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The traditional approach of statistical physics to supervised learning routinely assumes unrealistic generative
models for the data: Usually inputs are independent random variables, uncorrelated with their labels. Only
recently, statistical physicists started to explore more complex forms of data, such as equally labeled points lying
on (possibly low-dimensional) object manifolds. Here we provide a bridge between this recently established
research area and the framework of statistical learning theory, a branch of mathematics devoted to inference
in machine learning. The overarching motivation is the inadequacy of the classic rigorous results in explaining
the remarkable generalization properties of deep learning. We propose a way to integrate physical models of
data into statistical learning theory and address, with both combinatorial and statistical mechanics methods, the
computation of the Vapnik-Chervonenkis entropy, which counts the number of different binary classifications
compatible with the loss class. As a proof of concept, we focus on kernel machines and on two simple realizations
of data structure introduced in recent physics literature: k-dimensional simplexes with prescribed geometric
relations and spherical manifolds (equivalent to margin classification). Entropy, contrary to what happens for
unstructured data, is nonmonotonic in the sample size, in contrast with the rigorous bounds. Moreover, data
structure induces a transition beyond the storage capacity, which we advocate as a proxy of the nonmonotonicity,
and ultimately a cue of low generalization error. The identification of a synaptic volume vanishing at the
transition allows a quantification of the impact of data structure within replica theory, applicable in cases where
combinatorial methods are not available, as we demonstrate for margin learning.
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I. INTRODUCTION

The idea of investigating machine learning within the tools
provided by the statistical physics of disordered system is
more than 30 years old, starting with the seminal papers by
Amit, Gutfreund and Somplinsky [1,2] on the Hopfield model,
and with Gardner’s replica analysis of the Perceptron archi-
tecture [3,4]. Many of the results produced in this field have
been obtained under the restrictive and unrealistic hypothesis
that the inputs of the training set were independent identically
distributed random variables with no correlation with their
labels. Only quite recently, physicists working in this field are
starting to probe the impact of more realistic generative mod-
els of synthetic data on the available theoretical frameworks.
Sompolinsky and collaborators investigated the problem of
the linear classification of perceptual manifolds [5,6] and
provided a first quantitative measurement of the ability to
support the classification of object manifolds in deep neural
networks [7]. Mézard suggested that hierarchical architectures
with hidden layers naturally emerge in the context of Hopfield
models, assuming that the training patterns are structured
as superpositions of a given set of random features [8], a
common property of empirical data [9,10]. Zdeborová and
collaborators provided exact results for the generalization
error within the replica approach for two different scenarios
of synthetic data: Random features and the hidden manifold
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model [11,12]. One of the motivations behind these choices is
the observation that many machine learning data sets, or their
representations within deep networks, lie on the surface of
low-dimensional manifolds, as also verified often in practice
by measuring their so-called intrinsic dimension [7,13–16].
More in general, a generative model with a factorized joint
probability distribution of the inputs and their corresponding
labels is expected to be unrealistic, with respect to the bench-
mark data sets commonly used in machine learning (e.g.,
MNIST, CIFAR-10, or Imagenet). Intuitively, one expects
there to be a notion of similarity among inputs that constrains
similar inputs to have the same label. This regularity is ex-
pected to be related to the problem of generalization, i.e., the
ability of a classifier to correctly classify inputs beyond the
data set used for training.

The results obtained in the statistical physics framework
address the typical case performance. In contrast, statistical
learning theory (SLT) [17], a successful mathematical frame-
work in the theory of machine learning, follows the tradi-
tion of computer science of establishing worst-case bounds.
This difference in scope made it difficult, for physicists and
computer scientists alike, to work towards inter-disciplinary
results, and few examples of cross-fertilization are found
in the literature. Statistical learning theory is the branch of
mathematics and computer science that studies inference, or
the problem of generating models starting from data [18]. It
provides formal definitions for words like “generalization”
or “overfitting,” and it is ultimately designed to evaluate the
performance of learning algorithms. As such, it represents
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the ideal framework to study the problem of generalization
in deep learning. Unfortunately, in spite of its elegance, the
insight it provides into the impressive generalization abilities
of present deep learning models is poor. The main product
of the theory in this setting is a set of upper bounds on
the generalization error (which roughly counts the average
number of errors made on the test set). These upper bounds
in many cases turn out to be too loose to be useful [19–22].

The main drawback of this class of bounds is generally rec-
ognized to be their being distribution independent, meaning
that they hold for any probability distribution over inputs and
labels of the data set, and for all models of the chosen hy-
pothesis class. Substantial effort is being put, within statistical
learning theory, to overcome these shortcomings and formu-
late rigorous data-dependent results [21,23–25]. The Vapnik-
Chervonenkis (VC) entropy is a way to establish distribution-
dependent, and hopefully tighter, bounds to the generalization
error [18]. Informally, the VC entropy measures the number
of different ways a given class of functions can classify the
inputs of the training set. Unfortunately it is usually very
difficult to compute explicitly. Kernel architectures represent
a notable exception. Their VC entropy has been evaluated
analytically in a remarkable paper by Cover long ago [26],
under very mild hypotheses on the probability distribution
of the inputs. The explicit calculation shows, however, that
knowing the VC entropy does not improve significantly the
standard bound obtained using the growth function [27]. In
fact, both quantities scale logarithmically with the size of the
training set, and depend linearly on the VC dimension, a well
known measure of model complexity.

Our goal here is to show how the concept of data structure,
as it is emerging in the physics literature, can be addressed
within statistical learning theory, thereby providing a bridge
between the two viewpoints. This bridge immediately allows
a quantification of the generalization capabilities of simple
hypothesis classes, which shows how severely loose the clas-
sic rigorous bounds in SLT are. Concretely, we investigate
the finite-size and asymptotic behavior of the VC entropy
of kernel machines by using both combinatorial and replica
techniques. While replica theory is well established in the
statistical mechanics of neural networks, combinatorial tools,
though certainly not foreign to modern statistical mechan-
ics [28–31], have been developed only very recently for what
concerns the role of data structure in machine learning [5,32].
We concentrate on two simple models of data structure, or
“object manifolds”: (1) k-dimensional simplexes with pre-
scribed geometric relations and (2) spherical manifolds, which
are equivalent to classify unstructured data points with margin
(and are related to support vector machines [33]). These
models are not new and have already received attention for
their being general enough to provide insight, but simple
enough to allow full analytical treatment.

The manuscript is organised as follows: In Sec. II A we
review the main definitions and basic results of statistical
learning theory. In Sec. II B we recall Cover’s combinatorial
result on the VC entropy of kernel architectures. In Sec. II C
we discuss how data structure can be taken into account in
SLT and define the two synthetic data ensembles we use in the
following. In Sec. III we first recall the extension of Cover’s
combinatorial technique to structured data that was introduced

in Ref. [32], and then we establish the asymptotic behavior
of the VC entropy for the first ensemble (simplexes). These
results substantially expand those of Ref. [32], where the link
with SLT was not discussed, as well as those of Ref. [34],
where the discussion on generalization was heuristic and
mainly a motivation for considering structured data. After
introducing an asymptotic method based on analytic combi-
natorics in Secs. III A and III B, we use it to show that the VC
entropy is nonmonotonic in the load in Sec. III C. In Sec. III D
we describe a satisfiability transition that is brought about by
data structure [35], and we further analyze it in Secs. III E
and III F. In Sec. IV we introduce a synaptic volume that mon-
itors the behavior of the VC entropy in the thermodynamic
limit. This is particularly useful for those object manifolds for
which the combinatorial method is not yet available, which
includes our second data ensemble (spherical manifolds).
We present calculations for the annealed (in Sec. IV A) and
quenched (in Sec. IV B) averages (in the replica symmetric
and one-step replica symmetry breaking ansätze) for the case
of two-dimensional simplexes, and for spherical manifolds in
Sec. IV C.

II. TAKING DATA STRUCTURE INTO ACCOUNT IN
STATISTICAL LEARNING THEORY

A. Basic results in statistical learning theory

In this section we recall the basic facts of SLT, mostly
following the exposition of Ref. [18]. We restrict ourselves
to binary classification problems, in which the goal is to
find a function g mapping the input space X to the output
space Y = {+1,−1}. Each pair Zμ = (X μ,Y μ) (with μ =
1, . . . , p) in the training set Zp = (Z1, . . . , Z p) is drawn by the
unknown joint probability distribution PX ,Y (X,Y ). A map g
between the set of inputs Xp = {X μ}μ and {+1,−1} is called a
dichotomy of Xp. The criterion to choose g is the minimization
of the risk

R(g) = 〈1g(X )�=Y 〉P , (1)

which is the probability of error. Ideally, we should look for
infg R(g) over all the possible g’s. Since P is unknown, the
best we can do is to consider the empirical risk

Rp(g) = 1

p

p∑
μ=1

1g(X μ )�=Y μ (2)

and limit the search within a specific hypothesis class G to
prevent overfitting. A dichotomy g ∈ G is called realizable.
The output of a learning algorithm is a function gp that
depends on the data Zp. The goodness of the choice of gp can
be measured by its generalization error εgen(gp), where

εgen(g) = R(g) − Rp(g). (3)

Notice that εgen(g) � 1. In practice, Rp is evaluated on the
training set and R is estimated on a test set [36]. One of
the primary goals of SLT is to establish rigorous bounds
on the generalization error.

A complementary description of risk minimization within
a class G is given through the definition of the loss class L:

L = {�g:(X,Y ) �→ 1g(X )�=Y , g ∈ G}. (4)
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To each g ∈ G, we associate a function �g such that
�g((x, y)) = 1 if g(x) �= y, and is zero otherwise. While ele-
ments of G take values in {+1,−1}, those of L have range
{0, 1}. �gp can be used to count the number of errors made on
the training set by the function gp. Given a loss class L, we
can consider its projection on the sample Zp, by defining

LZp = {(�(Z1), �(Z2), . . . , �(Z p)) : � ∈ L}. (5)

This is the set of all possible ways that a function in G can cor-
rectly or incorrectly classify each sample in Zp. Importantly,
LZp can be interpreted as the set of all classifications of the
points in Xp that can be realized by the model, i.e., the set
of all (Y 1, . . . ,Y p) such that there exists a g ∈ G such that
Y μ = g(X μ) for all μ. This representation reveals a useful
bijection between LZp and the set of realizable dichotomies.

