence of the soft mode is dis-
cussed in Sec. IV and illustrated for the HMF model. In Sec. V
we show that the same diffusive motion of the center of mass
is observed in two other systems with long-range interactions:
a two-dimensional self-gravitating system and a free-electron
laser, illustrating the generality of this behavior. We close
the paper with some concluding remarks and perspectives in
Sec. VI.

II. GOLDSTONE MODES IN CLASSICAL STATISTICAL
MECHANICS OF SYSTEMS WITH LONG-RANGE

INTERACTIONS

Spontaneous symmetry breaking is one of the landmarks
of the developments of theoretical physics in the last half-
century, occurring from subatomic up to macroscopic sys-
tems [14,15], as exemplified by the Brout-Englert-Higgs phe-
nomenon, superconductivity, soft-mode turbulence, phonons
in solids, and plasmons, among others [14,15,23,24]. Al-
though usually first introduced for quantum systems, Gold-
stone modes can also be defined in a classical context [25,26],
provided a few conditions are met. The system must have
an infinite number of degrees of freedom, with its dynam-
ics having the property that the space of physical states is
divided in disconnected islands stable under time evolution.
Here disconnected means that a state from one island cannot
be reached from a state of a different island by physically
realizable process without external intervention. In Statisti-
cal Mechanics, each island corresponds to a given state of
thermodynamic equilibrium (which is not unique for a given
energy if a symmetry is broken), and all those states that
evolve into it. For long-range interacting systems one has
to also consider islands associated to stationary states other
than the Maxwell-Boltzmann (MB) equilibrium distributions.
Indeed, in the thermodynamics limit, there are an infinite
number of such non-Gaussian states which never evolve to
equilibrium, and as a consequence, each such state is part of a
disconnected island, again with all states that evolve towards
it, in the same sense as for equilibrium states. A symmetry
breaking occurs in a given island when it is unstable by the
operation of a symmetry subgroup of the whole symmetry
group of the system (the symmetries of the Hamiltonian).
The Goldstone theorem for classical systems then states (see
Ref. [26] for additional mathematical details) that, for each
broken symmetry in a given island, there exists a solution
of the dynamics satisfying the free wave equation (Goldstone
modes).

For a finite but still a large number of particles N , the
islands referred above are no longer, strictly speaking, invari-
ant under the system dynamics. A stationary state for finite
N acquires a life-time and is now called a quasistationary
state (QSS) and can leave an island by evolving in time into
the final MB thermodynamic equilibrium [9,27,28]. Although
the invariance of the islands is lost, the timescale, i.e., the
relaxation time over which the QSS evolves is typically very
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FIG. 1. We consider two particles with a periodic coordinate
in the interval [−L, L): (a) In the initial state the total momentum
vanishes as both particles have opposite velocities, and the position
of the center of mass (CM) is indicated by the vertical arrow. (b) The
particles have moved freely, but one of the particles reaches one
boundary before the other, and appears at the other side of the
periodic one-dimensional space. As a consequence, the center of
mass is now at a different position.

large, and one can still consider the free wave solution states
as long lived Goldstone modes, that slowly relax to the mode
corresponding to the final equilibrium state, as discussed
below.

Here we are interested in Goldstone modes realized in
long-range systems with periodic boundary condition (de-
scribed using a periodic coordinate). For that purpose, let
us suppose that the energy is invariant under translations of
a periodic coordinate θ with periodicity 2π , with conjugate
momentum pθ , and that the system is in a (quasi)stationary
state or in the true thermodynamic equilibrium. If such a state
spontaneously breaks the translation symmetry with respect
to θ for a finite number of particles N , then the corresponding
Goldstone and thermal fluctuations due to the finite number
of particles results in a diffusive motion of the center of mass
of the system with vanishing total momentum (see below).
This is not a contradictory statement as illustrated by the
simple example in Fig. 1. We observe that this is a completely
different phenomenon from the nonconservation of angular
momentum in simulations with artificial periodic boundary
conditions [29]. In the latter case, periodicity is a nonphysical
computational artifact to simplify numerical simulations, and
has as a side-effect the nonconservation of angular momen-
tum. Here angular momentum is always strictly conserved and
the periodic boundary is truly physical.

The equilibrium state (or a quasistationary state) with
zero average momentum is represented by the distribution
function f0(θ, p), considered to be centered initially at θ = 0,
with fluctuations described by δ f (θ, p; t ), that can be con-
sidered to be of order 1/

√
N and preserving the total (zero)

momentum, i.e.,∫ π

−π

dθ

∫ ∞

−∞
d p f0(θ, p) = 1, (2)∫ π

−π

dθ

∫ ∞

−∞
d p p f0(θ, p) = 0, (3)

and∫ π

−π

dθ

∫ ∞

−∞
d p δ f (θ, p; t )=

∫ π

−π

dθ

∫ ∞

−∞
d p p δ f (θ, p; t )=0,

(4)
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with f0 + δ f � 0. As θ ∈ [−π, π ) with periodic boundary
conditions, we denote the number of particles per unit of time
crossing from positive values of θ at the boundary at θ = π

as N+ and the particles crossing by unit of time from negative
values of θ at θ = −π as N−. We then have that

N+ =
∫ ∞

0
d p[ f0(π, p) + δ f (π, p, t )]p, (5)

and

N− = −
∫ 0

−∞
d p[ f0(−π, p) + δ f (−π, p, t )]p. (6)

The net flux of particles at the boundary θ = π is then given
by

�N = N+ − N− =
∫ ∞

0
d p[δ f (π, p; t ) − δ f (−π,−p; t )]p

+
∫ ∞

−∞
d p f0(π, p)p, (7)

where we used explicitly the periodicity in space of f0(θ, p).
The last term in the right-hand side of Eq. (7) vanishes
identically, which is equivalent to say that the net flux of
particles at the borders for the unperturbed distribution f0 is
zero. Using the fact that δ f must also be periodic in θ , we
obtain

�N =
∫ ∞

0
d p[δ f (π, p; t ) − δ f (π,−p; t )]p. (8)

The important point is that δ f (π, p; t ) does not have to be
equal to δ f (π,−p; t ), but yet complying with a total van-
ishing momentum. This shows that the periodic boundary
conditions together with a nonsymmetric fluctuation with
respect to p implies a net movement of the stationary state,
which is governed by the nature of finite N fluctuations.

