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We analyze the stochastic thermodynamics of systems with a continuous space of states. The evolution
equation, the rate of entropy production, and other results are obtained by a continuous time limit of a discrete
time formulation. We point out the role of time reversal and of the dissipation part of the probability current on
the production of entropy. We show that the rate of entropy production is a bilinear form in the components of
the dissipation probability current with coefficients being the components of the precision matrix related to the
Gaussian noise. We have also analyzed a type of noise that makes the energy function to be strictly constant along
the stochastic trajectory, being appropriate to describe an isolated system. This type of noise leads to nonzero
entropy production and thus to an increase of entropy in the system. This result contrasts with the invariance of
the entropy predicted by the Liouville equation, which also describes an isolated system.
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I. INTRODUCTION

The microscopic theory of systems in thermodynamic
equilibrium as advanced by Gibbs is based on the following
assumptions. An energy function is defined on the phase
space, which is the space of the positions and velocities of
the elementary constituents of the system. A probability dis-
tribution is assigned to the phase space that depends on the
positions and velocity only through the energy function. The
entropy is directly related to the probability distribution and is
a generalization of the Boltzmann entropy. As a consequence
of these assumptions, the entropy becomes a function of the
mean energy from which it is possible to define temperature
by the Clausius relation, and derive the laws of equilibrium
thermodynamics.

The Gibbs probability distribution does not properly char-
acterize the thermodynamic equilibrium in a dynamic sense
but is a necessary condition for equilibrium. The appropriate
dynamic characterization of thermodynamic equilibrium is
provided by the stochastic thermodynamics [1–5]. Within this
approach, thermodynamic equilibrium occurs when the prob-
ability of occurrence of any trajectory equals the probability
of occurrence of its time-reversal trajectory. This condition is
also known as microscopic reversibility or detailed balance
condition and is translated as the absence of entropy produc-
tion. As a consequence, the net current of any type, such as
heat current, will be absent, a property that provides meaning
to thermodynamic equilibrium in a dynamic sense.

The distinguishing feature of the stochastic approach to
thermodynamics is the microscopic definition of the rate of
entropy production. Based on the macroscopic bilinear rela-
tion between entropy production and thermodynamic forces
and affinities, Schnakenberg [6] proposed a microscopic ex-
pression for the entropy production of systems described
by a master equation. The time variation of the entropy of
these systems was shown to have two parts, one of them
being the production of entropy, given by the Schnakenberg

expression, and the other being the entropy flux � [7–10].
The essential feature of the entropy production is its straight
relationship with the irreversibility processes as expressed by
the time-reversal symmetry [11]. The entropy production is
also directly related to probability current so that in a nonequi-
librium steady state these two quantities are nonvanishing
[12–15]. The role of fluctuation theorems has also been ad-
dressed within the stochastic thermodynamics [16–18]. The
entropy production was calculated for molecular motors [19],
in chemical reaction networks [16,20], to determine the effi-
ciency at maximum power [21], and in systems connected to
multiple reservoirs [2,5]. It was also determined in irreversible
interacting particle system where this quantity was shown to
display a singular behavior at the transition point [10,22–24].

A formulation of stochastic thermodynamics for a con-
tinuous system has also been developed, in which case the
stochastic evolution equation is the Fokker-Planck equation. It
is assumed, usually in an implicit form, that the time-reversal
trajectory is identified as the reverse trajectory, which is also
the case of systems described by a master equation examined
above. This approach is appropriate for overdamped contin-
uous systems [25]. For one particle, the expression for the
rate of entropy production is proportional to the square of the
probability current. However, the application to a system that
reaches a non-equilibrium steady state, an extension of this
expression is needed and in fact, it has been advanced [26–29].

For underdamped continuous systems, the reverse trajec-
tory is no longer identified with the time-reversal trajectory
and an adequate formulation should be employed [25]. For
a system described by a Fokker-Planck-Kramers equation,
which is the stochastic equation appropriate for particles with
inertia, it has been found that the rate of entropy production
is related to just one part of the probability current [1,30,31],
called, for this reason, the dissipation probability current.

The present approach describes underdamped systems, that
is, system consisting of particles with inertia, with a continu-
ous space of states. We focus on the production of entropy,
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understood as related to the probability of occurrence of a
trajectory and its time reversal. When these two probabilities
are equal we meet the condition for the thermodynamic equi-
librium. Defining the production of entropy as the logarithm
of the ratio of these two probabilities, it vanishes in thermo-
dynamic equilibrium.

We consider systems consisting of interacting particles
evolving according to the laws of classical mechanics. In
addition to the deterministic forces, the system is also sub-
ject to random forces so that the representative point in the
space of states describes a continuous stochastic trajectory.
The deterministic force is a sum of a time-reversal force and a
force that lacks this property and is identified as the dissipative
force. The evolution equation is a continuity equation for the
probability density whose current is split into two parts. One
of them is the ordinary current related to the time-reversal
force. The other is the dissipative probability current related
to the dissipative force and the noise.

The evolution equation in the continuous space of states
and other properties are obtained by starting from a discrete
time formulation and then taking the continuous time limit.
In this sense the present method is distinct from the previous
similar methods [25,31]. Our main result is the expression for
the rate of entropy production obtained from a discrete time
expression of the production of entropy. The continuous time
limit gives for the rate of entropy production a bilinear form
in the components of the dissipative probability current which
is positive definite. The vanishing of the dissipative probabil-
ity current leads to no entropy production characterizing the
thermodynamic equilibrium.

We analyze in detail two types of noises. One of them is
the usual noise that describes the contact of a system with
a heat reservoir. The other type makes the energy function
to be strictly constant along a stochastic trajectory in phase
space and thus describes an isolated system. There is no flux
of entropy and the time variation of the entropy is entirely
due to the generation of entropy inside the system. This result
is distinct from that given by the Liouville equation which
predicts an invariance of the entropy in time and no produc-
tion of entropy, although this equation describes an isolated
system.