A key quantity in SLT is the Vapnik-Chervonenkis (VC)
entropy HL(Zp), which measures the size of LZp :

HL(Zp) = log |LZp |. (6)

By virtue of the bijection discussed above, valid when Y =
{+1,−1}, HL(Zp) can be defined equivalently as

HL(Zp) = logNG (Xp), (7)

where NG (Xp) is the number of dichotomies of the set Xp real-
izable by G. The VC entropy controls a rigorous upper bound
to the generalization error (see Ref. [18] for a pedagogical
proof):

Theorem 1. For any 0 < δ � δmax = min (1, 2eHL(2p) ),
with probability at least 1 − δ,

∀g ∈ G, εgen(g) � 2

√
2
HL(2p) + log 2

δ

p
, (8)

where the annealed VC entropy HL(p) is defined as

HL(p) = log 〈NL(Zp)〉 (9)

and 〈·〉 is the average over the joint probability distribution
PX ,Y of the training set.

In the following, we will be referring to the annealed VC
entropy, Eq. (9), simply as “VC entropy,” the average over
the distribution of the training set being understood. It is
worth noticing that this version of the theorem is slightly
different than that presented in Ref. [18], where the upper
bound δmax on δ is not mentioned. The reason is that, in
that context, the VC entropy is tacitly assumed to be larger
than zero. However, as we will show in the case of struc-
tured data, this is not necessarily true. It is instructive to
retrace the very last part of the proof of Theorem 1. The

statement, that εgen(g) � 2
√

2
HL(2p)+log 2

δ

p with probability at
least 1 − δ, follows from the standard form of Hoeffding’s
inequality, which bounds the probability of having general-
ization error larger than ε as P[εgen(g) > ε] � 2eHL(2p)−pε2/8.
The statement of Theorem 1 is obtained by using a basic
result, known as inversion property, which holds for a generic
random variable X : If P(X > t ) � F (t ), then with probability
at least 1 − δ, X � F−1(δ). In our case, this amounts to define
δ = 2eHL(2p)−pε2/8. For negative values of the VC entropy,
the only admissible values for δ are those for which ε2 =
8HL(p)+log (2/δ)

p � 0, thus providing the upper bound δmax =

min (1, 2eHL(2p) ). In principle one could state the theorem
directly in the form of Hoeffding’s inequality, but we rather
keep it in its classic form for recognizability and restrict the
domain of δ.

Unfortunately, direct computation of the annealed VC en-
tropy is unfeasible in most cases. For this reason, a main
goal of SLT is to construct more tractable upper bounds to
the VC entropy. The classic example is based on the Vapnik-
Chervonenkis dimension, which is a scalar metric of the
expressivity of a given hypothesis class G. More formally, the
VC dimension dVC of a class G is the largest integer such that
there exists at least one set of dVC inputs XdVC such that

NG (XdVC ) = 2dVC (10)

(i.e., the class G realizes all possible dichotomies of the
inputs). With this definition, it can be proved (see again
Ref. [18]) that

HL(p) � dVC log

(
ep

dVC

)
. (11)

Hence, a corollary of Theorem 1 is the well-known upper
bound first obtained by Vapnik: If the class G has finite VC
dimension dVC, then, with probability at least 1 − δ,

∀g ∈ G, εgen(g) � 2

√
2

dVC log
( 2ep

dVC

)+ log 2
δ

p
. (12)

A crucial property of this elegant result is its being distribu-
tion independent, meaning that the bound is uniform in the
function g, and does not depend on the particular problem at
hand. Owing to its universality, the bound is often too loose for
most practical applications [21]. Let us consider for instance a
deep neural network with a number of weights w = 106–109.
In this case the VC dimension is of order dVC ∼ w log w [37].
When the typical size of the data set is p = 104–106, as is
often the case in practice, it is evident that bounds such as
the one in Eq. (12) do not offer any insight on the general-
ization performance of deep neural networks. Indeed, one of
the main pursuits of contemporary SLT is to provide better
results on the generalization error, going beyond distribution
independent bounds. Several strategies have been proposed,
advocating the importance of considering data-dependent hy-
pothesis classes [25] and data-dependent measures of com-
plexity (such as the Rademacher complexity [38], which was
recently connected to the statistical mechanics of disordered
systems [39]), also in relation to the original concept of VC
entropy itself [40].

B. Vapnik-Chervonenkis entropy of kernel machines

As mentioned above, in most cases it is not possible to
compute the VC entropy directly. However, kernel machines
are a notable exception: Their VC entropy was computed a
half century ago by Cover [26]. Kernel architectures provide
a special realization of one-hidden layer neural networks and
are at the core of the idea of support vector machines. In these
machines, one defines a priori a kernel function φ:Rn → Rd

that maps n-dimensional inputs to a d-dimensional feature
space. One of the simplest realizations of such maps is a
quadratic polynomial kernel, such that each input X is mapped
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on a d (d + 1)/2-dimensional feature space via a kernel φ(2)

with components φ
(2)
i j = XiXj , ∀i � j. The map from feature

space to the space of labels is realized by a linear separator:

Y = sgn(W · X ), (13)

where the weight vector, W ∈ Rn, is the set of learnable
parameters.

Cover’s theorem is a function counting theorem: It com-
putes the number of dichotomies Nφ (Xp) of this function
class, the logarithm of which is the VC entropy. It is sim-
pler to state Cover’s theorem for linear separators, i.e., for
d = n and φ = 1; the realizable dichotomies in this case
are called linearly realizable. We comment below on the
extension to general φ. The key idea behind the theorem is
twofold: (1) under a weak condition on the inputs Xp, the
number of dichotomies N1(Xp) is a function solely of the
dimension n and the number of points p; (2) it is possible
to write a solvable recurrence relation, in n and p, for this
function. Following Cover’s original paper, we denote the
(data-independent) number of dichotomies N1(Xp) by Cn,p,
and the corresponding VC entropy by Hn,p = logCn,p.

Theorem 2 (Cover, 1965). Let Xp be a set of p points in Rn.
If the points are in general position, i.e., if the points in X ′ are
linearly independent for all subsets X ′ ⊆ Xp such that |X ′| �
n, then N1(Xp) = Cn,p, where

Cn,p = 2
n−1∑
j=0

(
p − 1

j

)
. (14)

The proof of Theorem 2 is based on a simple recurrence
relation for Cn,p:

Cn,p+1 = Cn,p + Cn−1,p, (15)

with boundary conditions

Cn�1,1 = 2, C0,p = 0. (16)

Equation (15) states that adding the (p + 1)th point X to Xp

increases the number of dichotomies by Cn−1,p, which is the
number of dichotomies of Xp that are realizable by a vector
W such that W · X = 0. Cover actually proved a more general
statement. Informally, if one maps all elements of Xp by the
nonlinear kernel function φ from Rn to Rd with d larger than
n, then, under mild assumptions on φ, Eq. (14) holds with d
in place of n.

It is straightforward to see how the storage capacity defined
in statistical mechanics, αc (recall that α = p/n), can be
obtained from Cn,p. The number of dichotomies is a combina-
torial quantity and is expected to scale exponentially in n, at
least for small α. Thus, an intensive quantity can be defined
by normalizing Cn,p with the total number of dichotomies
of p points. The fraction of dichotomies cn,p ≡ Cn,p/2p is
bounded, 0 � cn,p � 1, and has a nontrivial thermodynamic
limit c∞(α). The thermodynamic limit is defined by taking
both n, p → ∞, with fixed α = p/n. It is not hard to see
directly from Eq. (14) that

c∞(α) = θ (αc − α), (17)

with αc = 2. The expression in Eq. (17) takes the value 1 for
α < αc, the value 0 for α > αc, and the value 1/2 for α =
αc (θ is the Heaviside step function). Qualitatively, cn,αn as

FIG. 1. While the fraction of admissible dichotomies (a) has
qualitatively similar behavior for unstructured (gray curves, k = 1)
and structured (red curves, k = 2) data, the absolute number of
dichotomies (b) has different limit behaviors. As a consequence, the
VC entropy (c) diverges to +∞ for unstructured data and to −∞
for structured data. Curves of the VC entropy at different values of n
intersect, for large n, at the same critical value α∗ of the load. Vertical
dotted lines in all panels are the storage capacities. The dashed line
in (c) is the transition caused by data structure. n = 5, 10, 20 in (a),
n = 3, 4, 5 in (b), n = 5, 10, 20, 40 in (c).

a function of α is a decreasing sigmoid, which is steeper for
larger values of n [see Fig. 1(a)]. This allows the definition of
a notion of capacity at finite dimension n, as the value α̃c(n)
such that cn,α̃c (n)n = 1/2, or

Cn,α̃c (n)n = 2p−1. (18)

Another notable value of p can be read off of cn,p: It is the
Vapnik-Chervonenkis dimension dVC, equal to the maximum
p such that cn,p = 1. For a linear separator, dVC = n. Notice
that one cannot use the asymptotic form Eq. (17) to this aim,
since the thermodynamic limit pushes cn,αn to 1 for all values
of α up to αc.

Notice that Eq. (14) implies that the VC entropy grows
asymptotically as Hn,p ∼ (n − 1) log p for large number of
inputs p (see Sec. III B for a derivation). This is the same
behavior as that obtained by bounding the VC entropy as in
Eq. (11).

Two remarks can be made, concerning the generality of
Cover’s theorem. First, the general position is a rather weak
condition. For instance, we mention three examples of distri-
butions of the points ξμ ∈ Xp under which the general position
holds with probability 1: (1) ξμ ∈ Xp are i.i.d. variables with
the uniform measure on the sphere Sn−1; (2) ξμ ∈ Xp are
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i.i.d. variables with marginal probability distribution P(ξ ),
and the support of P is Rn; (3) the coordinates of each ξμ ∈
Xp are i.i.d. variables, with discrete probability distribution
p(x) = (1 + m)/2δx,1 + (1 − m)/2δx,−1, for any m ∈ [−1, 1].
Clearly, there are trivial ways to violate general position: For
instance, if the probability distribution of (1) or (2) above
is conditioned to assigning the same value to a fixed subset
of size k < n of the coordinates of all inputs. Then Cover’s
theorem still applies in the subspace, with n − k in place of n.