The time derivative of the position of the center of mass
φ ≡ 〈θ〉 is then obtained from the considerations in the previ-
ous paragraph as

φ̇(t ) = −2π

N
�N

= −2π

N

∫ ∞

0
d p[δ f (π, p; t )−δ f (π,−p; t )]p. (9)

To show that the motion of the center of mass corresponds to
a diffusive process, we write the variance of its position as

σ 2
φ (t ) = 〈[φ(t ) − φ(0)]2〉, (10)

where

φ(t ) = 1

N

N∑
i=1

θi(t ) (11)

and 〈· · · 〉 stands for an average over different realizations for
the same (macroscopic) initial state. By choosing the origin

such that φ(0) = 0 we have

σ 2
φ (t ) =

〈[
1

N

N∑
i=1

θi(t )

]2〉
= 1

N2

〈
N∑

i=1

θ2
i (t )

〉

+ 1

N2

〈
N∑

i, j = 1
i 	= j

θi(t )θ j (t )

〉
. (12)

Although the position angles are restricted to the interval
[−π, π ), for considering diffusive processes it is useful to
consider both the center of mass and particle position to
evolve on the whole real axis, and from now, we define
φ in this way. By folding back to the original interval we
recover the motion on the circle. We now note that interpar-
ticle correlations for a long-range interacting system with a
potential regularized by a Kac factor are of order 1/N [12],
and therefore 〈θiθ j〉 = 〈θi〉〈θ j〉 + O(1/N ). Since the average
of the position of any particle over many realization must
vanish by construction, the last term in the right-hand side of
Eq. (12) is of order 1/N3 and is therefore negligible for large
N . From the definition of the variance of the position of the
particles in the system,

〈
1

N

N∑
i=1

θ2
i

〉
= σ 2

θ , (13)

we thus have that

σ 2
φ (t ) = 1

N
σ 2

θ (t ). (14)

The particles are initially confined in the interval −π � θ <

π , and since typically |θ | gets much greater than π with time,
we can write with a minor error that becomes negligible with
increasing time that

σ 2
θ → 1

N

N∑
i=1

[θi(t ) − θi(0)]2. (15)

We conclude that the diffusion of center of mass of the
system is due to the diffusion of individual particles viewed
as interacting on an infinite space with a periodic interparticle
potential. As a consequence, the dynamics of center of mass
position can be described by the same type of equations
that describe the diffusion in the system. For instance, if a
Langevin equation is known for the motion of a single particle,
then a corresponding Langevin equation can be written for
the center of mass by a simple rescaling by a factor 1/N .
The study of diffusion in position for particles with long-
range interactions is not a simple task and was studied in
the literature, but a more complete theory is still lacking
(see Refs. [30–35] and references therein). However, for the
much studied HMF model, a more detailed description of
the phenomenon is possible for the initial ballistic diffusion
regime, as will be shown in the next section.
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FIG. 2. Total magnetization and component Mx and My for the HMF model at thermodynamic equilibrium for two time windows, with
energy per particle e = 0.4, N = 10 000 particles, time step �t = 0.5, and energy relative error of order 10−4.

III. THE HAMILTONIAN MEAN-FIELD MODEL

The HMF model is formed by N particles on a ring globally
coupled by a cosine potential and Hamiltonian [9,17]:

H =
N∑

i=1

p2
i

2
+ 1

N

N∑
i< j=1

[1 − cos(θi − θ j )]. (16)

This model is widely studied in the literature due to its inher-
ent simplicity. Particularly, due to the form of its interparticle
potential the numerical effort in molecular dynamics simu-
lations scales linearly with N , instead of N2, which allows
very long simulation times for very large number of particles
(see Refs. [4,36] and references therein). The magnetization
components for the HMF model are defined by

Mx = 1

N

N∑
i=1

cos(θi ), My = 1

N

N∑
i=1

sin(θi ), (17)

and the total magnetization by M =
√

M2
x + M2

y . The system
is solvable and the one particle equilibrium distribution is

given by [17,37]

feq(θ, p) =
√

β

(2π )3/2I0(βM )

× exp

{
−β

[
p2

2
− Mx cos(θ ) − My sin(θ )

]}
,(18)

where Ik is the modified Bessel function of the first kind with
index k. The magnetization M as a function of the inverse
temperature β is obtained from the solution of the equation:

M = I1(βM )

I0(βM )
. (19)

We denote the total energy per particle as e ≡ H/N , with
H the total Hamiltonian of the system. The system has a
second order phase transition from a ferromagnetic phase at
lower energies to a homogeneous nonmagnetic phase at higher
energies with a critical energy per particle e = 0.75. Since
only the modulus M is determined for a given temperature, the
equilibrium state is infinitely degenerate for M 	= 0, and the
rotational symmetry of the total Hamiltonian is spontaneously
broken.
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FIG. 3. Same as described in the caption of Fig. 2 but with N = 1 000 000 particles and energy relative error of order 10−5 and final total
momentum per particle of order 10−7.
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FIG. 4. Total momentum per particle for the simulations de-
scribed in the captions of Figs. 2 and 3.