It is convenient to regard the systems out of equilibrium
as belonging in one of two classes. One of them includes the
systems that are out of equilibrium because they have not yet
relaxed to the equilibrium state. The other class includes those
systems that are permanently out of equilibrium even when
they have already relaxed to the stationary state. In this last
case, entropy are permanently being produced by the system,
a feature that characterizes an out of equilibrium state.

Differently from the energy, which is a conserved quantity,
the entropy is not a conserved quantity but it cannot decrease,
which is a brief statement of the second law of thermodynam-
ics. Being a conserved quantity the increase of energy per unit
time is given by

dU

dt
= �u, (1)

where �u is the rate at which energy is being introduced into
the system. The entropy increase per unit time, however, is

given by

dS

dt
= � − �, (2)

where � is the rate at which entropy is being delivered
to outside and � is the entropy production and obeys the
inequality � � 0, a brief statement of the second law of
thermodynamics.

The approach we use here starts with the discrete ex-
pression of the rate of the entropy production to reach the
expression for continuous systems by taking the continuous
time limit. Other approaches already consider the system to
be continuous in time and start from the expression for the
entropy flux defined as the heat flux divided by the tempera-
ture [28,32], or start by identifying the production of entropy
as the relative entropy related to forward and backward
processes [30].

II. EVOLUTION EQUATION

We consider a generic system whose state is defined as
being the set of variables xi understood as the components of
a vector x belonging in a certain continuous space of states
of a given dimension. As the system evolves in time, the
point representing the vector x moves in the space of states,
tracing a trajectory. Supposing that the system is in a certain
state x at time t , the question arises as to which trajectory the
system will follow starting at x. According to the stochastic
assumption there is not just one trajectory starting from x but
many possible trajectories, each one occurring with a certain
probability.

To properly express the probability of occurrence of a
certain trajectory during a given interval of time it is necessary
to specify not only the initial and final points of the trajectory
but also the intermediate points. These points are understood
as a time sequence of random variables and the probability
of the trajectory is a function of these variables. In addition,
this probability could depend on previous states. However,
according to the Markovian assumption adopted here, the
probability of a trajectory will not depend conditionally on
these other states. This assumption leads us to the conclusion
that the probability of the whole trajectory can be set up by
specifying the probabilities of small sections of the trajectory.
The probability of these elementary trajectories dependent
only on its initial and final points.

The probability of occurrence of an elementary trajectory
that starts within the elementary volume of the space of states
dx around the state x and ends within dx′ around x′, after a
small interval of time τ , is written as

P(x′, x)dx′dx = K (x′|x)ρ(x)dx′dx, (3)

where ρ(x)dx is the probability of finding the system within
dx around x at a given time t and K (x′|x)dx′ is the conditional
probability of finding the system within dx′ around x′ at time
t + τ , given the occurrence of state x at time t .

The main assumption of the present approach is that x′ is
obtained from x by means of the following equation valid for
small values of τ ,

x′
i = xi + Fiτ + ξi

√
τ , (4)
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where the forces Fi(x) are given functions of x, and ξi are
random variables with a Gaussian distribution G(ξ |x)dξ , un-
derstood as a conditional probability, where ξ , the noise,
denotes the vector with components ξi. The Gaussian distri-
bution is such that the random variables ξi have zero means
and covariances 〈ξiξ j〉 = �i j . The conditional probability dis-
tribution K (x′|x) is obtained from G(ξ |x) by performing the
transformation ξ → x′ dictated by Eq. (4). That is, the con-
ditional probability K (x′|x) of x at time t + τ given x at
time t is

K (x′|x)dx′ = G(ξ |x)dξ, (5)

where the random variable ξ is related to the random variable
x′ by Eq. (4).

To find the continuous time equation, we start by denoting
by ρ ′(x′) the probability distributions at time t + τ , and by
ρ(x) the probability distribution at t . They are related to the
conditional probability K through the equation

ρ ′(x′) =
∫

K (x′|x)ρ(x)dx, (6)

understood as the evolution equation for the probability distri-
bution in a discretized form. To find the evolution equation in
the continuous form, one should take the limit τ → 0, which
is carried out as follows. We start by multiplying both sides of
Eq. (6) by an arbitrary state function F (x′) and integrate in x′,

〈F〉′ =
∫

F (x′)K (x′|x)ρ(x)dxdx′, (7)

where the average on the left-hand side is over the distribution
ρ ′(x′). Changing the integration from x′ to ξ the result is

〈F〉′ =
∫

F (x′)G(ξ |x)ρ(x)dxdξ, (8)

where here x′ is given by Eq. (4).
Next we need the expansion of F (x′) up to linear terms in

τ . The expansion is obtained in two stages. First we expand
this function up to second powers of �xi = x′

i − xi,

�F =
∑

i

∂F
∂xi

�xi + 1

2

∑
i j

∂2F
∂xix j

�xi�x j, (9)

where �F = F (x′) − F (x). Replacing Eq. (4) into this equa-
tion we reach the desired expansion,

�F =
∑

i

∂F
∂xi

(Fiτ + ξi
√

τ ) + 1

2

∑
i

∂2F
∂xix j

ξiξ jτ, (10)

valid up to terms of order τ .
Equation (10) is replaced in Eq. (8) and the integration in

ξ is carried out. Taking into account that the average of ξi

vanishes, and that the average of ξiξ j is �i j , the term propor-
tional do

√
τ disappears and the whole right-hand side of the

Eq. (8) turns out to be proportional to τ . After this procedure,
we divide both sides of the equation by τ to reach the result

d

dt
〈F〉 = 〈K†F〉, (11)

where we are considering that �〈F〉/τ → ∂〈F〉/∂t when
τ → 0, and K† is the differential operator given by

K†F =
∑

i

Fi
∂F
∂xi

+ 1

2

∑
i j

�i j
∂2F
∂xix j

, (12)

and is the adjoint of the differential operator K, defined by

Kρ = −
∑

i

∂

∂xi
(Fiρ) + 1

2

∑
i j

∂2

∂xix j
(�i jρ). (13)

Writing Eq. (11) in the form∫
F ∂ρ

∂t
dx =

∫
F (Kρ)dx, (14)

obtained by appropriate integrations by parts and by taking
into account that ρ vanishes rapidly in the limits of integra-
tion, we conclude that

∂ρ

∂t
= Kρ, (15)

or in an explicit form,

∂ρ

∂t
= −

∑
i

∂

∂xi
(Fiρ) + 1

2

∑
i j

∂2

∂xi∂x j
(�i jρ), (16)

which is the desired equation that gives the time evolution of
the probability distribution ρ(x, t ) in a continuous form, and
is a Fokker-Planck equation [33–36].