Second, the condition that φ must satisfy for the theorem
to apply to the kernel machine specified by φ is essentially
that the vectors φ(ξμ) must be in general position in the
feature space Rd . This again is a very mild condition. Starting
with a set of inputs Xp in general position in the origi-
nal n-dimensional space, most interesting mappings satisfy
the condition. This includes polynomial kernels, but also
more complex functions, such as those of the form φi(ξ ) =
g(
∑

j Wi jξ j ), where g is an activation function (e.g., ReLU or
tanh) and W is any rectangular random matrix. The latter case
is relevant for the theory of extreme learning machines [41].

C. Constrained models of structured data

The discussion above suggests that, in order to go be-
yond the prediction of Cover’s theorem, one needs a way
of introducing statistical dependence between the inputs Xp

and their labels Yp = (Y 1, . . . ,Y p). This reflects a simple
observation that can be made on empirical data sets of images:
Similar inputs tend to be classified similarly. For instance, one
expects that there exists an (unknown) set of transformations
on an input image X , possibly including some translations,
dilations, and rotations, that leave the classification of X
invariant. Such intuition agrees with the concepts, put for-
ward in neuroscience and gaining momentum in physics, of
invariant recognition (the similar neural representation of the
same object in different conditions) and object manifolds (sets
of input stimuli giving rise to the same neural representa-
tion) [5–7,42,43].

Integrating data structure within the framework of sta-
tistical mechanics is relatively straightforward and usually
follows two steps: (1) define a generative model for the data,
given in terms of a nonfactorized joint probability distribu-
tion P(Xp,Yp) and (2) compute averages over the measure
P (the “disorder”); this is what was done, for instance, in
Refs. [5,12,34]. How to best address data dependence in the
SLT formalism, instead, is a debated issue. Here we follow
a simple strategy inspired by recent literature in statistical
physics: We change the input space X . Each input X μ is now
an object manifold, i.e., a (possibly countably or uncountably
infinite) set of points that, by definition, are to be classified
coherently.

We focus on two simple realizations of data structure, the
first motivated by the availability of analytical results and
the second motivated by its connection to the well-known
framework of margin learning.

a. Simplex learning. Inputs are “multiplets” of k points
with fixed geometric interrelations. The input set is Xp =
{X μ}μ=1,...,p, where each X μ = {ξμ

a }a=1,...,k is a set of k points
on the unit (n − 1)-sphere, ξμ

a ∈ Sn−1. The k(k − 1)/2 over-
laps within each multiplet are fixed: ξμ

a · ξ
μ

b = ρab for all μ =

1, . . . , p. We assume the uniform probability measure on each
point ξμ

a , conditioned on the constraint on the overlaps [32].
The usual unconstrained ensemble is recovered for k = 1, or
at any k if ρab = 1 for all a, b. The name “simplex” is justified
by the fact that, since linear classification is a projective
problem, if Y = g(X ) for each X in a set of points X μ, then
Y = g(X ) for all X in the convex hull of X μ. The input space
XS({ρab}) depends on k and ρab, and is the set of all multiplets
with the given constraints.

b. Margin learning. Given a kernel machine with kernel
φ : Rn → Rd and inputs X ∈ X = Rn, learning with margin
κ is defined by the class GM(κ ) of all functions

gκ (X ) =
{+1 W · φ(X ) > κ

−1 W · φ(X ) < −κ.
(19)

Cases falling within the margin (−κ, κ ) can be defined with a
third value, for instance, 0, or left undefined. Hence, the cor-
responding loss class projected on a sample (Xp,Yp), Eqs. (4)
and (5), contains all the dichotomies of Xp that can be realized
by an element of GM(κ ). An alternative representation of
margin learning can be given via the definition of appropriate
object manifolds. In fact, linear separation of points with
margin κ is equivalent to zero-margin linear separation of
spherical object manifolds with radius κ [5]. Thus, Y μ =
gκ (X μ) for all μ if and only if Y μ = g0(Qμ) for all μ and
all Qμ such that |Qμ − φ(X μ)|2 < κ2. The input space XM(κ )
is the set of the preimages, via φ, of all spheres of radius
κ in Rd . Note that, while margin learning has a natural
description in terms of the original space X = Rn, through
the hypothesis class GM(κ ), simplex learning does not have
such a straightforward representation and is defined directly
by means of the object space X S({ρab}).

The VC entropy for margin learning, Hκ , obeys the general
bound of Eq. (11), in terms of the corresponding VC dimen-
sion dVC. In turn, an upper bound of dVC exists for points lying
on the d-dimensional sphere of radius R [27]:

dVC(κ ) � min

[
R2

κ2
, d

]
. (20)

The standard bound is therefore again logarithmic in the
sample size p. In the following, we set out to investigate the
behavior of the VC entropy of kernel machines for the two
data structures defined above, in order to quantify how loose
these logarithmic upper bounds are. We do so by means of two
complementary approaches: The combinatorial framework
and the theory of disordered systems.

III. COMBINATORIAL APPROACH

Very recently the combinatorial approach introduced by
Cover was extended to formulate a mean field theory of sim-
plex learning [32]. In this section we focus on this model of
data structure. The definition we have given above of simplex
learning specifies the ensemble of the sets Xp. It remains to
define the hypothesis class GS({ρab}). This is straightforward:
One starts from the class G of linear separators in Rn and
restricts it to the class Ĝ({ρab}) of those functions h ∈ G that
assign the same label to all points in each multiplet X μ (i.e.,
those that are constant on each multiplet). Then the restricted
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hypothesis class is defined as

GS({ρab})

= {g s.t. ∃h ∈ Ĝ({ρab}) s.t. ∀X μ ∈ Xp, g(X μ)

= h(ξ ∈ X μ)}.
The functions in Ĝ({ρab}) are called admissible. The mean-
field combinatorial theory allows the computation of the
average 〈N1(Xp)〉Xp

, i.e., the average number of admissible
dichotomies of simplexes that can be realized linearly. We will
still denote this number with Cn,p, although it depends on the
parameters k and {ρab} of the ensemble.

The quantities Cn,p satisfy the recurrence relation, proven
in Ref. [32],

Cn,p+1 =
k∑

l=0

θ k
l Cn−l,p, (21)

where the constant coefficients θ k
l are fixed in turn by the

recurrence relation

θ k
l = ψkθ

k−1
l + (1 − ψk )θ k−1

l−1 , (22)

with boundary conditions

θ1
0 = θ1

1 = 1, θ k
−1 = θ k

k+1 = 0. (23)

The boundary conditions for Eq. (21) are difficult to express
precisely for generic k. Here we will assume the boundary
conditions in Eq. (16) for all k. This approximation is ex-
pected to have a negligible effect for the asymptotic analysis
presented in the following; we checked the validity of this
approximation numerically for the first nontrivial cases k = 2
and k = 3. Each coefficient θ k

l in Eq. (21) depends on k − 1
numbers {ψm}m=2,...,k , with 0 � ψm � 1, having the following
geometric-probabilistic interpretation. Let w ∈ Sn−1 be a ran-
dom vector with the flat measure on the unit sphere. Consider
any multiplet X μ and a subset X ′ ⊆ X μ of m � k points. Then
ψm is the symmetrized probability that the scalar product w · ξ

has the same sign for all ξ ∈ X ′, conditioned on it having the
same sign for all ξ ∈ X ′ \ {ξ�}:

ψm = 2〈P[(w · ξ�) > 0 | (w · ξ ) > 0 ∀ξ ∈ X ′ \ {ξ�}]〉sym,

where the symmetrization 〈·〉sym is performed by averaging
over all subsets X ′ and over all choices of ξ� ∈ X ′. These
quantities can be expressed in terms of the overlaps ρab, e.g.,

ψ2(ρ) = 2

π
arctan

√
1 + ρ

1 − ρ
. (24)

(More information on ψm can be found in Ref. [32].)
The notion of storage capacity αc can be defined for

structured data, similarly to Cover’s unstructured case, and co-
herently with the thermodynamic limit addressed in statistical
mechanical computations. The combinatorial theory yields

αc(k) =
(

k − 1

2
−

k∑
l=2

ψl

)−1

. (25)

A. Asymptotic analysis via analytic combinatorics

In the case of unstructured data, we know that the growth
of Cn,p as a function of p is exponential up to the capacity

pc = 2n and subexponential afterwards. Due to this change
of behavior, the fraction of linearly realizable dichotomies,
cn,p = Cn,p/2p, has a discontinuous transition from 1 to 0 in
the thermodynamic limit [see Fig. 1(a)]. What is the asymp-
totic growth rate of Cn,p? This question can be answered by
inspecting the explicit solution (14). However, we construct
a different method here, based on the techniques of analytic
combinatorics. Our method has the crucial advantage of being
applicable to cases where (1) the solution Cn,p is not known
explicitly and (2) the recurrence equation is given implicitly,
as a relation between its coefficients.

Let gn(z) be the ordinary generating function of Cn,p with
respect to the variable p:

gn(z) =
∞∑

p=1

Cn,pzp. (26)

Formally, the coefficient Cn,p can be obtained by derivation as

Cn,p = 1

p!

dp

dzp
gn(z)

∣∣∣∣
z=0

. (27)

When it is unfeasible to compute the pth derivative explicitly,
one can extract information on the asymptotic behavior of Cn,p

for large p by means of analytic techniques (see, for instance,
Ref. [44]).