As the thermodynamic limit is equivalent to the mean-field
description and particles are uncorrelated [11], it is straight-
forward to show that the time derivatives of Mx and My vanish.
Nevertheless, for finite N , small correlations are present and
result in a slow variation of the magnetization components
with time. Figures 2 and 3 show the time evolution of the mag-
netization components, with a total constant magnetization
up to small fluctuations, for an equilibrium magnetized (non-
homogeneous) state for N = 10 000 and 1 000 000, and total
energy per particle e = 0.4. The total momentum remains zero
and constant up to very small numeric errors as shown in
Fig. 4. Figure 5 shows the displacement of the angular position
of the center of mass, which coincides with the phase of the
magnetization given by Mx + iMy = M exp(iφ), for the case
in Fig. 2 for N = 10 000, with a typical diffusive random mo-
tion behavior. The discrete nature of this motion is evidenced
on the right-panel of Fig. 5, as the center of mass jumps
by ±π/N for each particle traversing the periodic boundary.
Comparing Figs. 4 and 5 it is evident that the motion of the
center of mass is orders of magnitude bigger that would be
expected from the small errors in the numeric integrator. The
oscillations are quasiperiodic with chaotic intermittencies and
never damp, as the long time window of the simulation shows

clearly. For all times the system is in a degenerate equilibrium
state, with a time varying position of its center of mass caused
by thermal fluctuations for finite N . This time dependence of
the phase of the magnetization was first noted for the HMF
model by Ginelli et al. in Ref. [38], and also by Manos and
Ruffo relating it to the transition from weak to strong chaos
for the same model [39]. We will discuss this last point with
more details in Sec. IV.

Nonequilibrium states also display the same behavior for
finite N as long as the magnetization is not zero. Let us take
as initial condition a waterbag state:

f (p, θ ) =
⎧⎨
⎩

1/(4p0θ0), if − p0 < p < p0

and − θ0 < θ < θ0,

0, otherwise.
(20)

Figure 6 shows the dynamical evolution of an initial unstable
waterbag state with M = 0 (θ0 = π ). It goes though an initial
violent relaxation and then settles into a magnetized quasista-
tionary state, with a time varying phase of the magnetization
similar to the what is observed at thermodynamic equilibrium.

To characterize the diffusive movement of the center of
mass of the HMF model we compute the square root dis-
placement σφ (t ) =

√
〈φ(t )2〉, with 〈φ(t )〉 = 0 [recall that φ

is defined in the extended space i.e., φ ∈ (−∞,∞)]. Figure 7
shows the results for e = 0.4 and N = 5000. A power law fit
for the initial and final parts of the plot, shows that the motion
is initially superdiffusive close to ballistic and tends to normal
diffusion asymptotically. The variance of individual particle
position σ 2

θ (t ) is also shown in the figure rescaled by a factor
N , showing a very good agreement with Eq. (14). Figure 8
shows the variance σ 2

φ as a function of time for different
values of N and fixed energy (left panel), and different values
of the energy per particle e for N = 5000. The diffusion is
close to ballistic for the time window considered, and tends to
disappear for lower energies as the probability of a particle to
reach the boundary of the physical space (with respect to the
peak of the distribution) goes to zero as e → 0.

The anomalous diffusion of particles in the HMF model
and the periodic boundary conditions translate into an anoma-
lous diffusion of the center of mass of the whole system. As
commented above, anomalous diffusion in the HMF model
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FIG. 5. Left Panel: Center of mass of particles for the same case as in Fig. 2 but with a time step of �t = 10−2. Right Panel: Zoom over
the initial portion of the graphic in the left panel, showing the discrete nature of the center of mass motion.

032122-5



T. M. ROCHA FILHO AND B. MARCOS PHYSICAL REVIEW E 102, 032122 (2020)

1 10 100 1000 10000
t

-0.2

0

0.2

0.4

0.6

0.8

K
V

0.1 1 10 100 1000 10000
t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

M
x

M
y

M

FIG. 6. Left panel: Kinetic (K) and potential (V ) energies per particle for an out of equilibrium evolution of waterbag initial state with total
energy per particle e = 0.5 and initial magnetization M0 = 0 of the HMF model, with N = 1 000 000. Right panel: total magnetization and
its components corresponding to the left panel. The initial violent relaxation is clearly visible, as well as the final oscillatory behavior of the
magnetization.

was studied by some authors [30,31,33,40–42], and superdif-
fusion was shown to be a common feature, even at equilib-
rium.

A. Dynamics of the center of mass

For the HMF model a complete theoretical characterization
of the initial ballistic diffusive motion of the center of mass is
possible. We consider here the case of the equilibrium state
but the approach can be easily generalized for more general
(quasi)stationary states. We first characterize the jumps of the
position of the center of mass by showing that is given by
the difference of two Poisson processes. Then we discuss how
to compute the coefficient of the initial ballistic diffusion and
why it tends to normal diffusion due to finite N effects, i.e.,
collisions or granularity effects.
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FIG. 7. Variance σ 2
φ (t ) for the position of the center of mass at

equilibrium for an equilibrium state of the HMF model with e = 0.4,
N = 5000 and 500 realizations. The variance σ 2

θ (t ) for the position
variables of each individual particle is also shown rescaled by the
number of particles N which collapses to the values of σ 2

φ (t ), in
agreement with Eq. (14).