III. PRODUCTION OF ENTROPY

A. Time reversal and entropy production

Irreversible processes are characterized by the lack of time-
reversal invariance which means that the probability of the
occurrence of a certain process is different from the probabil-
ity of its time reversal. In accordance with thermodynamics,
a measure of irreversibility is how much entropy is being
generated. Thus, the production of entropy is directly related
to the lack of time reversibility.

Given a trajectory in the space of states, the time-reversal
trajectory may not be, generally speaking, its reverse, as illus-
trated in Fig. 1. If a trajectory starts at the point x and ends
at x′, then the reverse starts at x′ and ends at x, and may not
coincide with the time-reversal trajectory which is understood
as follows. Let x → x̄ be a mapping that associates to each
state x a time-reversal state x̄. If x and x′ are the initial and
final states of a trajectory, then the initial and final states of
the time-reversal trajectory are, respectively, x̄′ and x̄. That is,
the final state of the original trajectory maps onto the initial
state of the time-reversal trajectory and vice-versa.

The type of time-reversal mapping that we consider is such
that xi either changes its sign or keep its sign in the transfor-
mation x → x̄. It is thus convenient to classify the variables xi

into two categories. If xi keeps its sign, then it belongs in the
first category or is of the even type. If xi changes sign, then it
belongs in the second category or is of the odd type. It is worth
mentioning that if x̄ix̄ j = xix j , then xi and x j belong in the
same category, otherwise they belong in distinct categories.
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FIG. 1. Trajectories in the space of states, where q is an even variable and p is an odd variable. (a) The original trajectory, starting at X and
ending at Y. (b) The backward trajectory (but not time-reversed), that starts at Y and ends at X. (c) The time-reversal trajectory, that starts at Ȳ
and ends at X̄. The points X̄ and Ȳ are the time-reversal mappings of the points X and Y, respectively.

The time reversal of a vector state function such as the
force F is defined in terms of its components. The time re-
versal of Fi is denoted F̄i and equals Fi or −Fi according to
whether xi is of the even or odd type, respectively.

In general, the probability of occurrence of a certain trajec-
tory x → x′, during a small interval of time τ , which is

P(x′, x) = K (x′|x)ρ(x), (17)

is different from the probability of occurrence of the time-
reversal trajectory x̄′ → x̄, which is

P(x̄, x̄′) = K (x̄|x̄′)ρ(x̄′). (18)

A very special situation occurs when the probability of a
trajectory and its time reversal is equal. Thermodynamic equi-
librium corresponds to the case when this equality occurs for
all trajectories. A measure of the departure from equilibrium
may be given by the logarithm of the ratio of these two
probabilities,

ln
P(x′, x)

P(x̄, x̄′)
, (19)

a quantity that vanishes when the two probabilities are equal.
We must integrate over all possible trajectories occurring
during the interval of time τ , leading us to the following
expression for the production of entropy during the interval
of time τ , ∫

P(x′, x) ln
P(x′, x)

P(x̄, x̄′)
dxdx′. (20)

The rate of production of entropy � is defined by di-
viding Eq. (20) by τ and by multiplying by the Boltzmann
constant k,

� = k

τ

∫
P(x′, x) ln

P(x′, x)

Px̄, x̄′)
dx′dx, (21)

and it is understood that we should take the limit τ → 0.
Writing this equation in the equivalent form

� = k

2τ

∫
{P(x′, x) − P(x̄, x̄′)} ln

P(x′, x)

P(x̄, x̄′)
dx′dx, (22)

it becomes clear that � � 0 because the integrand is never
negative. In terms of the conditional probability, the rate of

entropy production reads

� = k

2τ

∫
{K (x′|x)ρ(x) − K (x̄|x̄′)ρ(x̄′)}

× ln
K (x′|x)ρ(x)

K (x̄|x̄′)ρ(x̄′)
dx′dx. (23)

For the discrete space of states, the integral is replaced by a
summation, in which case this expression becomes the expres-
sion proposed by Schnakenberg for the production of entropy
related to a master equation [6].

Equation (23) is not the entropy S of the system, which is
defined by

S = −k
∫

ρ(x) ln ρ(x)dx, (24)

and, in general, it is not either the variation of the entropy with
time dS/dt , which is

dS

dt
= k

2τ

∫
{K (x′|x)ρ(x) − K (x̄|x̄′)ρ(x̄′)} ln

ρ(x)

ρ(x̄′)
dx′dx,

(25)
where we assumed that ρ(x̄) = ρ(x). The difference � =
� − dS/dt is given by

� = k

2τ

∫
{K (x′|x)ρ(x) − K (x̄|x̄′)ρ(x̄′)} ln

K (x′|x)

K (x̄|x̄′)
dx′dx,

(26)
and is interpreted as the flux of entropy per unit time from the
system to the outside.

B. Rate of entropy production

Next we wish to determine the rate of entropy production
in the limit τ → 0. We recall that the conditional probability
K (x′|x) is related to the noise probability distribution by re-
lation Eq. (5), where G(ξ |x) is the probability distribution of
the noise ξ , related to x′ by

ξi = 1√
τ

[x′
i − xi − Fi(x)τ ], (27)

where Fi are functions of x.
We assume that the noises ξi are distributed according to

the Gaussian distribution G(ξ |x) in several variables, with
zero means and covariances 〈ξiξ j〉 = �i j that may depend on
x. Given the covariances, the Gaussian distribution is uniquely
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determined and is given by

G(ξ |x) = 1

Z
exp

{
−1

2

∑
i j

ξiBi jξ j

}
, (28)

where

Z =
∫

exp

{
−1

2

∑
i j

ξiBi jξ j

}
dξ, (29)

and B, the matrix with elements Bi j , is the inverse of the co-
variance matrix �, and may depend on x. As G(ξ |x) describes
a probability distribution, the eigenvalues of the precision
matrix B and of the covariant matrix � are greater or equal
to zero.