Whenever the generating function (26) is a rational func-
tion analytic in z = 0, it admits a partial fraction expansion

gn(z) = Qn(z) +
∑

s

rs∑
r=1

as,r

(z − zs)r
, (28)

where Qn is a polynomial, s ranges over the poles of gn, and rs

is the multiplicity of the pole s. Then the asymptotic form of
the coefficients of gn(z) can be read off the series expansion
of (z − zs)−r :

(z − zs)−r = (−1)r

zr
s

∞∑
p=0

(
p + r − 1

r − 1

)
z−p

s zp. (29)

By substituting (29) in Eq. (28) one obtains rs different contri-
butions for each pole s. The overall leading term corresponds
to the dominant singularity z0 of gn(z), i.e., the one with
smallest modulus |z0|. This is due to the term z−p

s in (29) that
suppresses the subdominant poles exponentially. Among the
contributions due to z0, the leading one is that with r = rs,
because the binomial coefficient in (29) is a polynomial of
degree r − 1 in p. Putting it all together, if the dominant
singularity is a pole of order r, then

Cn,p ∼ Rz−p−r
0

(
p + r − 1

r − 1

)
, (30)

where the constant R can be obtained by factoring out the
singularity:

R = lim
z→z0

(z0 − z)rgn(z). (31)

Equation (30) shows that if |z0| < 1 (respectively, >1), Cn,p

increases (respectively, decreases) exponentially with p at
fixed n; if |z0| = 1 then the asymptotic behavior is polynomial
(of order r − 1).
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In simple cases, when it is possible to obtain gn(z) in closed
form, this method can be applied straightforwardly. However,
this set up allows to probe the asymptotics of Cn,p even in
more complicated scenarios, where gn(z) cannot be solved for
explicitly, or when even the recurrence relation for gn(z) is not
specified completely. Section III E shows how to tackle this
more general problem. Before that, we consider the simpler
cases k = 1 and k = 2.

B. Asymptotics for unstructured data

As a “warm-up exercise,” we use the combinatorial method
described above to explore the asymptotics of Cn,p in the well-
understood unstructured case.

By multiplying both sides of Eq. (15) by zp and summing
over p one obtains

1

z
gn(z) − 2 = gn(z) + gn−1(z), (32)

where the constant term 2 comes from the initial condi-
tion (16). It is useful to rewrite the equation as

gn(z) = z

1 − z
[gn−1(z) + 2]. (33)

The boundary condition is g0(z) = 0, due to every C0,p being
zero. The relation (33) is a linear (nonhomogeneous) first-
order recurrence with constant coefficients, whose solution is

gn(z) = 2z

2z − 1

[(
z

1 − z

)n

− 1

]
. (34)

Equation (34) shows that gn(z) has a single pole at z0 = 1, of
order n, with finite part R = 2. Therefore, the corresponding
asymptotic form has no exponential factor and is purely
polynomial:

Cn,p ∼ 2

(
p + n − 1

n − 1

)
= 2

(n − 1)!
pn−1 + O(pn−2). (35)

Note that the right-hand side of Eq. (34) has a removable
discontinuity in z1 = 1/2, where the apparent pole in the first
term gets canceled by a zero in the numerator (the term in
square brackets). The corresponding exponential asymptotic
growth, 2p, is present in Cn,p only transiently, for p < n.

C. Nonmonotonicity of the VC entropy

The behavior of Cn,p, and therefore of the VC entropy,
changes dramatically when data structure is present, already
in the simplest case where the training data are structured
as pairs of points, i.e., k = 2. Figure 1 shows the fraction of
dichotomies, Cn,p/2p, and the number of dichotomies, Cn,p, as
functions of α for increasing values of the dimension n, for
k = 1 and k = 2 with ρ = 0.3. The fraction of dichotomies
is qualitatively similar in the two scenarios, the only apparent
difference being the expected decrease in the storage capacity.
A remarkable divergence appears instead in the asymptotic
behavior of Cn,p. The absolute number of dichotomies is
nonmonotonic for simplex learning already in the simplest
nondegenerate case k = 2 with ρ < 1. What is also evident
in Fig. 1(b) is the fact that the storage capacity αc(k) does not

pinpoint any qualitatively special point for the unnormalized
Cn,p, and therefore for the VC entropy.

Since the two-point case k = 2 is the simplest case where
the nonmonotonicity of the VC entropy arises, we work it
out in detail, before showing the general k-point case below.
The geometry of the problem is fixed by the single quan-
tity ψ2. The recurrence equation is obtained by specializing
Eqs. (21), (22), and (23) to the case k = 2:

Cn,p+1 = ψ2Cn,p + Cn−1,p + (1 − ψ2)Cn−2,p, (36)

with boundary conditions C0,p = 0,Cn,1 = 2{1 − [1 −
ψ2(d )]δn,1}. In order to simplify the computations, we
will use the same boundary conditions as for k = 1, i.e.,
C0,p = 0 and Cn�1,1 = 2. This approximation has negligible
effects in the large-n limit [32].

Equation (36) fixes the recurrence relation satisfied by the
generating function gn(z):

gn(z) = z

1 − ψ2z
[gn−1(z) + (1 − ψ2)gn−2(z) + 2], (37)

with boundary condition gn�0(z) = 0. The solution, which can
be found by means of the characteristic polynomial method,
reads

gn(z) =
[

z − √
�(z)

2(1 − ψ2z)

]n
z

2z − 1

[
1 + z

2ψ2 − 3√
�(z)

]

+
[

z + √
�(z)

2(1 − ψ2z)

]n
z

2z − 1

[
1 − z

2ψ2 − 3√
�(z)

]
− 2z

2z − 1
,

where �(z) = z[4(1 − ψ2) + z(1 − 2ψ2)2]. The explicit solu-
tion has a pole of order n in z0 = 1/ψ2, with finite part

R = 2ψ−2n
2 . (38)

Similarly to the unstructured case, the singularity in z = 1/2 is
removable, which signals that the initial exponential increase
of the number of dichotomies must be superseded eventually
by the asymptotic behavior due to z0. Altogether, the large-p
form of Cn,p is

Cn,p ∼ 2

(
p + n − 1

n − 1

)
ψ

p−n
2 . (39)

The crucial difference between the results for k = 1,
Eq. (35), and k = 2, Eq. (39), lies in the fact that while the
first is asymptotically increasing, the second is exponentially
decreasing whenever ψ2 < 1, i.e., when the two partner points
are distinct. Observe that Cn,p always increases for small p;
this is a consequence of the fact that the Vapnik-Chervonenkis
dimension of a linear classifier in n dimensions is dVC =
n, therefore all dichotomies of kp points can be realized
when p � n/k, meaning that Cn,p�n/k = 2p. The decreasing
asymptotic form then proves that the Vapnik-Chervonenkis
entropy Hn,p is nonmonotonic in p (and therefore in α) for
fixed n.

Intuitively, the nonmonotonicity is due to the competition
of two opposing effects. On one hand, the addition of a new
pair of points {ξ, ξ̄} to a set of p existing pairs entails a com-
binatorial increase in the total number of linearly realizable
dichotomies. On the other hand, some of the Cn,p admissible
dichotomies can become invalid if they are realizable only by
hyperplanes intersecting the segment connecting ξ and ξ̄ .
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D. Emergence of a data-driven satisfiability transition

A nontrivial consequence of the nonmonotonic VC entropy
can be observed in Fig. 1(c). Consider the VC entropy Hn,αn

as a function of α. The curves Hn,αn at different values of n
intersect each other roughly around the same point α∗. More
precisely, if Hn,αn and Hn−1,α(n−1) intersect at α∗(n), then
α∗ = limn→∞ α∗(n) is finite. This empirical observation can
be clarified analytically.

As a function of the load α = p/n, Eq. (39) becomes

Cn,αn ∼ C(α; n) ≡ 2
�(αn + n)

�(n)�(αn + 1)
ψ

(α−1)n
2 (40)

(� is the Euler gamma function), or Hn,αn ∼ H(α; n) with

H(α; n) ≡ log

[
2

�(αn + n)

�(n)�(αn + 1)

]
+ (α − 1)n log ψ2.

(41)

In the nondegenerate case (whenever ψ2 < 1) the second
term in (41) is negative for α > 1, while the first term is
always positive. This competition gives rise to a transition at
α = α∗ > 1, where the asymptotic limit of the VC entropy
changes:

lim
n→∞H(α; n) =

{−∞ α < α∗
∞ α > α∗.

(42)

The transition point is pinpointed by the condition

lim
n→∞

d

dn
H(α∗; n) = 0. (43)

With H(α; n) given by Eq. (41), the condition reads

lim
n→∞[(α∗ − 1) log ψ2 + (α∗ + 1)�(α∗n + n)

− �(n) − α∗�(α∗n + 1)] = 0, (44)

where �(z) ≡ ∂z log �(z) is the poly-gamma function, whose
asymptotic behavior is �(z) = log(z) + O(1/z). Sending n to
infinity then gives the transcendental equation

(α∗ + 1) log(α∗ + 1) − α∗ log α∗ + (α∗ − 1) log ψ2 = 0,

(45)
which has two solutions: α∗ is the larger. As a function of ψ2,
the transition point α∗ has limits

lim
ψ2→0

α∗ = 1, lim
ψ2→1

α∗ = ∞. (46)

As expected, when ψ2 goes to 1, the problem reduces to that
of classifying unstructured data, and the transition runs to
infinity.

The phase transition at α∗ can be rationalized as the SAT-
UNSAT transition of a random constraint satisfaction problem
(CSP). First, we recall that the storage capacity αc itself
corresponds to the transition between the satisfiable and the
unsatisfiable phase of an appropriate satisfiability problem.
The CSP relevant to αc can be stated as follows:

Constraint satisfaction Problem 1. Given a set of kn input-
label pairs {ξμ

a , σμ} (with a = 1, . . . , k and μ = 1, . . . , p),
find a vector w such that sgn(w · ξμ

a ) = σμ for all μ and a.
The input data of this problem satisfy the admissibility con-

straints by construction. A corresponding random constraint
satisfaction problem (rCSP) is an ensmble of CSPs, specified

by a probability measure on the input data. The rCSP is in
the SAT (respectively UNSAT) phase when the satisfiability
problem admits a solution with probability one (respectively
zero) in the thermodynamic limit. The storage capacity (25)
marks the transition between the SAT and the UNSAT phases
of the rCSP corresponding to Problem 1 with the probability
measure of simplex learning described in Sec. II C

A different problem can be constructed by moving the
admissibility property from the definition of the input data to
the conditions defining the solution:

Constraint satisfaction Problem 2. Given a set of kn input
points {ξμ

a } (with a = 1, . . . , k and μ = 1, . . . , p), find a set
of labels {σμ} and a vector w such that sgn(w · ξμ

a ) = σμ for
all μ and a.