B. Statistics of the center of mass jumps

Let us consider the equilibrium one-particle distribution
function given in Eq. (18), initially centered at θ = 0 (My = 0
and Mx = M). The probability that a given particle crosses at
θ = π with p > 0 during a small time interval �t is given by

P+ =
∫ ∞

0
d p

∫ π

π−p�t
dθ feq(θ, p) = e−βM�t

(2π )3/2
√

βI0(βM )
,

(21)
and the probability that a given particle traverses at θ = −π

with p < 0 is

P− =
∫ ∞

0
d p

∫ −π+p�t

−π

dθ feq(θ, p) = e−βM�t

(2π )3/2
√

βI0(βM )
,

(22)
which is, obviously, the same as P+. Thus, the probability
that one particle, no matter which, crosses at each one of the
boundaries at θ = ±π is P = NP+. Now supposing that for
sufficiently small �t the crossings of particles are independent
from each other, the probability that �N particles cross at one
of the boundaries is given by the Poisson distribution:

P(�N ) = e−P P�N

�N!
. (23)

The probability for the value of the difference c = a −
b of two Poisson distributed random variables a and b,
with respective averages a and b, is given by the Skellam
distribution [43]:

S (c) = e−(a+b)

(
a

b

)c

Ic

(
2
√

ab
)
, (24)

with Ic a modified Bessel function with index c. Now con-
sidering that �N+ and �N− particles cross at θ = π and
θ = −π , respectively, in the time interval �t , and noting that
a = b = P , the probability that the difference, i.e., the net
flux, is �N = �N+ − �N− is given by

S (�N ) = e−2P I|�N |(2P ). (25)

For a given net flux of particles at the border �N , the center
of mass moves by �φ = −2π�N/N . Hence the probability

032122-6



CLASSICAL GOLDSTONE MODES IN LONG-RANGE … PHYSICAL REVIEW E 102, 032122 (2020)

10 100 1000 10000
t

1e-06

0.0001

0.01

1

100

10000
σ φ2

N=500
N=1000
N=5000
N=10000
N=50000

~ t
2

10 100 1000 10000
t

0.0001

0.01

1

100

10000

1e+06

σ φ2

e=0.1
e=0.12
e=0.14
e=0.172
e=0.244
e=0.317
e=0.389
e=0.461
e=0.533
e=0.606
e=0.678
e=0.74

FIG. 8. Left panel: Variance σ 2
φ (t ) for the position of the center of mass at equilibrium for an equilibrium state of the HMF model with

e = 0.4, 100 realizations and a few values of N . The dashed line is proportional to t2 and is given for comparison purposes. Right panel:
Variance σ 2

φ (t ) for the equilibrium state for N = 5000 and different values of energy per particle. For very low energies there is almost no
diffusion, as expected.

that the center of mass moves by �φ in the same time interval
�t is

S (�φ) = e−2P I|N�φ/2π |(2P ). (26)

Since the possible values of �φ are discrete there is no extra
multiplication factor resulting from going from Eq. (25) to
Eq. (26). Figure 9 shows the frequencies (histograms) of �φ

obtained from a very long run and the theoretical distribution
in Eq. (26) with a very good agreement. For �N large, the
Skellam distribution tends to a Gaussian distribution of the
form [43]

S (�φ) → N

2π3/2
√
P

exp

(
−N2�φ2

4π2P

)
. (27)

We will see in the next sections that the statistics of the
jumps is not sufficient to fully characterize the diffusion
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FIG. 9. Normalized histograms (vertical bars) from a numeric
simulation for the frequency of increments �φ of the center of mass
position recorded after each time step �t = 0.01, total simulation
time t f = 105, energy e = 0.4 and N = 1000 000 compared to the
distribution in Eq. (26) (diamonds).

process. Time-correlation in the jumps are very important, as
we will detail below.

C. The variance of the position of the center of mass φ

The variance of the position of the center of mass of the
system is written as

σ 2
φ (t ) = 〈[φ(t )]2〉 =

〈
1

N

N∑
i=1

θi(t ) × 1

N

N∑
i= j

θ j (t )

〉

= 1

N2

N∑
i, j=1

〈∫ t

0
dt ′ pi(t

′)
∫ t

0
dt ′′ p j (t

′′)
〉

= t

N

∫ t

0
dτ Cp(τ ), (28)

where we used the property Cp ≡ 〈p(0)p(τ )〉 =
〈p(t )p(t + τ )〉, valid for a stationary state. In function of
the convergence properties of Cp in Eq. (28), the center of
mass φ will experiment ballistic or normal diffusion.

D. Ballistic diffusion

Long-term memory of the initial condition is a characteris-
tic property of systems with long-range interactions, and one
consequence is anomalous diffusion [44]. The ballistic initial
diffusion of the center of mass can be explained by the fact
that, for a mean-field system, the momentum autocorrelation
function tends to zero after a collisional characteristic time
τcoll, which is the time interval collisional effects destroy the
memory of the initial state. It is well known that in spatially
inhomogeneous configurations of the HMF system, τcoll scales
linearly with N [27,28,45]. In particular, in the limit N → ∞,
the momentum autocorrelation never vanishes.

In a stationary state in the thermodynamic limit the motion
of a particle obeys the equations of a pendulum,

θ̇ = p, ṗ = −M sin(θ ), (29)

with known closed form solution in terms of an elliptic
function for initial conditions θ (0) = θ0 and p(0) = p0, and
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FIG. 10. Momentum autocorrelation function Cp(t ) obtained
from Eq. (30) and from a numeric simulation for e = 0.4 and N =
1 000 000. The dotted line was introduced for reference. We see that
Cp(t ) tends asymptotically to a nonvanishing value.

therefore the autocorrelation function Cp for this stationary
state can be determined exactly (up to two integrations) as

Cp(τ ) =
∫ ∞

−∞
d p0

∫ π

−π

dθ0 fst (θ0, p0) p0 p(τ ), (30)

which is valid for time t � τcoll and where fst denotes the
one-particle distribution function for the stationary state. For
the equilibrium state fst is given by Eq. (18) and and p(t ) is
the solution of the equation

Q[p(t )] − Q(p0) = t, (31)

with

Q(p) ≡ ±
√

2
sin(p/2)√

e − M
F

(
cos(p/2),

√
2M

M − e

)
, (32)

where F is the incomplete elliptic integral of the first kind.
The plus and minus sign in the right-hand side of Eq. (32) rep-
resent the two different branches of the solution. An easy way
to overcome the analytical computation of the resulting cum-
bersome integral in Eq. (30) is to compute it numerically with
any desired accuracy and a small numeric effort. Figure 10
shows the autocorrelation function at equilibrium for e = 0.4
obtained from Eq. (30), and the same function obtained from
a fully numeric molecular dynamics simulation, with a very
good agreement. We see that for t � τcoll, or equivalently in
the limit N → ∞ for any time, the correlation function takes a
nonvanishing value C̃p. Using Eq. (28) the variance of position
of the center of mass is then

σ 2
φ (t ) = t

N

∫ t

0
dτ C̃p = C̃p

N
t2 ≡ σ 2

N t2. (33)

This explains why the diffusion is initially ballistic, or close
to ballistic for t � τcoll. In Fig. 10, we can see that it is indeed
the case. After a transient between t = 0 and t ≈ 200, the
momentum autocorrelation function takes a constant value.
By replacing feq in the above expression for any stationary
state, all results above remain valid.