To determine the rate of entropy production, we write
Eq. (23) in terms of the Gaussian distribution by the use of
Eq. (5) and by employing the conditional probability K (x̄|x̄′)
related to the time-reversal trajectory,

K (x̄|x̄′)dx̄ = G(ξ ∗|x̄′)d ξ̄ ′, (30)

where ξ ∗ is given by

ξ ∗
i = 1√

τ
[x̄i − x̄′

i − Fi(x̄
′)τ ]. (31)

Notice that the right-hand side of Eq. (31) is not the time
reversal of the right-hand side of Eq. (27). For this reason, we
are using the notation ξ ∗

i and not ξ̄i. In terms of the Gaussian
distribution, the rate of entropy production reads

� = k

2τ

∫
{G(ξ |x)ρ(x) − G(ξ ∗|x̄′)ρ(x̄′)}

× ln
G(ξ |x)ρ(x)

G(ξ ∗|x̄′)ρ(x̄′)
dξdx, (32)

which is obtained by a change of variables from x′ to ξ , given
by Eq. (27) and we remark that ξ ∗

i is related to both x′ and x
by Eq. (31) so that all terms in the integrand involve only the
variables ξ and x.

Before we start the calculation, we assume two properties
of the covariances, the denial of which would lead to an
artificial production of entropy. The first property is

�i j (x̄) = �i j (x), (33)

and is valid also for Bi j (x), Z (x) and ρ(x). The second prop-
erty is that �i j (x) vanishes whenever xi and x j belong in
distinct categories, that is, if one is even and the other is
odd, and is also valid for Bi j (x). This property is conveniently
written as

�i j x̄ix̄ j = �i jxix j . (34)

C. Additive noise

We consider here the case in where the covariant matrix �

does not depend on x, and the same is valid for the precision
matrix B. We start by expanding the expression

ln
G(ξ |x)ρ(x)

G(ξ ∗|x̄′)ρ(x̄′)
, (35)

up to terms of order
√

τ . Using the definition of the Gaussian
distribution, this expression may be written as

1

2

∑
i j

Bi j (ξ
∗
i ξ ∗

j − ξiξ j ) − ln
ρ(x′)
ρ(x)

, (36)

where we used the property Eq. (33) for Bi j and ρ.
To determine the first term of Eq. (36), we observe that in

accordance with the property Eq. (34), valid for Bi j ,

Bi jξ
∗
i ξ ∗

j = Bi j ξ̄
∗
i ξ̄ ∗

j , (37)

where ξ̄ ∗
i is the time reversal of ξ ∗

i ,

ξ̄ ∗
i = 1√

τ
[xi − x′

i − F̄i(x̄
′)τ ], (38)

so that, up to terms of order
√

τ ,

ξ̄ ∗
i = −ξi − 2Di(x)

√
τ , (39)

where

Di(x) = 1
2 [F̄i(x̄) + Fi(x)]. (40)

The first term of Eq. (36), up to terms of order
√

τ , becomes∑
i j

Bi j[ξiD j (x) + ξ jDi(x)]
√

τ . (41)

Considering that up to terms of order
√

τ , x′
i = xi + ξi

√
τ ,

and using the property Eq. (33) for ρ, the second term of
Eq. (36) becomes

−
∑

k

∂ ln ρ

∂xk
ξk

√
τ . (42)

Collecting these results, we may write

ln
G(ξ |x)ρ(x)

G(ξ ∗|x̄′)ρ(x̄′)
= A(ξ, x)

√
τ , (43)

where

A =
∑

i

Aiξi, (44)

and

Ai = 2
∑

j

Bi jD j − ∂ ln ρ

∂xi
. (45)

In a similar fashion we find

G(ξ |x)ρ(x) − G(ξ ∗|x̄′)ρ(x̄′) = G(ξ |x)ρ(x)A(ξ, x)
√

τ ,

(46)
and the rate of entropy production becomes

� = k

2

∫
G(ξ |x)ρ(x)[A(ξ, x)]2dξdx. (47)

Replacing the result Eq. (44) for A in Eq. (47), perform-
ing the integral in ξ , and bearing in mind that 〈ξiξ j〉 = �i j ,
we reach the following desired result for the rate of entropy
production:

� = k

2

∑
i j

∫
Ai �i jA j ρ dx, (48)
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which is clearly nonnegative because the eigenvalues of �i j

are nonnegative.
Comparing Eqs. (23) and (25), we observe that they differ

from the last factor in the integrand of both equations. An
expression for dS/dt can thus be obtained by using the same
reasoning that led us from Eq. (23) to Eq. (48). The result is

dS

dt
= −k

2

∑
i j

∫
Ai �i j

∂ρ

∂x j
dx. (49)

To find an expression for the flux of entropy �, we recall that
� = � − dS/dt . Subtracting Eqs. (48) and (49), we get

� = k
∑

i

∫
AiDi ρ dx, (50)

where we used the relation B� = I .

IV. PROBABILITY CURRENT

A. Dissipation probability current

The evolution Eq. (16) can be written in the following
form:

∂ρ

∂t
= −

∑
i

∂Jc
i

∂xi
, (51)

where

Jc
i = Fiρ − 1

2

∑
j

∂

∂x j
(�i jρ). (52)

In this form, the evolution equation is a continuity equation
and Jc

i is the probability current. Next, we wish to split the
probability currents into two parts, one of them being invariant
under time reversal. To this end, we consider first the splitting
of the force Fi.