Notice that this problem is trivially satisfiable for unstruc-
tured data, i.e., it is satisfied by almost all vectors w when
the constraint of admissibility is irrelevant (i.e., when k = 1).
A solution to Problem 2 is given by specifying an admissible
dichotomy {σμ} and a vector w. In this framework, the VC
entropy counts the (logarithm of the) number of distinct
dichotomies {σμ} that can appear in such a solution. This
means that the corresponding rCSP is in the UNSAT phase
when H(α; n) → −∞ and in the SAT phase otherwise.

E. Transition point for generic k

Now we address the more general case where the number
of partners in a multiplet is k. The generating function gn(z)
satisfies the recurrence equation

gn(z) = z

1 − zθ k
0

[
2 +

k∑
l=1

θ k
l gn−l (z)

]
, (47)

as can be obtained from Eq. (21). Solving for gn(z) from
Eqs. (47) and (22) would be hopeless. However, the asymp-
totic analysis discussed above only needs three pieces of
information about gn(z): (1) the location z0 of the dominant
singularity, (2) its order r, and (3) its finite part R. These
can be extracted from the recurrence relations without solving
them.

The right-hand side of Eq. (47) has a singularity in z =
1/θ k

0 . The boundary condition is gn�0(z) = 0, therefore the
first nonzero function is g1(z) = 2σ (z), where

σ (z) = z

1 − zθ k
0

(48)

encapsulates the singularity. Since the number of terms in the
sum in Eq. (47) is finite, no other singularity can appear at
finite n. Therefore

z0 = 1

θ k
0

. (49)

Now consider one iteration of Eq. (47): The singularity with
largest order in the right-hand side comes from gn−1(z), and
the singular term gets multiplied by θ k

1 σ (z). Indeed, it is easy
to see by induction that the leading term ĝn(z) in the Laurent
expansion of gn(z) around z0 is

ĝn(z) = 2
(
θ k

1

)n−1
σ (z)n. (50)

Therefore, the order of the singularity is r = n. The constant
R [Eq. (31)] can be obtained by multiplying Eq. (50) by
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(1/θ k
0 − z)n and evaluating it at z = 1/θ k

0 :

R = 2
(
θ k

1

)n−1(
θ k

0

)−2n
. (51)

Finally, the asymptotic behavior of Cn,p is

Cn,p ∼ 2

(
p + n − 1

n + 1

)(
θ k

1

)n−1(
θ k

0

)p−n
, (52)

from which one readily obtains the asymptotic form C(α; n)
for the number of dichotomies,

C(α; n) = 2
�(αn + n)

�(n)�(αn + 1)

(
θ k

1

)n−1(
θ k

0

)(α−1)n
, (53)

and the corresponding one for the VC entropy,

H(α; n) = log

[
2

�(αn + n)

�(n)�(αn + 1)

]

+ (n − 1) log θ k
1 + (α − 1)n log θ k

0 . (54)

As above, the existence of a critical value α∗ can be
established by finding the zeros of the derivative of H(α; n)
with respect to n, in the large-n limit. One finds

(α∗ + 1) log(α∗ + 1) − α∗ log α∗

+ (α∗ − 1) log θ k
0 + log θ k

1 = 0. (55)

The two coefficients θ k
0 and θ k

1 can be obtained from
Eq. (22) as functions of the ψ . By solving the recurrence
equation, specialized to l = 0, one has

θ k
0 =

k∏
m=2

ψm. (56)

Then, by substituting expression (56) into Eq. (22) with l = 1,
one obtains the recurrence relation

θ k
1 = ψkθ

k−1
1 + (1 − ψk )

k−1∏
m=2

ψm, (57)

with boundary condition θ1
1 = 1. The solution is

θ k
1 =

(
2 − k +

k∑
m=2

1

ψm

)
k∏

m=2

ψm. (58)

Specializing to k = 3, for instance, yields

θ3
0 = ψ3ψ2, θ3

1 = ψ3 + ψ2 − ψ3ψ2. (59)

Because of the way θ k
0 and θ k

1 are constructed via the
geometric quantities ψm ∈ [0, 1], they are not independent.
The range of θ k

0 is [0,1], as can be seen from Eq. (56). The
sup and inf of θ k

1 at fixed θ k
0 can be obtained by considering

the two extremal cases:

(i) {ψm}m = {1, . . . , 1, θ k
0 , 1, . . . , 1

}
,

(ii) {ψm}m = {(θ k
0

)1/(k−1)
, . . . ,

(
θ k

0

)1/(k−1)}
. (60)

The fact that the evaluation on the two extremal cases gives the
appropriate bounds is not obvious: It can be proved by induc-
tion using Lagrange’s theorem for constrained optimization

FIG. 2. (a) Numerical estimates of α∗ at varying θ k
0 for two

different geometries: k = 2 (where θ2
0 is just ψ2) and k = 3. In the

latter case we fix {ρab} by requiring that the three points in the
simplex form an equilateral triangle of varying sizes. (b) Theoretical
results (red curves) for α∗ as a function of θ k

0 for increasing values
of θ k

1 , within its allowed range given by Eqs. (61) and (62). Dashed
lines in both panels are the k-independent upper and lower bounds
for α∗.

(taking care to consider the boundary of the domain as well);
see Appendix A. From (i) and (ii), respectively, one gets

(i) sup θ k
1 = 1,

(ii) inf θ k
1 = (k − 1)

(
θ k

0

)1− 1
k−1 + (2 − k)θ k

0 . (61)

The inf is monotonically decreasing with k; therefore, by
letting k → ∞ one obtains a global lower bound independent
of k:

θ k
1 > θ∞

1 = θ k
0

[
1 − log θ k

0

]
. (62)

The upper bound (i) is already k-independent.
Figure 2 summarizes the results concerning the value of

α∗ for generic k. It also shows a comparison with numerical
results obtained for k = 3, (with {ρab} given by the equilateral
geometry). The theoretical bounds in the figure (dashed lines)
are obtained by substituting the k-independent bounds above
into Eq. (55).

We point out that there are two sources of approximation in
the computations above: (1) the modified boundary conditions
and (2) the perturbative nature of the asymptotic analysis.
Concerning (1), we remark that the numerical results were
obtained by using the correct boundary conditions. However,
using the modified conditions does not change the numerical
results appreciably. The small discrepancies apparent in Fig. 2
are therefore due almost entirely to (2).

F. Finite-size scaling at the critical point

In the vicinity of the transition point α∗, the quantity
C(α; n) satisfies finite-size scaling, as happens for other ran-
dom satisfiability problems [45,46]. In this section we com-
pute the scaling form and its critical exponents.
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Let us define a scaling variable y as n times the reduced
load (α − α∗)/α∗ around α∗:

y = n
α − α∗

α∗
. (63)

By inserting α = α∗y/n + α∗ in Eq. (53), and using the
asymptotic expansion of the � function,

�(x) = ex log x−x[
√

2πx−1/2 + O(x−3/2)], (64)

one obtains in the large-n limit

C(α; n) = enA+B

[ √
2/π√

α∗(1 + α∗)
n−1/2 + O(n−3/2)

]
,

with

A = (α∗ + 1) log(α∗ + 1) − α∗ log α∗
+ (α∗ − 1) log θ k

0 + log θ k
1 ,

B = − log θ k
1 + α∗y log(α∗ + 1) − α∗y log α∗ + α∗y log θ k

0 .

The linear term nA in the exponential vanishes by Eq. (55).
Hence,

C(α; n) = n−1/2 1

θ k
1

√
2/π√

α∗(1 + α∗)

(
α∗ + 1

α∗
θ k

0

)α∗y

× [1 + O(n−3/2)], (65)

which shows that in the thermodynamic limit C(α; n) obeys
the scaling form

C(α; n) = n−1/2F

(
α − α∗

α∗
n

)
(66)

with the exponential scaling function

F (y) = 1

θ k
1

√
2/π√

α∗(1 + α∗)

(
α∗ + 1

α∗
θ k

0

)α∗y

. (67)

Equation (66) shows that, within the approximation of our
asymptotic analysis, the number of dichotomies satisfies the
finite-size scaling form

Cn,αn ∼ n−β/νF

(
α − α∗

α∗
n1/ν

)
(68)

(where F is regular), with critical exponents

β = 1/2, ν = 1. (69)

Let h(α) be the VC entropy density in the thermodynamic
limit:

h(α) = lim
n→∞

1

n
H(α; n). (70)

The condition h(α) = 0, satisfied by α∗, can be written from
Eq. (67) as

(α − α∗) log

(
α∗ + 1

α∗
θ k

0

)
= 0. (71)

Curiously, Eq. (71) is satisfied identically in α if α∗ =
θ k

0 /(1 − θ k
0 ). By plugging this value of α∗ into Eq. (55),

one obtains the simple condition θ k
1 = θ k

0 (1 − θ k
0 ). For data

structure with θ k
0 and θ k

1 satisfying this relation, one therefore

expects that C(α; n) is constant in α in the large-n limit; equiv-
alently, the VC entropy will be approximately independent of
the load, Hn,p ∼ Hn.

IV. REPLICA APPROACH

The discussion in the foregoing sections shows that (1) the
VC entropy has nonmonotonic behavior for simplex learning,
(2) the hallmark of the nonmonotonicity is the existence of a
phase transition, and (3) the transition can be framed as the
SAT-UNSAT transition of a constraint satisfaction problem,
which is different from the one that defines the storage capac-
ity. Since it is often challenging to deal with the combinatorics
of complex data structures, our goal in this section is to
identify an appropriate synaptic volume that provides access
to the transition. Once this observable is identified, we will be
able to pinpoint the existence of the phase transition without
direct access to the VC entropy, in the same spirit of the
original work by Gardner [3], by using disordered systems
techniques.