The value of the constant σ 2
N can be obtained explicitly

using the fact that the one-particle phase space is divided by
a separatrix for points corresponding to a libration (outside
the separatrix), and bounded motion (inside the separatrix).
The separatrix is defined such that the one-particle energy
equals the maximum of the mean-field potential. The particles
which contribute to the ballistic diffusion are those which
are librating, i.e., outside the separatrix. This is because the
positions of the particles which are outside the separatrix can
increase indefinitely whereas this is not the case for those
which lie inside the separatrix. We can therefore write, after a
transient time, the position of the center of mass as

φ  1

N

N+∑
i=1

θ+
i (t ), (34)

where θ+ are the N+ particles which lie outside the separatrix,
and thus

〈φ2〉  1

N
〈(θ+)2〉  1

N
〈(v+)2〉t2, (35)

where 〈(v+)2〉 is the variance of the velocity of the particles
outside the separatrix. We have therefore

σ 2
N  〈(v+)2〉. (36)

Note that, as the system is at equilibrium, the quantity
〈(v+)2〉 does not depend on time. We need first to compute the
velocity distribution of the particles with an energy larger than
the separatrix, which we will call P+(v). For a system with an
average magnetization M, particles are outside the separatrix
if their energy e is larger than the average magnetization, i.e.,

e = v2

2
− M cos θ � M, (37)

where we have used without loss of generality that My = 0
and then M = Mx. The first step in the calculation is to com-
pute the probability density of cos θ . Using the equilibrium
distribution function in Eq. (18) we get

P(X = cos θ ) =
∫ 2π

0
dθ

exp(βM cos θ )

2π I0(βM )
δ(X − cos θ )

= 1

π I0(βM )

exp(βMX )√
1 − X 2

. (38)

We are interested in the probability

P

(
−1 � cos θ � v2

2M
− 1

)
≡ F (v, β )

= 1

π I0(βM )

∫ v2

2M −1

−1
dX

exp(βMX )√
1 − X 2

. (39)

The integral in this equation cannot be performed analytically.
There are two possible cases according to the velocity of

the particles:
(1) If |v| > 2

√
M, then the particle automatically lies out-

side the separatrix.
(2) If |v| < 2

√
M, then the particle is outside the separa-

trix only if cos θ < v2/2M − 1.
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FIG. 11. Comparison of the distribution in Eq. (40) (dashed line)
and a numerical realization (circles) with N = 108 particles and β =
2.26.

The velocity distribution of the particles outside the sepa-
ratrix is then

P+(v, β )=
⎧⎨
⎩

√
β

2π
exp(−βv2/2), if |v| > 2

√
M,√

β

2π
exp(−βv2/2)F (v, β ), if |v| < 2

√
M.

(40)
The distribution in Eq. (40) is shown in Fig. 11 with a
comparison to a numerical realization with N = 106 particles.

We compute now the variance of the velocity of the parti-
cles outside the separatrix:

〈(v+)2〉 =
∫ ∞

−∞
dv v2P+(v, β ). (41)

Using Eq. (40), we get to the contribution of the integral for
|v| > 2

√
M:

2
∫ ∞

2
√

M
dv v2P+(v, β ) = 2

√
2M

πβ
+ Erfc

(√
2βM

)
. (42)

For sufficiently large β (i.e., not too close to the phase
transition β = 2), and using that, for these values of β,

M  1 − 1

2β
+ O

(
1/β2

)
, (43)

this expression can be approximated with

2
∫ ∞

2
√

M
dv v2P+(v, β ) = 2

√
2

πβ
e1−2β+O(1/β ). (44)

To get an analytic approximation of the contribution of inte-
gral Eq. (41) for |v| > 2

√
M it is convenient to invert the order

of integration between x and v. We get

2
∫ 2

√
M

0
dv v2P+(v, β ) = 1

π I0(βM )

∫ 1

−1
dx

eβMx

√
1 − x2

g(x, β ),

(45)
where

g(x, β ) =
Erf

(√
2βM

) + Erfc
(√

βM(x + 1)
) + 2

(
e−βM(x+1)√βM(x+1)−√

2e−2βM√
βM

)
√

π
− 1

2β
. (46)

Since integral Eq. (45) is dominated by the region x ∼ 1, to
get an analytical approximation, it is possible to expand the
function Erfc[

√
bM(x + 1)] in power series around x = 1. It

is then possible to find an analytical expression for Eq. (45),
which is, for sufficiently large β,

2
∫ 2

√
M

0
dv v2P+(v, β )F (v, β )

=
[

8

π
− 33

8
√

2πβ
+ O

(
1

β

)]
e1−2β+O(1/β ). (47)

Combining Eqs. (42) and (47) we obtain that, at leading order,

σ 2
N = C̃p

N
 8

π
e1−2β. (48)

A comparison of C̃p obtained from Eq. (41) with numeric
simulations for different values of β is shown in the left-
panel of Fig. 12 with a good very agreement. The spatial
distribution function obtained using Eq. (18) is

ρ(θ, t ) = 1

2π I0(βM )
eβM cos[θ+φ(t )] (49)

and is shown on the right-hand panel of the same figure. From
Eq. (21) we have that the number of particles that cross at

the boundary at θ = π during the time interval �t is thus
given by

P+ = �t√
2πβ

ρ(π ). (50)

We see that σ 2
N is roughly proportional to ρ(π ), the value of

the spatial density at θ = π for φ = 0. This illustrates the fact
that the diffusive ballistic motion is indeed due to an excess of
particles crossing at the boundaries into different directions at
the boundary of the periodic variable θ .