Any force Fi(x) can always be split into two parts, one of
them being

Di(x) = 1
2 [Fi(x) + F̄ (x̄)], (53)

and the other being

F r
i (x) = 1

2 [Fi(x) − F̄ (x̄)]. (54)

That is,

Fi(x) = F r
i (x) + Di(x). (55)

The first part F r
i is invariant under time reversal, holding the

time-reversal property

F̄ r
i (x) = −F r

i (x̄). (56)

In an explicit form, if F r
i is an odd type of force, which is

identified as an ordinary force, then the time-reversal property
reads F r

i (x) = F r
i (x̄). If Fi is an even type of force, then the

time-reversal property reads F r
i (x) = −F r

i (x̄). From Eq. (56),
it follows that Ai = ∂F r

i /∂xi holds the property

Ai(x̄) = −Ai(x). (57)

The second part Di is the dissipative part, which holds the
property

D̄i(x) = Di(x̄). (58)

If Di is an odd type of force, then this property reads, Di(x) =
−Di(x̄), and Di is identified with a dissipative force, an ex-
ample of which is the ordinary dissipation proportional to the
velocity. If Di is an even type of force, then this property reads
Di(x) = Di(x̄). Only the second part, Di, that lacks the time-
reversal property, contributes to the production of entropy as
can be observed by looking at Eqs. (45) and (47).

In an analogous manner, the probability current is split into
two parts,

Jc
i = Jr

i + Ji, (59)

where the first part is the reversible probability current, and

Jr
i = F r

i ρ, (60)

which is invariant under time reversal, holding the property
Eq. (56) because ρ(x̄) = ρ(x), and the second part is the
irreversible probability current,

Ji = Diρ − 1

2

∑
j

∂ρ�i j

∂x j
, (61)

which holds the property Eq. (58) because �i j (x̄) = �i j (x).

B. Time variation of the entropy

The variation of the entropy

S = −k
∫

ρ ln ρdx, (62)

with time is

dS

dt
= −k

∫
∂ρ

∂t
ln ρdx. (63)

Using the evolution equation in the form Eq. (51), it can be
written as

dS

dt
= k

∑
i

∫
∂Jc

i

∂xi
ln ρ dx. (64)

Replacing Jc
i by Jr

i + Ji, the right-hand side will be a sum of
two terms, one of which involves the integral∑

i

∫
∂Jr

i

∂xi
ln ρ dx =

∑
i

∫
∂F r

i

∂xi
ρ dx, (65)

where the equality was obtained by two integrations by parts.
But this expression vanishes in view of the property Eq. (57)
and we are left only with the second part,

dS

dt
= −k

∑
i

∫
Ji

∂ ln ρ

∂xi
dx, (66)

where an integration by parts has been performed.
If we define F ir

i = Ji/ρ, then we may write, after an inte-
gration by parts,

dS

dt
= k

∑
i

∫
∂F ir

i

∂xi
ρ dx, (67)

In this form we see that the time variation of the entropy is
related to the change in the volume of phase space, measured
by the divergence of F ir .
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C. Rate of entropy production

The comparison of Eqs. (49) and (66) indicates that Ji is
related to Ai by

Ji = ρ

2

∑
j

A j �i j . (68)

Inverting this relation, we find

Ai = 2

ρ

∑
j

Bi jJj, (69)

where we used B� = I , which leads us to the following
expression

Ai = 2
∑

j

Bi jD j − ∂ ln ρ

∂xi
−

∑
jk

Bi j
∂� jk

∂xk
, (70)

obtained by using Eq. (61), where again we used B� = I .
We have seen above that the rate of entropy production is

given by Eq. (48), which was demonstrated to be the rate of
entropy for the case in which �i j does not depend on x, in
which case Eq. (70) for Ai does not have the last term on the
right-hand. Although we did not show that Eq. (48) is also
valid for the case in which �i j depends on x, we assume that it
expresses the rate of entropy production in this case, with Ai

given by Eq. (70).
Using the relation between Ai and Ji, the rate of entropy

production can be written in terms of the dissipation probabil-
ity current as

� = k
∑

i

∫
JiAidx, (71)

or as

� = 2k
∑

i j

∫
1

ρ
JiBi jJjdx. (72)

This expression is clearly nonnegative because the eigenval-
ues of B are nonnegative and we notice that it is related only
to the dissipation part of the probability current. When B is di-
agonal, this formula was considered by Tomé and de Oliveira
[1] and derived by Spinney and Ford [31] by a method which
has similarities with the present approach. Equation (72) was
derived by Chetrite and Gawȩdzki [30] by identifiying the
production of entropy as a relative entropy related to forward
and backward processes.

The flux of entropy � is obtained by recalling that � =
� − dS/dt . Subtracting the Eqs. (64) and (72), we get

� = 2k
∑

i j

∫
JiBi jL jdx, (73)

where

Lj = Dj − 1

2

∑
k

∂� jk

∂xk
, (74)

which can also be written as

� = k
∑

i

∫
AiLiρ dx. (75)

V. ENERGY, HEAT, AND WORK

From now on, we wish to describe a system that may be
acted by internal as well as by external forces. The internal
forces are considered to be conservative forces in the sense
that they are derived from an energy function E (x) associated
to the system. Let xi and x j be a pair of even and odd variables,
respectively. Then the even conservative force F c

i and the odd
conservative force F c

j are obtained from the energy function
E (x) by

F c
i = ∂E

∂x j
, F c

j = −∂E

∂xi
. (76)

The energy function holds the time-reversal property, E (x̄) =
E (x), guaranteeing the time-reversal property Eq. (56) of the
conservative forces.