We define the synaptic volume by leveraging on the defi-
nition of the CSP corresponding to the transition. As already
noted, in looking for a solution to the constraint satisfaction
Problem 2 (defined in Sec. III D), we have the freedom to
adjust both the synaptic weights W and the outputs σ . This
means that the outputs are promoted to be dynamical variables
and should be treated at the same level of the synaptic weights.
This suggests that the relevant synaptic volume for identifying
the corresponding phase transition is the following:

V (Xp) =
∑

{σμ=±1}

∫ ⎡⎣ n∏
j=1

dWj

⎤
⎦δ

⎛
⎝ n∑

j=1

W 2
j − n

⎞
⎠

×
p∏

μ=1

k∏
a=1

θ

⎛
⎝ σμ

√
n

n∑
j=1

Wjξ
μ
a, j

⎞
⎠, (72)

where θ (·) is the Heaviside theta, ξ
μ
a, j denotes the jth compo-

nent of the ath element of the μth multiplet and the weights
lie on the surface of a n-dimensional sphere of radius

√
n

(note that this is different from the convention used in the
preceding sections). The inputs, constituting the set Xp, are
chosen randomly according to the distribution

dP(Xp) = ν−1
p∏

μ=1

k∏
a=1

a−1∏
b=1

δ

⎛
⎝ρab − 1

n

n∑
j=1

ξ
μ
a, jξ

μ

b, j

⎞
⎠

×
n∏

j=1

[
δ
(
ξ

μ
a, j − 1

)+ δ
(
ξ

μ
a, j + 1

)]
dξ

μ
a, j, (73)

where −1 � ρab � 1 are the overlaps, ν is a normalization
factor, and the inputs lie on the vertices of a n-dimensional
hypercube.

Note that data structure is implemented in Eq. (72) by
asking that each point of the μth symplex be labeled by
σμ. Moreover, this synaptic volume differs from the ordinary
Gardner volume by the integration over the labels σ , consid-
ered dynamical variables on the same foot of the weights W .
Intuitively, an exponential growth of V (X ) with n at fixed
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load α means that, in the thermodynamic limit, at least one
classification compatible with the input-label constraints can
be expressed by the model; on the contrary, when V (X ) de-
creases exponentially in n then no such classification exists for
n → ∞. Thus, the logarithm of V (X ) is a suitable observable
to assess the nonmonotonic behavior of the VC entropy for a
given data structure.

We will apply replica theory to compute the averaged (over
the inputs positions) logarithm of the synaptic volume defined
in Eq. (72), in order to identify the transition. The goal will
be the evaluation of the critical value of α = p/n where this
volume changes regime, as a function of the overlaps. In
the following, we will restrict to the case k = 2, i.e., to data
organized in doublets, so that the geometry of the simplex is
fully specified by a single parameter ρ; to lighten the notation,
we will omit the index a = 1, 2, simply denoting the doublets
as (ξ, ξ̄ ). Using standard integral representations for the delta
and theta functions, we can write the volume of interest as

V =
∑

{σμ=±1}

∫ ⎡⎣ n∏
j=1

dWj

⎤
⎦∫ +∞

0

⎡
⎣ p∏

μ=1

dλμdλ̄μ

(2π )2

⎤
⎦

×
∫ +∞

−∞

⎡
⎣ p∏

μ=1

dxμdx̄μ

⎤
⎦∫ +∞

−∞

dE

2π
eiE (

∑
j W 2

j −n)

× ei
∑

μ xμ(λμ− σμ√
n

∑
j Wjξ

μ
j )+i

∑
μ x̄μ(λ̄μ− σμ√

n

∑
j Wj ξ̄

μ
j )

, (74)

where the auxiliary variable E enforces the spherical con-
straint, while the standard integral representation of the theta
function is obtained via the auxiliary variables λ, x.

We dedicate the following sections to the calculation of the
averaged logarithm of this volume in the annealed, replica
symmetric (RS) and one-step replica symmetry-breaking
(1RSB) approximations. The main results of this section, to
which we address the reader not interested in the details, are
Eqs. (80), (97), and (109).

A. Annealed computation

The annealed calculation is based on the substitution
logV → logV , so we simply need to average the volume (74)
with respect to the input distribution (indicated by the over-
line); the details are reported in Appendix B. After a large-n
expansion and the average over the inputs, the integrals in x
and λ can be solved explicitly:⎡

⎣ ∑
{σ=±1}

∫ +∞

0

d2λ

(2π )2

∫ +∞

−∞
d2x e− 1

2 xT Rx+ixT λ

⎤
⎦

p

=
[

2
∫ +∞

0

d2λ

(2π )2

2π√
1 − ρ2

e− 1
2 λT R−1λ

]p

=
[

1

2
+ 1

π
arcsin ρ

]p

, (75)

where we introduced the notation

x =
(

x
x̄

)
, λ =

(
λ

λ̄

)
, R =

(
1 ρ

ρ 1

)
(76)

and we used the known formula for the quadrant probability of
a bivariate normal distribution; see Ref. [47]. The remaining
integrals can be performed: The one over the weights is
Gaussian

∫ ⎡⎣ n∏
j=1

dWj

⎤
⎦eiE

∑
j W 2

j = en[ 1
2 log π− 1

2 log(−iE )], (77)

while the one over E can be performed via a saddle-point
method for large n:∫ +∞

−∞

dE

2π
e−inE− n

2 log(−iE ) ∼ 1

2
√

πn
en[ 1

2 + log 2
2 ]. (78)

Assembling everything, and ignoring inessential factors, we
find

V = exp

{
n

[
p

n
log

(
1

2
+ 1

π
arcsin ρ

)
+ 1 + log 2π

2

]}
.

(79)
Defining the critical value of α = p/n as the one where the
exponent changes sign, we find

αA
∗ (ρ) = − 1 + log 2π

2 log
(

1
2 + 1

π
arcsin ρ

) . (80)

A comparison of the annealed approximation and of the
result obtained with combinatorics in Eq. (45) is shown in
Fig. 3. Although the annealed approximation fails in repro-
ducing quantitatively the behavior of α∗(ρ), it bounds the
combinatorial result from below, and qualitatively recovers
the expected divergence for ψ2 → 1.

B. Quenched computation

The quenched calculation of logV is performed via the
replica trick. First, we replicate t times the volume (74),

FIG. 3. Critical value of the load α as a function of the overlap ρ

for k = 2 (data in pairs). Circles represent the combinatorial result,
which is in agreement with numerical simulations. All the different
approximation schemes used for the replica computations display the
same qualitative shape. However, the annealed and RS ansatz fail in
reproducing quantitatively the combinatorial result. Using a 1RSB
ansatz we obtain a one-parameter expression for α∗ [Eq. (109)] that
fits the combinatorial result tightly.
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obtaining

V t =
∑

{σμ
a =±1}

∫ ⎡⎣ t∏
a=1

n∏
j=1

dWj,a

⎤
⎦∫ +∞

−∞

[
t∏

a=1

dEa

2π

]

×
∫ +∞

−∞

[∏
a<b

dFabdQab

2π

]
ei
∑

a Ea (
∑

j W 2
j,a−n)

× ei
∑

a<b Fab(
∑

j Wj,aWj,b−nQab)
∫ +∞

0

⎡
⎣ t∏

a=1

p∏
μ=1

dλμ
a dλ̄μ

a

(2π )2

⎤
⎦

×
∫ +∞

−∞

⎡
⎣ t∏

a=1

p∏
μ=1

dxμ
a dx̄μ

a

⎤
⎦ei

∑
a,μ xμ

a (λμ
a − σ

μ
a√
n

∑
j Wj,aξ

μ
j )

× ei
∑

a,μ x̄μ
a (λ̄μ

a − σ
μ
a√
n

∑
j Wj,a ξ̄

μ
j )

, (81)

where 1 � a, b � t are replica indices (not to be confused
with the indices running inside the multiplets, a notation
we abandoned at the beginning of this section, when we
specialized our calculation to doublets), Qab is the replica
matrix (with Qaa = 1), and Fab are the Lagrange multipliers
enforcing the constraint

Qab = 1

n

n∑
j=1

Wj,aWj,b. (82)

Now we can perform the average over the input ensemble.
With the same steps we used to get Eq. (75) (see Appendix B),
we obtain, for the x and λ integrals,⎧⎨

⎩
∑

{σa=±1}

∫ +∞

0

[
t∏

a=1

d2λa

(2π )2

]∫ +∞

−∞

[
t∏

a=1

d2xa

]

× e− 1
2

∑
a,b QabxT

a Rxb+i
∑

a σaxT
a λa

⎫⎬
⎭

p

, (83)

where we already inserted the replica matrix using (82) and
we isolated the outputs σ in the source term via the transfor-
mation x → σx. The remaining integral over the weights is
Gaussian:

∫ ⎡⎣∏
a, j

dWj,a

⎤
⎦ei

∑
a Ea

∑
j W 2

j,a+i
∑

a<b Fab
∑

j Wj,aWj,b

= e− n
2 log det(−iG)+ nt

2 log(2π ), (84)

where G is the symmetric matrix with elements

Gab = 2Eaδab − (1 − δab)Fab. (85)

The integral over the elements of G is performed via a saddle
point: Ignoring all the inessential factors,∫ +∞

−∞

[
t∏

a=1

dGaa

4π

]∫ +∞

−∞

[∏
a<b

dGab

2π

]

× e− n
2

∑
a,b iGabQab− n

2 log det(−iG) ∼ e
nt
2 + n

2 log det(Q), (86)

where we used

∂

∂Gab

⎡
⎣∑

c,d

iGcd Qcd + log det(−iG)

⎤
⎦ = iQab + (G−1)ba.

(87)
Finally, the resulting averaged replicated volume to be evalu-
ated is

V t =
∫ +∞

−∞

[∏
a<b

dQab

]
e

nt
2 + n

2 log det(Q)

×
⎧⎨
⎩
∑

{σa=±1}

∫ +∞

0

[
t∏

a=1

d2λa

(2π )2

]∫ +∞

−∞

[
t∏

a=1

d2xa

]

×e− 1
2

∑
a,b QabxT

a Rxb+i
∑

a σaxT
a λa

⎫⎬
⎭

p

. (88)

We cannot proceed further, in taking the limit t → 0 as
prescribed by the replica approach, without making an ansatz
on the form of the replica matrix Qab.