E. Normal diffusive regime

For finite N , collisional effects destroy the memory of the
initial state on a timescale proportional to the order of the
strength of the interaction, which for nonhomogeneous states
is 1/N [27,28,45], causing the autocorrelation function to
slowly approach zero, as exemplified in Fig. 13. Consequently
the diffusion tends to normal in this same timescale, after
which the variance of the center of mass position satisfies
σφ (t )2 = Dt , with D the (normal) diffusion coefficient. The
precise theoretical determination of the crossover time be-
tween anomalous and normal diffusion and the value of D is a
very difficult task in kinetic theory, and well beyond the scope
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FIG. 12. Left panel: Ballistic diffusion coefficient C̃p from Eq. (30), molecular dynamics (MD) simulations, theoretical prediction Eqs. (36)
and (41), and analytical approximation Eq. (48). Right panel: Spatial distribution function at θ = π from Eq. (49). We see that σ 2

N is roughly
proportional to ρ(π ) when the center of mass is located at the origin, as expected, and the flow of particles is proportional to ρ(π ).

of the present work. We can, however, determine the diffusion
coefficient using an approximation for the exact expression
for the variance of position of the center of mass:

σ 2
φ (t ) = t

N

∫ ∞

0
dτ Cp(τ ). (51)

We know that the correlation coefficient has the form

Cp(τ ) = C̃p f (τ, β ), (52)

where f (τ, β ) is an unknown function of time and β related
to the collisional relaxation process with f (0, β ) = 1, f (τ →
∞, β ) = 0 and C̃p defined in Eq. (33). This describes the
behavior of the correlation function observed in Fig. 13 for
a particular value of β. If we assume that the function f does
not depend strongly on β, then we can write

Cp(τ )  C̃p f (τ ), (53)
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-0.02

0

0.02

0.04

0.06

FIG. 13. Momentum autocorrelation function Cp(t ) at equilib-
rium for very long times, e = 0.4, N = 10 000. Note that the time
required for Cp to reach zero corresponds to the crossover time from
nonnormal to normal diffusion in Fig. 7

and then for the variance of position of the center of mass,

σ 2
φ (t )  t

N

∫ ∞

0
dτ C̃p f (τ ) = C̃p

N
t
∫ ∞

0
dτ f (τ ). (54)

We compute numerically the last integral in the right-hand
side of Eq. (54) for e = 0.4, obtaining∫ ∞

0
dτ f (τ ) ≈ 730. (55)

Using this result and the analytical expression for C̃p in
Eq. (48) we show in Fig. 14 the normal diffusion coefficient
D a function of β with a good agreement between theory and
simulation. Note that to obtain the numerical estimate requires
a considerable numeric effort with very long integration times,
and with the caveat that the higher the value of N the higher

10000

2 2.5 3 3.5 4 4.5 5 5.5 6

D

Simulation
Theory

1000

100

10

1

0.1

β

FIG. 14. Normal diffusion coefficient D at equilibrium of the
center of mass as a function of β. The simulation has been performed
for N = 1000, 50 realizations and total simulation time t f = 106.
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FIG. 15. Magnetization components for the HMF model with N = 10 000 and energies per particle e = 0.17 (a), e = 0.175 (b), e = 0.18
(c), and e = 0.2 (d).

the crossover time. As expected, D tends to zero for decreas-
ing energy (increasing β).

IV. CLASSICAL GOLDSTONE MODES AND CHAOS

In nematic liquid crystals the coupling of a roll pattern of
electroconvection with a Goldstone mode, due to the symme-
try breaking of the alignment of the nematic molecules, results
in what is known as soft-mode turbulence [46]. We show
now that, similarly, the coupling of the thermal excitations
of a Goldstone mode, related to a periodic coordinate in
long-range systems, to the mean-field motion of the particles,
may lead to what is called strong chaotic behavior.

In the thermodynamic limit N → ∞, the dynamics being
exactly described by a mean-field approach, the motion of
each particle is statistically uncorrelated from that of all other
particles, with the force given by the mean-field force as
the statistical average of the forces due to all other particles
in the system. Let us consider the case of the HMF model
where the equations of motion of particle i are given by

θ̇i = pi,

ṗi = −Mx sin θi + My cos θi = −M sin(θi + φ). (56)

In an equilibrium or stationary state in the thermodynamic
limit, the magnetization M and phase φ are constant and each
particle behaves as a pendulum subject to a constant force

M in the direction specified by the phase of the magneti-
zation. As a result, all particles act as uncoupled pendula,
and the system is integrable, i.e., nonchaotic. For finite N
the system is chaotic as its largest Lyapunov exponent [47]
does not vanish [48–50]. Manos and Ruffo [39] showed that
a crossover from weak to strong chaos, corresponding to a
fraction of chaotic orbits less than 1% (weak chaos) and close
to 100% (strong chaos), occurs at an energy value such that
the time dependence of the phase, i.e., the excitation of the
Goldstone mode, becomes important. This is also reflected by
the value of the Lyapunov exponent as a function of energy
[39,48,49]. In fact, for energies above the phase transition,
where the magnetization vanishes in the thermodynamic limit,
the Lyapunov exponent tends to zero very fast with increasing
N , according to a power law N−γ , with γ ≈ 1/3, while for
energy values corresponding to strong chaos, the decrease of
Lyapunov exponent is at least one order of magnitude slower
as given by the exponent γ [49]. Figure 12 at the right shows
the value of the equilibrium spatial distribution function in
Eq. (49) at θ = π with φ = 0. If ρ(π ) is not significantly dif-
ferent from zero, then the net flux of particles at the boundary
is also very small, and the Goldstone mode is not excited. As
a consequence, no net motion of the center of mass of the
system is observed for energies below a threshold. Figure 15
shows the behavior of the magnetization components for a few
energy values at equilibrium. A significant diffusive motion of
the center of mass of the system starts for energies greater than
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FIG. 16. Left panel: Largest Lyapunov exponent for the pendulum with phase given by a Gaussian colored noise corresponding to the
equation of motion in Eq. (56) with α = 0.01. Right Panel: Largest Lyapunov exponent for the HMF model in an equilibrium state with
N = 1 000 000.