In addition to the internal forces F c
i , the system, if it is not

isolated, may be acted by external forces F e
i which are also

considered to be time reversal. The force F r
i becomes a sum

of these two forces,

F r
i = F c

i + F e
i , (77)

and the evolution Eq. (16) becomes

∂ρ

∂t
= −

∑
i

∂F c
i ρ

∂xi
−

∑
i

∂F e
i ρ

∂xi
−

∑
i

∂Ji

∂xi
. (78)

From the property Eq. (76), it follows at once the following
result: ∑

i

∂F c
i

∂xi
= 0. (79)

Using this property, we find

∑
i

∂F c
i ρ

∂xi
=

∑
i

F c
i

∂ρ

∂xi
, (80)

which can be written as

−
∑

i

F c
i

∂ρ

∂xi
=

∑
(i j)

(
∂E

∂xi

∂ρ

∂x j
− ∂E

∂x j

∂ρ

∂xi

)
= {E , ρ}, (81)

where the summation extends over all pairs (i, j) such that xi

and x j consist of a pair of conjugate variables such that the xi

is even and x j is odd, and this summation is recognized as the
Poisson brackets between E and ρ.

The evolution Eq. (78) then becomes

∂ρ

∂t
= {E , ρ} −

∑
i

∂F e
i ρ

∂xi
−

∑
i

∂Ji

∂xi
. (82)

The time evolution of the average of the energy 〈E (x)〉, under-
stood as the thermodynamic internal energy U of the system,
is obtained by multiplying Eq. (82) by E (x) and integrating
in x. The result is

dU

dt
=

∑
i

∫
Ji

∂E

∂xi
dx +

∑
i

∫
F e

i ρ
∂E

∂xi
dx, (83)

obtained after appropriate integrations by parts. The first sum-
mation on the right hand-side is identified as the total heat flux
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introduced into the system,

�q =
∑

i

∫
Ji

∂E

∂xi
dx, (84)

and the second as minus the work performed by the system
per unit time, or power generated by the system,

�w = −
∑

i

∫
F e

i ρ
∂E

∂xi
dx. (85)

Equation (83) acquires the form

dU

dt
= �q − �w, (86)

which is understood as the global conservation of energy, and
�u in Eq. (1) is �u = �q − �w.

VI. A SPECIAL TYPE OF NOISE

The noise, which is represented by the covariances matrix
� is not yet fully specified. Some of their essential properties
have already been presented in Eqs. (33) and (34), and are:
�i j (x̄) = �i j (x); and �i j (x) vanishes whenever xi and x j con-
sists of a pair of even and odd types. There are many choices
of noise depending on the physical situation one wants to
describe. Here we take a look at the type of noise that leaves a
certain quantity E (x) invariant along the trajectory determined
by this noise. The quantity E is strictly constant in every
possible stochastic trajectory, and not only on the average. If
two states x and x′ are related by

x′
i = xi + Fiτ + ξi

√
τ , (87)

then the expansion of E (x′) − E (x) up to terms of order τ is

E (x′) − E (x) =
∑

i

∂E

∂xi
(Fiτ + ξi

√
τ ) + 1

2

∑
i j

∂2E

∂xi∂x j
�i jτ,

(88)
where as before �i j denotes the covariance of the random
variables ξi.

If E (x′) = E (x) along the trajectory, then the following
constraint should be obeyed:∑

j

ξ j f j = 0, (89)

where

f j = ∂E

∂x j
(90)

and ∑
i

fiFi + 1

2

∑
i j

�i j
∂ fi

∂x j
= 0. (91)

The first condition means that the random variables are not
independent variables but are connected by Eq. (89). Multi-
plying Eq. (89) by ξi and taking the average over the random
variable ξ , we find ∑

j

�i j f j = 0, (92)

which relates the covariances and fi. Owing to the relation
Eq. (92), the condition Eq. (91) is equivalently expressed by

Fi = 1

2

∑
j

∂�i j

∂x j
. (93)

If a certain quantity remains constant along a stochastic tra-
jectory, then the random variables ξi should be connected
by Eq. (89), and Fi should be related to the covariances by
Eq. (93).

Replacing the condition Eq. (93) in Eq. (74), we see that
the quantity Li vanishes and so does the flux of entropy,
given by Eq. (73). In other terms, the flux of entropy vanishes
for the conservative noise that we are considering here and
one concludes from this property that the variation of the
entropy of the system dS/dt equals the rate of the entropy
production �.

A noise that meet the condition Eq. (89) is set up as fol-
lows. For i �= j, let ξi j be random variables with zero means,
each one with variance λi j = λ ji � 0, that is, 〈ξ 2

i j〉 = λi j .
These are independent random variables, except ξi j and ξ ji

which are related by

ξ ji = −ξi j . (94)

The random variable ξi is defined in terms of these new ran-
dom variables by

ξi =
∑
j( �=i)

ξi j f j . (95)

Using property Eq. (94), the condition Eq. (91) follows im-
mediately. We recall that fi = ∂E/∂xi and may depend on x,
where E (x) is the conserved quantity.

From Eq. (95) we may determine the covariances �i j =
〈ξiξ j〉. Using the property Eq. (94) we find

�i j = −λi j fi f j, (96)

for i �= j, and

�ii =
∑
j( �=i)

λi j f 2
j . (97)

From these results, we see that Eq. (92) is verified.

VII. THERMODYNAMIC EQUILIBRIUM

A. Noise-dissipation relation

From now on we consider only the situations such that the
external forces are not present, in which case the evolution
equation is

∂ρ

∂t
= {E , ρ} −

∑
i

∂Ji

∂xi
. (98)

It remains to choose which type of noise to use. The choice
of noise, represented by the covariances �i j , and of the dissi-
pative forces Di is guided by the type of situation one wants
to describe. If we wish to describe an equilibrium situation,
then the noise represented by the covariances �i j and the
dissipation represented by Di cannot be arbitrary but must
hold a relationship between them, a noise-dissipation relation.