1. RS ansatz

In the RS ansatz, the replica matrix has the form

Qab = (1 − q)δab + q, 0 � q � 1, (89)

so that

log det(Q) →
t→0

t log(1 − q) + tq

1 − q
. (90)

The quadratic form at the exponent of Eq. (88) reads∑
a,b

QabxT
a Rxb

= (1 − q)
∑

a

xT
a Rxa + q

(∑
a

xa

)T

R
(∑

b

xb

)
. (91)

The last term can be linearized with a Hubbard-Stratonovich
transformation:

e− q
2 [
∑

a xa]T R[
∑

b xb]

=
∫ +∞

−∞

d2y

2π
√

1 − ρ2
e− 1

2 yT R−1y+i
√

q
∑

a xT
a y , (92)

so that replica indices factorize, to get, after an integration
over x,⎧⎨
⎩
∫ +∞

−∞

d2y

2π
√

1 − ρ2
e− 1

2 yT R−1y

⎡
⎣ 2π

(1 − q)
√

1 − ρ2

∑
{σ=±1}

×
∫ +∞

0

d2λ

(2π )2
e− 1

2(1−q) (λ+σ
√

qy)T R−1(λ+σ
√

qy)

⎤
⎦

t⎫⎬
⎭

p

.

(93)
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Defining LRS(y) the quantity in square brackets, the limit t →
0 gives

p log

{∫ +∞

−∞

d2y

2π
√

1 − ρ2
e− 1

2 yT R−1y[LRS(y)]t

}

→ pt
∫ +∞

−∞

d2y

2π
√

1 − ρ2
e− 1

2 yT R−1y log[LRS(y)]. (94)

Since we are looking for the critical value of α of the
SAT-UNSAT transition of our CSP, we can just apply the
standard argument by Gardner [3]: Starting with a load below
the critical value and increasing the number of patterns, the set
of solutions in the space of weights shrinks down to a single
configuration at the transition (in the thermodynamic limit).
This means that, approaching the critical point, the replicas of
the vector W must be more and more correlated and therefore
q → 1 at the transition. In this limit, the factor (1 − q)−1 is
large and the integrals in LRS(y) can be evaluated with a saddle
point: We need to find the stationary points of the exponent in
the integrands as a function of λ. According to the position
of the vector y on the plane, the saddle is in one of the three
following spots: (1) inside the region of integration over λ, (2)
at one of its boundaries, (3) at the origin. We obtain∫ +∞

0

d2λ

2π (1 − q)
√

1 − ρ2
e− 1

2(1−q) (λ+σ
√

qy)T R−1(λ+σ
√

qy)

∼ θ (−σy)θ (−σ ȳ) + θ (σy)θ [σ (ρy − ȳ)]
e− y2

2(1−q)

y

√
1 − q

8π

+ θ [σ (ρȳ − y)]θ (σ ȳ)
e− ȳ2

2(1−q)

ȳ

√
1 − q

8π
+ e− 1

2(1−q) yT R−1y

× θ [σ (y − ρȳ)]θ [σ (ȳ − ρy)]
1

2π

(1 − q)(1 − ρ2)3/2

(ȳ − ρy)(y − ρȳ)
,

(95)

with the theta functions selecting in turn one of the above
cases. In the summation over σ = ±1, in each domain of y
survives only the dominant addend in (1 − q): This is the
finite term in the first and third quadrant, and the terms
proportional to exp{−y2/[2(1 − q)]} or exp{−ȳ2/[2(1 − q)]}
in the second and forth quadrant (the quadrants bisectors
discriminating the larger). In the end, using the obvious sym-
metry between y and ȳ as integration variables and ignoring
suppressed factors in (1 − q), we get∫ +∞

−∞

d2y

2π
√

1 − ρ2
e− 1

2 yT R−1y log[LRS(y)]

=
∫ +∞

0

dy

π
√

1 − ρ2

−y2

1 − q

∫ −y

−∞
dȳ e

− 1
2 (y, ȳ)R−1

(
y
ȳ

)

= 1

4(1 − q)

(
2

π

√
1 − ρ2 − 4

π
arctan

√
1 − ρ√
1 + ρ

)
. (96)

Selecting only the most divergent terms in (1 − q) from (90)
and (96), we have all the ingredients to evaluate the replica
limit of (V t − 1)/t for t → 0. The result is zero when the load

α assumes the critical value

αRS
∗ (ρ) = π

2 arctan
√

(1 − ρ)/(1 + ρ) −
√

1 − ρ2
. (97)

The result is reported in Fig. 3: The RS curve presents the
expected limits (46), but again we do not observe quantitative
agreement with the combinatorial curve. We are therefore
led to conjecture that we need at least one step of replica
symmetry breaking (RSB). We work out the derivation of α∗
within the 1RSB ansatz in the next section.

2. 1RSB ansatz

In the 1RSB ansatz the replica matrix has the form

Qab = (1 − q1)δab + (q1 − q0)εab + q0, (98)

where εab = 1 if a, b belongs to a diagonal block m × m, 0
otherwise, so that

log det(Q) → t

{
m − 1

m
log(1 − q1)

+ 1

m
log[1 − q1 + m(q1 − q0)]+ q0

1 − q1 + m(q1 − q0)

}
.

(99)

From (88), we get∑
a,b

QabxT
a Rxb = (1 − q1)

∑
a

xT
a Rxa

+ (q1 − q0)
t/m−1∑
B=0

(
m∑

a=1

xmB+a

)T

R
(

m∑
b=1

xmB+b

)

+ q0

(∑
a

xa

)T

R
(∑

b

xb

)
, (100)

where B is a block index. We now need 2(t/m + 1) auxiliary
Hubbard-Stratonovich variables to linearize the sums over
replica indices: To get, after the usual factorizations and the
integration over x,(∫

d2y e− 1
2 yT R−1y

2π
√

1 − ρ2

{∫
d2z e− 1

2 zT R−1z

2π
√

1 − ρ2

×
⎡
⎣ ∑

{σ=±1}

∫ +∞

0

d2λ

2π (1 − q1)
√

1 − ρ2

× e− [σ(√q1−q0z+√
q0y)+λ]T R−1[σ(√q1−q0z+√

q0y)+λ]

2(1−q1 )

⎤
⎦

m⎫⎬
⎭

t
m

⎞
⎟⎠

p

.

(101)

Defining L1RSB(y) the argument of the square brackets, we
know that the logarithm of the above quantity for t → 0 gives

pt

m

∫
d2y e− 1

2 yT R−1y

2π
√

1 − ρ2
log[L1RSB(y)]. (102)
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To simplify L1RSB(y) and to get an expression similar to the
one we studied before, we can shift the z variables to

z → z −
√

q0√
q1 − q0

y, (103)

obtaining

L1RSB(y)

=
∫

d2z e
− 1

2 (z−
√

q0√
q1−q0

y)T R−1(z−
√

q0√
q1−q0

y)

2π
√

1 − ρ2

×
⎡
⎣ ∑

{σ=±1}

∫ +∞

0

d2λ e− [σ
√

q1−q0z+λ]T R−1[σ
√

q1−q0z+λ]

2(1−q1 )

2π (1 − q1)
√

1 − ρ2

⎤
⎦

m

.

(104)

In order to find the critical load, we investigate the behavior of
the 1RSB parameters close to the transition: It turns out that
q1 has to be sent to 1 (in analogy with the RS case) and m to
0 [48] as

q1 → 1, m → (1 − q1)w, (105)

with w a finite parameter. In this limit we can evaluate the
integral over λ with a saddle point. We get

θ (z)θ (z̄) + θ (−z)θ (−z̄) + 4θ (z)θ (−z̄ − z)e− w(1−q0 )z2

2 . (106)

Analytical computations are rather cumbersome after this
point. However, the result simplifies a lot if we take q0 = 0.
Then the integral over y decouples and simply gives 1, while
the one over z breaks into the regions∫ +∞

0

d2z

π
√

1 − ρ2
e− 1

2 zT R−1z = 1

2
+ 1

π
arcsin(ρ) (107)

and ∫ +∞

0

2dz

π
√

1 − ρ2

∫ −z

−∞
dz̄ e− 1

2 zT R−1z− wz2

2

=
2 arctan

[√
(1 + w) 1−ρ

1+ρ

]
π

√
1 + w

. (108)

In the end, we find

α1RSB
∗ (ρ; q0 = 0,w)

= − log[1 + w]

2 log

[
1
2 + 1

π
arcsin(ρ) + 2 arctan

(√
(1+w) 1−ρ

1+ρ

)
π

√
1+w

] .

(109)

We stress that this last result is not the optimal 1RSB solu-
tion: In principle we should consider the full expression of
α1RSB

∗ (ρ; q0,w) and optimize upon the remaining parameters
q0 and w. However, this is beyond the scope of this section:
Here we simply verify that the functional form α1RSB

∗ (ρ; q0 =
0,w) allows to fit nicely the combinatorial result, by adjusting
the parameter w (see Fig. 3). This simple observation strongly
supports our conjecture that this SAT-UNSAT transition ex-
hibits at least one step of RSB, but it does not rule out a
full-RSB scenario.

C. Margin learning

Replica theory turns out to be essential to explore the role
of data structure whenever alternative, ad hoc methods (such
as the combinatorial one) are not available. Here we apply
it to identify the SAT-UNSAT transition occurring in margin
learning. The synaptic volume relevant to this case is

Vκ =
∑

{σμ=±1}

∫ ⎡⎣ n∏
j=1

dWj

⎤
⎦δ

⎛
⎝ n∑

j=1

W 2
j − n

⎞
⎠

×
p∏

μ=1

θ

⎛
⎝ σμ

√
n

n∑
j=1

Wjξ
μ
j − κ

⎞
⎠, (110)

where κ is the margin. Note again that here, as in the case of
Eq. (72), the outputs σμ are dynamical variables, at variance
with the usual Gardner’s volume. We skip the details on the
annealed and quenched calculations, which are in spirit very
similar to those of the previous sections. Nonetheless, it is
worth to point out that the tricky multivariate integrals in the
auxiliary variable, are now replaced by Gaussian integrals,
with the margin κ appearing as an integration limit. The
annealed approximation leads to

αA
∗ (κ ) = − 1 + log(2π )

2 log[2 erfc(κ )]
. (111)

In the quenched calculation, the RS ansatz is again imple-
mented by requiring q → 1; one obtains the critical threshold

αRS
∗ (κ ) = 1

2

[∫ κ

0
Dy (κ − y)2

]−1

, (112)

where Dy is the Gaussian measure. Note the difference with
Gardner’s result [3] for the storage capacity,

αc(κ ) =
[∫ +∞

−κ

Dy (κ + y)2

]−1

. (113)

The one-step RSB ansatz again depends on the parameters q0

and w, which should be investigated numerically. However, in
the special case q0 = 0 we find the simpler expression

α1RSB
∗ (κ; q0 = 0,w)

= − log[1 + w]

2 log

{
2

[
erfc(κ ) +

∫ κ

0
Dz e−w (z−κ )2

2

]} . (114)

These results essentially share the same features of those
for the simplexes computed above: In particular, at variance
with the usual storage capacity (113), α∗ computed in all the
different approximation schemes diverges in the limit κ →
0+, when the problem reduces to a standard classification of
points (or equivalently, in the object manifold description,
when the radius of the spheres shrinks to zero). Even in
absence of a closed expression for the VC entropy of margin
classification, the existence of the phase transition at a finite
load is a clear indication of its nonmonotonicity.
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V. DISCUSSION

Understanding how data specificities impact the perfor-
mance of machine learning models and algorithms can be
considered one of the major challenges for contemporary
statistical physics. Here we have shown how to deal with
data structure, as it is being established in physics, within the
framework of the statistical theory of learning. The presence
of input-output correlations in a data set suggests constraints
to be applied to the hypothesis class under consideration. As a
result, the corresponding VC entropy, deeply connected to the
generalization capabilities of the model, is considerably lower
than in the unstructured case.