eg ≈ 0.17, the energy value corresponding to the crossover
from weak to strong chaos.

To illustrate the relation of the coupling of the diffusive
motion of the center of mass and chaos, let us consider a single
oscillator with the same equations of motion as in Eq. (56) and
phase φ given by

φ(K�t ) =
K∑

i=1

�φi, (57)

with �t a small fixed time interval, K an integer, �φi a
realization of an exponentially correlated colored noise, i.e.,
given by a random variable with zero mean, a Gaussian
distribution and exponential correlation function

〈�φi�φ j〉 = e−K ( j−i)α, (58)

with α constant. The variance of the Gaussian distribution
of the random variable �φ is chosen to be the same as the
Gaussian distribution for jumps of the center of mass of
the HMF model in Eq. (27). The numerical algorithm for
generating such a random number is given in Ref. [51]. The
largest Lyapunov exponent can be obtained from standard
methods [52] and is shown as a function of energy in Fig. 16.
The dynamics of the HMF model for finite N is of course
much more complex than that of a single pendulum with
constant force intensity and random phase, as different parti-
cles interact with each other and with fluctuations in the total
magnetization, creating feedback effects. The timescales are
also different, which are relevant for the magnitude of the Lya-
punov exponent. Despite that, a comparison of the graphics in
Fig. 16 with Fig. 2 of Ref. [48] shows that the coupling of the
Goldstone mode to the motion of a single particle is related
to the strong chaotic behavior in the nonhomogeneous phase,
with the Lyapunov exponent increasing rapidly for energies
above the crossover from weak to strong chaos.

It is an interesting question for further studies to understand
in closer details the chaos enhancing mechanism for the HMF
model and other long-range interacting systems where the
thermal excitation of a similar soft mode also occurs, such
as in self-gravitating systems and a free electron laser. This
change of regime from weak to strong chaos can also be
associated to the flow of particles close to the separatrix, into

and outside the region inside it, which are the particles that
most contribute to the Lyapunov exponent [50]. This flow of
particles determines the diffusive properties of the particles in
the system, and therefore also that of the center of mass.

V. GOLDSTONE MODE IN OTHER LONG-RANGE
SYSTEMS WITH A PERIODIC COORDINATE

We discussed above that the spontaneous symmetry break-
ing in a long-range interacting system leads to a Goldstone
mode, and if the spatial coordinate associated to the broken
symmetry is periodic, then a diffusive motion of the center of
mass of the system ensues. To illustrate the generality of this
phenomenon we show that it occurs also in two very different
systems: a self-gravitating system in two dimensions and a
free electron laser.

A. Two-dimensional self-gravitating systems

To show how generic this phenomena is we first turn our
attention to two-dimensional self-gravitating systems, with
Hamiltonian [18,53,54]

H =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i< j=1

log(ri − r j + ε), (59)

where ri is the vector position of particle i in R2 and pi its
conjugate momentum. A small softening parameter ε was in-
troduced in the argument of the logarithm function in Eq. (59)
to avoid divergences in numerical simulations at zero inter-
particle distance. Conditions for an instability threshold for
spontaneous symmetry breaking after the violent relaxation
in self-gravitating systems were discussed in Ref. [55]. We
consider an initial state with all particles at rest, and spatially
uniform on an annulus with inner and outer radius R1 and
R2, respectively. After going through a violent relaxation,
the system settles on a quasistationary sate with a broken
rotational symmetry forming a bar structure, as shown in
Fig. 17 for some different time values, where we observe
an effective (differential) rotation of the bar, similar to what
was discussed above for the HMF model. This is caused
by thermal fluctuations of the distribution function and can
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FIG. 17. Positions of particles in the two-dimensional self gravitating system with vanishing total angular momentum for N = 32 768,
time step �t = 0.05, ε = 10−5 and a uniform spatial initial distribution in a circular strip with inner and outer radius R1 = 40.0 and R2 = 50.0
with all particles at rest. The system evolves through the violent relaxation and reaches a quasistationary state displaying a symmetry breaking.

be better understood by using polar coordinates and writing
down the one-particle distribution function as f (pr, pθ , r, θ ),
where r and θ are the radial and angular coordinates, and
pr and pθ their canonically conjugate momenta, respectively.
The same reasoning as for the HMF model applies here for
the angular coordinate. The asymmetry of f with respect
to θ induced by momentum preserving fluctuations causes
a motion of the preferred direction with zero total angular
momentum. This motion can be characterized using the inertia
moments with respect to two orthogonal axis, say x and y,
divided by the total mass, and given by

σx = 1

N

N∑
i=1

x2
i ,

σy = 1

N

N∑
i=1

y2
i . (60)

Figure 18 shows the time evolution of σx and σy. The rotation
of the system is evident albeit the vanishing total angular
momentum.