For long times, the density ρ will reach a stationary den-
sity ρs, which makes the right-hand side of Eq. (98) vanish.
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If Ji(ρs) is nonzero for some i, then � is nonzero and the
stationary state will be a state in which entropy is continuously
been produced, and this is not an equilibrium state. The ther-
modynamic equilibrium is characterized by the vanishing of
the entropy production which implies that Ji should vanish for
all i. Denoting by ρe the equilibrium probability distribution
then the condition for thermodynamic equilibrium is

Ji(ρe) = 0, (99)

for all i. Recalling the definition of Ji, given by Eq. (61), this
condition is equivalent to

Dj − 1

2

∑
k

∂� jk

∂xk
= 1

2

∑
k

� jk
∂ ln ρe

∂xk
, (100)

for all i.
Let us analyze the types of covariances �i j and the dissipa-

tive force Di that may lead the system to the thermodynamic
equilibrium. As the quantity Ji(ρe) vanishes for each i, the sec-
ond summation on the right-hand side of Eq. (98) disappears
and the first summation must vanish as well, that is,

{E , ρe} = 0. (101)

This equation is fulfilled if ρe is a function of E , that is if
ρe(x) = ρ[E (x)] depends on x through the energy function
E (x). In other words, in the thermodynamic equilibrium, the
probability density is a function of the energy function, which
is the main property of the equilibrium Gibbs distributions.
The general condition for thermodynamic equilibrium is
reduced to the condition represented by Eq. (100) where
ρe is understood as a function of the energy function E (x).
With this understanding, the Eq. (100) is the noise-dissipation
relation.

The Eqs. (99) and (101) are the two conditions that gives
the equilibrium probability distribution. The first condition
represents the detailed balance condition or microscopic re-
versibility and the second is related to the conservation of
energy. These two conditions are the ones used implicitly by
Maxwell in his second derivation of the velocity distribution
that bears his name [37].

B. Canonical setting

Let us consider two relevant cases. The first is the one in
which ρe is proportional to e−βE , which corresponds to the
Gibbs canonical distribution. In this case Eq. (100) reduces to

Dj − 1

2

∑
k

∂� jk

∂xk
= −β

2

∑
k

� jk
∂E

∂xk
, (102)

which is the noise-dissipation relation for the present case.
Using relation Eq. (100), the flux of entropy Eq. (73) re-

duces to the following simple form:

� = k
∑

i

∫
Ji

∂ ln ρe

∂xi
dx = − 1

T

∑
i

∫
Ji

∂E

∂xi
dx. (103)

The comparison of Eqs. (84) and (103) leads us to the relation

� = −�q

T
, (104)

which connects the flux of entropy and the heat flux. Since
dU/dt = �q and dS/dt = � − �, we reach the relation

dS

dt
= � + 1

T

dU

dt
. (105)

Near equilibrium, the rate of entropy production vanishes
and we are left with the relation dU = T dS, which confirms
that the noises and dissipation satisfying the noise-dissipation
relation Eq. (102) describe a system in contact with a reservoir
at a temperature T .

If the temperature is kept constant, then the variation with
time of the free energy F = U − T S is related to the entropy
production by dF/dt = −T �, which follows from Eq. (105).
Since � � 0, then dF/dt � 0 and the free energy decreases
monotonically in time towards its equilibrium value. It is
satisfying to realize that this inequality can be regarded as the
H theorem of Boltzmann. Indeed, if we define the H function
of Boltzmann by

H =
∫

ρ ln
ρ

ρe
dx, (106)

and recalling that ρe is proportional do the exponent of −βE ,
we see that H equals −βF , except for an additive constant, a
relation giving the result

dH

dt
= −β

dF

dt
= k� � 0, (107)

which is understood as the H theorem of Boltzmann.

C. Microcanonical setting

The second relevant case is the one in which ρe vanish
unless E (x) = E0, which corresponds to the Gibbs micro-
canonical distribution. This condition is met if the left- and
right-hand sides of the Eq. (100) vanish, which give the
conditions

Di = 1

2

∑
j

∂�i j

∂x j
(108)

and ∑
j

�i j
∂E

∂x j
= 0. (109)

The covariances obeying this relation is obtained from the
special type of noise that we have analyzed above.

Replacing result Eq. (108) into Eq. (74), we see that Li

vanishes identically and so does the flux of entropy, given by
Eq. (50).

The heat flux also vanishes. To see this, it suffices to ob-
serve that the covariances and dissipative forces, characterized
by Eqs. (108) and (109), yields

Ji = −1

2

∑
j

�i j
∂ρ

∂x j
, (110)

which replaced in Eq. (84) and making use of relation
Eq. (109) gives the vanishing of �q. Thus, not only the flux
of entropy is absent but also the heat flux, confirming that
the noise characterized by Eqs. (108) and (109) describe an
isolated system.
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The insertion of Eq. (110) into Eq. (98) gives the evolution
in the form

∂ρ

∂t
= {E , ρ} + 1

2

∑
i j

∂

∂xi
�i j

∂ρ

∂x j
, (111)

and describes an isolated system as we have demonstrated. In
this sense it is similar to the Liouville equation

∂ρ

∂t
= {E , ρ}, (112)

which describes a isolated system. However, in the case of
the Liouville equation, the entropy is strictly constant in time,
and there is no entropy production. This is in contrast with
thermodynamic law of the increase of entropy in isolated sys-
tems, but in agreement with the Eq. (111), which will generate
entropy. The variation of the entropy, which equals the rate of
entropy production �, is given by

dS

dt
= k

2

∑
i j

∫
�i j

ρ

∂ρ

∂x j

∂ρ

∂xi
dx, (113)

which is clear nonnegative because �i j has nonnegative eigen-
values, and we conclude that dS/dt � 0.

VIII. MECHANICAL SYSTEM

A. General equations

Here we apply the results obtained previously to a me-
chanical system composed by a certain number of interacting
particles with equal masses. The positions of the particles are
denoted by xi, understood as even variables, and the momenta
of the particles by pi, understood as odd variables. The dis-
crete time equations of motion are

x′
i = xi + pi

m
τ, (114)

p′
i = pi + Fiτ + Diτ + ξi

√
τ , (115)

where Fi(x) is a conservative force that depends only on x,
that is, Fi = −dV/dxi, and Di is the dissipative force. The
conservative force Fi and pi/m hold the property Eq. (56),
as desired, and the dissipative force is assumed to hold the
property Eq. (58), which reads Di(x,−p) = −Di(x, p).