For simple models of data structure we have observed two
striking phenomena that take place above the VC dimension.
First, the VC entropy becomes nonmonotonic. This is a strong
indication that the rigorous bounds in SLT may be substan-
tially improved by taking data structure into account. Second,
a transition appears beyond the well-known storage capacity,
at the onset of unsatisfiability for a data-related constraint sat-
isfaction problem. When available, a combinatorial theory à la
Cover allows one to compute the VC entropy of a finite-size
system, and to reveal explicitly its nonmonotonic behavior.
However, this is not always feasible, such as for spherical
object manifolds and margin learning. In these cases, we
showed how the phase transition can be probed with the
standard tools of statistical physics, thus allowing an indirect
quantification of the data-dependent behavior.

Our satisfiability transition is due to a competition be-
tween the combinatorial expansion, with sample size, of the
space of possible functions and the reduction due to the
constraints [35]. We believe, as this observation suggests, that
the emergence of the data-driven transition, as well as the
nonmonotonic VC entropy it entails, is not specific to the two
models of data that we have studied here, but is more generally
present whenever the constraints imposed on the hypothesis
class by data structure are strong enough. On a more quanti-
tative level, notice that the upper and lower bounds obtained
for α∗ in Sec. III E are very close to one another. The bounds
are independent of the particular choice of simplexes, i.e.,
they do not depend on k or on {ρab}. This is a clue pointing
to the robustness of the phenomenology for disparate data
structures. We remark that the combinatoric analysis was done
at leading order in α; thus, it remains to assess how much the
bounds are affected by perturbative corrections.

An ambitious and pressing goal concerns the generaliza-
tion of our results to other architectures, notably deep neural
networks, in the same spirit of what was achieved in SLT
regarding the VC dimension.
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APPENDIX A: BOUNDS ON θk
1

In this Appendix we report the details of the calculation
of the bounds on θ k

1 given in Sec. III E. To briefly recall the

definitions, we have

θ k
0 =

k∏
m=2

ψm, θ k
1 =

(
2 − k +

k∑
m=2

1

ψm

)
k∏

m=2

ψm (A1)

for some 0 � ψm � 1, ∀m � 2. We want to compute the
infimum and the supremum of θ k

1 at fixed θ k
0 , as a function

of the ψ variables. First of all, let us simplify the notation.
Define

xm := ψm+1 , ∀m � 1,

f(k)(x1 . . . xk ) := θ k+1
1 (ψ2 . . . ψk+1) , ∀k � 1 . (A2)

Explicitly,

f(k)(�x) =
(

1 − k +
k∑

m=1

1

xm

)
k∏

m=1

xm , (A3)

where �x = (x1 . . . xk ).
Our problem is to optimize (i.e., to find the infimum and

the supremum) f(k)(�x) in the hypercube �x ∈ [0, 1]k , subject to
the constraint

k∏
m=1

xm = t ∈ [0, 1] . (A4)

We will prove by induction that

sup
�x∈[0,1]k

f(k)(�x) = 1 − δt,0 , ∀k � 1,

(A5)
inf

�x∈[0,1]k
f(k)(�x) = φ(k, t ) , ∀k � 1,

where φ(k, t ) = (1 − k)t + kt1− 1
k . Notice that φ(k, t ) is a

monotone decreasing function of k, and it is always less
then 1.

The case t = 0 is special, as the constraint restricts the
domain to the origin and f(k) is null; in the following, suppose
that t > 0.

If k = 1, the constraint implies that x1 = t , so that
f(1)(x1) = f(1)(t ) = 1. The fact that φ(1, t ) = 1 proves that
the proposed bounds are indeed true.

If k > 1, we first look for critical points inside [0, 1]k using
Lagrange’s theorem for constrained optimization; then we
optimize our function on the boundary of [0, 1]k to look for
noncritical extrema:

(1) Inside the domain, Lagrange’s theorem gives that �x∗ =
(t

1
k . . . t

1
k ) is the only critical point, and f(k)(�x∗) = φ(k, t );

(2) On the boundary, we have that at least one of the
x variables (without loss of generality, let us take xk to be
this boundary variable) must be either 0 or 1; the former is
not compatible with the constraint as t > 0, so xk = 1. But
f(k)(x1 . . . xk−1, 1) = f(k−1)(x1 . . . xk−1), and t =∏k

m=1 xm =∏k−1
m=1 xm, so that the constrained optimization of f(k)(�x) on

the boundary of the domain is equivalent to the constrained
optimization of f(k−1)(�x) on the full domain [0, 1]k−1.

Thus, the candidates for the infimum and the supremum of
f(k)(�x) are given by φ(k) (inside the domain, by Lagrange’s
theorem) and 1, φ(k − 1, t ) (on the boundary of the domain,
by induction hypothesis). The properties of φ imply that 1 is
the supremum and φ(k, t ) is the infimum of f(k)(�x).
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Finally, again by induction, we see that the supremum is
realized on the point (t, 1, . . . ) and by all the distinct permu-
tations of its coordinates, and that the infimum is realized by
(t

1
k . . . t

1
k ).

APPENDIX B: AVERAGING OVER
THE INPUT DISTRIBUTION

In this Appendix we report the details of the calculation of
the averages over the input ensemble, performed in Sec. IV.
From Eq. (73), specialized for k = 2, we observe that at fixed
overlap ρ, given c, d ∈ N the numbers of concordant and
discordant signs of the components of the pair for each μ,
then c − d = ρn, c + d = n, so

c = (1 + ρ)n/2, d = (1 − ρ)n/2. (B1)

For each μ, we can freely choose in 2n different ways the
components of ξμ, but then for ξ̄ μ we must take c components
with the same sign of their counterparts and d with the oppo-
site. We can do that in

(n
c

)
different ways, so the normalization

factor is

ν = 2pn

(
n

(1+ρ)n
2

)p

. (B2)

However, the order of the components of the vectors ξ , ξ̄

is completely irrelevant, because they appear only in scalar
products, among themselves (in the overlap constraint) and
with the same vector W , whose components again we are free
to relabel. This means that we can choose as a representative
of the vector ξ̄ , for example, the one with the concordant
components at the beginning. We can write the ensemble
measure as

dPρ (�) =
p∏

μ=1

⎡
⎣ c∏

j=1

dP
(
ξ

μ
j

)
δ
(
ξ

μ
j − ξ̄

μ
j

)
d ξ̄

μ
j

⎤
⎦

×
⎡
⎣ n∏

j=c+1

dP
(
ξ

μ
j

)
δ
(
ξ

μ
j + ξ̄

μ
j

)
d ξ̄

μ
j

⎤
⎦, (B3)

where

dP
(
ξ

μ
j

) = 1
2

[
δ
(
ξ

μ
j − 1

)+ δ
(
ξ

μ
j + 1

)]
dξ

μ
j . (B4)

Note that with the choice of a representative we are explic-
itly breaking the invariance of the original expression under

permutation (relabeling) of the indices j, a symmetry we will
reintroduce by hand in the following calculation.

We can now perform the averages of the volumes (74)
and (81). We report only the annealed calculation, the
quenched one being a straightforward variation. Isolating the
only part depending on the inputs in the integrand of Eq. (74),
we find ∫

dPρ (�) e−i
∑

μ σμxμ
∑

j

ξ
μ
j Wj√

n
−i
∑

μ σμ x̄μ
∑

j

ξ̄
μ
j Wj√

n

=
p∏

μ=1

c∏
j=1

cos

[
1√
n

(xμ + x̄μ)σμWj

]

×
n∏

j=c+1

cos

[
1√
n

(xμ − x̄μ)σμWj

]

≈
p∏

μ=1

e− 1
2 (xμ )2∑n

j=1

W 2
j

n − 1
2 (x̄μ )2∑n

j=1

W 2
j

n

× e−xμ x̄μ(
∑c

j=1 −∑n
j=c+1 )

W 2
j

n , (B5)

where, in the final step, a large n expansion is performed. The
exponent of the last term, consisting in a sum over j that does
not extend over all the n components, cannot be readily solved
using the spherical constraint, but we can write it as⎛

⎝ c∑
j=1

−
n∑

j=c+1

⎞
⎠W 2

j

n
=
⎛
⎝2

c∑
j=1

−
n∑

j=1

⎞
⎠W 2

j

n
. (B6)

Now, only the first sum is not invariant under permutations
of the components. However, since the starting point was
symmetric, we can also multiply this expression by similar
ones obtained with other choices of the vector ξ̄ μ, and then
take the corresponding root of the result, obtaining an equiv-
alent formula. The trick to restore a complete sum over the
n components, is to multiply by all the c-permutations of n,
and then take the n!/(n − c)!-th root of the result. The only
nontrivial term at the exponent during this procedure is indeed
the partial sum, which reads

(n − c)!

n!

c∑
j=1

∑
π1 �= π2 �= · · · �= πc

∀i, 1 � πi � n

W 2
π j

n
= c

n

n∑
i=1

W 2
i

n
. (B7)

Now the spherical constraint can be invoked on all terms.
Using (2c/n − 1) = ρ, and factorizing the p integrals over the
auxiliary variables x and λ, we obtain Eq. (75).
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