This classical Goldstone mode is the outcome of a sym-
metry breaking with respect to a periodic coordinate, and
its motion is a result of excitations by thermal fluctuations.
Since the equilibrium state has no symmetry breaking, the
oscillations for the present case are slowly damped with
time and vanish once the system reaches thermodynamic

equilibrium. Figure 19 shows the standard deviation σφ for
the position angle. The relation in Eq. (14) remains valid
here for the angular variable. The position angle of the bar
structure in Fig. 18 varies in time with an approximately
constant angular velocity, at least for the small time window
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FIG. 18. Position standard deviation σ = √
σ 2

x + σ 2
y , and stan-

dard deviations for the x and y coordinates for the same simulation
as in Fig. 17. The system is initially left to evolve though the initial
violent relaxation for a total time of t = 1000.
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FIG. 19. Variance σ 2
φ of the angular position φ of the particles for

the same simulation as in Fig. 18. The initial position for computing
the displacement φ(t ) − φ(0) is taken at time t = 1000, so that the
initial violent relaxation has ended and the system has settled in a
quasistationary state. A least squares fit of a power law, shown in the
figure as a dashed line, yields σ 2

θ ∝ t1.97, i.e., close to the ballistic
diffusion.

of the simulation. From the discussion in the previous section,
this is a consequence of the ballistic diffusion of the individual
particles in the angular direction. Figure 19 shows the variance
σφ (t )2 = (1/N )

∑N
i=1 φi(t ) of the position angular variables

φi(t ), i = 1, . . . , N as a function of time, and as expected it
scales almost as t2, i.e., very close to ballistic diffusion. A
more detailed study of gravitational systems is beyond the
scope of the present work, and will be the subject of a future
publication.

B. Free electron laser

A free electron laser is a tunable source of coherent radia-
tion that uses a relativistic electron beam as a lasing medium.
This beam propagates in a periodic external magnetostatic
field due to an undulator (or wiggler) inducing an oscillatory
motion of the electrons, which then emit synchrotron radiation
that is amplified as the beam moves along the undulator
[19,56]. Assuming a one-dimensional motion along the un-
dulator, the equations governing the motion of the electrons
in a single pass FEL for small beam current and emittance are
given by [9,19–22]

dθ j

dz
= p j,

d p j

dz
= −

∑
h

Fh
(
Aheihθ j + A∗

he−ihθ j
)
,

dAh

dz
= Fhbh, (61)

where z is the distance along the undulator, Ah = Ax
h + iAy

h is
the hth harmonic of the field with Ax

h and Ay
h its transverse

components, Fh are coupling parameters and bh the bunching

parameters given by

bh = − 1

N

N∑
j=1

e−ihθ j . (62)

Equations (61) derive from the Hamiltonian

H =
N∑

j=1

p2
j

2
− i

∑
h

N∑
j=1

Fh

h

[
Aheihθ j − A∗

he−ihθ j
]
, (63)

with canonically conjugate variables (θ j, p j ) and
(
√

NAj,
√

NA∗
j ). The phase of the jth particle with respect to

the hth harmonic is given by hθ j . Here the spatial coordinate z
assumes the role of the time variable. In this sense, besides the
Hamiltonian in Eq. (63), the total momentum P = ∑

j p j + I
is also conserved, where the total field intensity is given by
I = ∑

h |Ah|2.
A diffusive motion of the center of mass of the electrons in

the coordinate θ can be observed along the undulator coordi-
nate z, analogous to what we observed in the HMF model, but
with nonvanishing total momentum of the electrons

∑
j p j ,

and approaching a constant value as the total field intensity
I tends to a constant. We again define the average value of
the angular coordinate using Eq. (11) with z replacing t . By
performing different realizations of simulations with the same
macroscopic initial conditions, the diffusion process of the
center of mass then shows up as small deviations around
〈φ(z)〉 along the coordinate z, and can be quantified by the
variance

σ 2
φ (z) = 〈(φ(z) − 〈φ(z)〉)2〉. (64)

The left panel of Fig. 20 shows the variance σ 2
φ as a function

of z, where a superdiffusive behavior is clearly observed. The
evolution value of φ(z) for one of the realizations is shown on
the right panel.

A more thorough study of this system using the methods
introduced above will also be the subject of future research,
as for other long-range systems.

VI. CONCLUDING REMARKS

We showed that, for a many-particle system with long-
range interactions, if the equilibrium or a (quasi)stationary
state spontaneously breaks a symmetry of the Hamiltonian,
then a soft (Goldstone) mode exists with zero energy cost
to go from one equilibrium states to another equivalent one.
Besides that, if the coordinate associated to this symmetry
breaking is periodic, then this mode can be excited by thermal
fluctuations due to finite N effects, resulting in a superdif-
fusive motion of the center of mass of the system at zero
momentum, due to the ambiguity of the position of center of
mass. The existence of this soft mode was illustrated for a
two-dimensional self-gravitating system, a free electron laser,
and, in more details, for the HMF model. For the latter, a
theory for the ballistic motion of the center of mass was given,
with expressions for relevant quantities. An equivalent theory
for more general systems rests on the development of a theory
for diffusion of nonhomogeneous states, which has still to be
developed. Such finite N effects cannot be described from a
purely kinetic equation approach, similarly to the case of a
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FIG. 20. Left panel: Variance σ 2
φ (z) in Eq. (64) considering a single harmonic and a waterbag initial condition with p0 = 0.5 and θ0 = 0.1,

for a few values of N and 100 realizations, with a time step �t = 0.05. The dashed line introduced for reference is proportional to z2. Right
panel: value of φ(z) for one of the realizations as given by Eq. (11) for N = 20 480 000 along the undulator.

single wave propagating in a plasma system, where separatrix
crossing also plays an important role [57].

We also discussed how the coupling of the Goldstone
mode to the mean-field motion of individual particles may
enhance the chaotic behavior of the system, and illustrated
this possibility again for the HMF model. This seems to be an
important mechanism of chaos enhancement in systems with
long-range interactions with spontaneous symmetry breaking
with respect to a periodic coordinate, and is certainly also a
point worth of further research for other similar systems.
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