Equation (98) gives the time evolution of the probability
density ρ(x, p) reads

∂ρ

∂t
= {H, ρ} −

∑
i

∂Ji

∂ pi
, (116)

where H is the energy function

H =
∑

i

p2
i

2m
+ V (x), (117)

and we recall that Fi = −∂H/∂xi and pi/m = ∂H/∂ pi.
We analyze initially the ordinary case in which the dissipa-

tive force is proportional to the momentum, Di = −γ pi, and
the covariances are diagonal and do not depend on x nor on p,
and are given by �ii = 2mγ /βi. In this case the quantity Ji is

Ji = −γ

(
piρ + m

βi

∂ρ

∂ pi

)
. (118)

Replacing in Eq. (116), the evolution equation reads

∂ρ

∂t
= {H, ρ} + γ

∑
i

∂ piρ

∂ pi
+ γ m

∑
i

1

βi

∂2ρ

∂ p2
i

, (119)

which we recognize as the Fokker-Planck-Kramers equation
for many particles.

If βi = β is the same for all i, then the noise-dissipation
relation is obeyed for the Gibbs probability density ρe propor-
tional to e−βH and the Eq. (119) describes a system in contact
with a reservoir at a temperature T = 1/kβ. For long times
the system relax to the equilibrium state. If βi are distinct, then
for long times the system reaches a nonequilibrium stationary
state because Ji cannot be zero for all i and � �= 0. In this
case the equation can be understood as describing a system in
contact with several heat reservoirs at temperatures Ti = kβi.

Another situation is the one in which ρe vanishes unless
H (x, p) = E0, which we have discussed above, and under-
stood as describing an isolated system. In equilibrium, it leads
to the Gibbs microcanonical distribution. In the present case
where the equation of motion is given by Eqs. (114) and (115),
the covariances are related only to the momentum variable, so
that the relation Eq. (109) gives∑

j

�i j p j = 0. (120)

The solution for �i j is

�i j = −λi j pi p j, i �= j, (121)

�ii =
∑
j �=i

λi j p2
j, (122)

where λi j = λ ji � 0, which replaced into Eq. (108) gives
again the usual form of the dissipative force,

Di = −γi pi, γi = 1

2

∑
j( �=i)

λi j . (123)

The explicit form of Ji is

Ji = 1

2

∑
j( �=i)

λi j p j

(
pi

∂ρ

∂ p j
− p j

∂ρ

∂ pi

)
. (124)

The flux of entropy � vanishes identically and the time
variation of entropy dS/dt equals the rate of entropy �. Using
Eq. (113), we find

dS

dt
= k

2

∑
i< j

λi j

∫
1

ρ

(
p j

∂ρ

∂ pi
− pi

∂ρ

∂ p j

)2

dx, (125)

and we may conclude that dS/dt � 0.

B. Weakly interacting particles

As an example of a system that evolves with strictly con-
stant energy, we consider a system of weakly interacting
particles in which case the energy function can be taken as
being just the kinetic energy,

H =
∑

i

p2
i

2m
. (126)
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The evolution equation is

∂ρ

∂t
= {H, ρ} + 1

2

∑
i j

∂

∂ pi
�i j

∂ρ

∂ p j
, (127)

where the covariances depend on pi according to Eqs. (121)
and (122).

As the energy function is strictly constant in time, the
equilibrium probability density is ρe(p) is proportional to
δ(H(p) − E0), as we have already seen. To solve Eq. (127),
we assume a probability distribution of the following form
ρ(p) = g(p)δ[H(p) − E0], which we expect to be valid near
equilibrium, where

g = 1

ζ
exp

{
−1

2

∑
i �= j

bi j pi p j

}
, (128)

and the quantities bi j are time dependent. Replacing this form
in the evolution equation we find the following equation for
bi j , for i �= j,

dbi j

dt
= −αi jbi j, (129)

where

αi j = λi j + 1

2

∑
k( �=i)

λik + 1

2

∑
k( �= j)

λ jk . (130)

The solution for bi j is

bi j = ci je
−αi j t , (131)

and we see that for long times the probability distribution
decays exponentially with time to the equilibrium distribution.

Let us determined the variation of entropy dS/dt , which for
the present case equals the rate of entropy production. Using
Eq. (113), we find

dS

dt
= k

2

∑
i �= j

b2
i j

{
λi j

[〈
p4

j

〉 − 〈
p2

i

〉〈
p2

j

〉] +
∑
k( �=i)

λik
〈
p2

k

〉〈
p2

j

〉}
,

(132)

where the averages are determined by using the equilibrium
probability distribution. We see that dS/dt is positive and
decays exponentially to zero

I the probability density is only a function of the momenta,
we see that the Poisson brackets in Eq. (127) vanishes but that
is not the case of last term on the right-hand side of Eq. (127).
The vanishing of the Poisson brackets means that the Liouville
equation gives ρ constant in time and thus do not relax to the
equilibrium solution, if it was out of equilibrium at the begin-
ning. This is in contrast with the solution of Eq. (127) which
predicts a relaxation to equilibrium and a nonzero production
of entropy, and dS/dt > 0 out of equilibrium.

IX. CONCLUSION

We have developed an approach to stochastic thermody-
namics of systems with a continuous space of states. The
results were obtained by a continuous time limit of a discrete
time formulation, which includes the evolution equation and
the rate of entropy production. We have emphasized the role
of the time reversal and of the dissipation probability current
in the properties related to irreversible processes. When this
part of the probability current vanishes, the rate of entropy
production vanishes, and the equilibrium sets in. The rate
of entropy production was shown to be a bilinear form in
the components of the dissipation probability current and is
positive definite.

We have also analyzed a type of noise that makes the
energy function to be strictly constant along a stochastic tra-
jectory and thus describing an isolated system. The increase in
entropy is entirely due to the generation of entropy inside the
system. This theoretical result is in agreement with thermo-
dynamics in the sense that the entropy of an isolated system,
in general, increases. This result contrasts with the prediction
given by the Liouville equation that the entropy is constant
in time, and there is not generation of entropy, although this
equation describes an isolated system as the energy is strictly
constant in time.
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