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New ordered phase in geometrically frustrated generalized XY model
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Critical properties of a geometrically frustrated generalized XY model with antiferromagnetic (AFM) and
third-order antinematic (AN3) couplings on a triangular lattice are studied by Monte Carlo simulation. It is found
that such a generalization leads to a phase diagram consisting of three different quasi-long-range ordered (QLRO)
phases. Compared to the model with the second-order antinematic (AN2) coupling, besides the AFM and AN3
phases which appear in the limits of relatively strong AFM and AN3 interactions, respectively, it includes an
additional complex canted antiferromagnetic (CAFM) phase. It emerges at lower temperatures, wedged between
the AFM and AN3 phases as a result of the competition between the AFM and the AN3 couplings, which is
absent in the model with the AN2 coupling. The AFM-CAFM and AN3-CAFM phase transitions are concluded
to belong to the weak Ising and weak three-state Potts universality classes, respectively. Additionally, all three
QLRO phases also feature true LRO of the standard and generalized chiralities, which both vanish simultaneously
at second-order phase transitions with non-Ising critical exponents and the critical temperatures slightly higher
than the magnetic and nematic order-disorder transition temperatures.

DOI: 10.1103/PhysRevE.102.032113

I. INTRODUCTION

Despite the rigorously proven absence of any true long-
range ordering [1], the standard two-dimensional XY model
is, nevertheless, known to exhibit the Berezinskii-Kosterlitz-
Thouless (BKT) phase transition [2,3]. This infinite-order
phase transition is driven by the unbinding of topological
defects in the form of vortices. At low temperatures, the in-
teger valued vortices are all joined in vortex-antivortex pairs,
resulting in an algebraically decaying spin-spin correlation
function and the so-called quasi-long-range order (QLRO).
At the BKT critical temperature, these pairs unbind, the cor-
relation function decay becomes exponential, and the system
becomes completely disordered.

The model with antiferromagnetic (AFM) interactions on a
nonbipartite, such as triangular, lattice becomes geometrically
frustrated. It has been intensively studied in relation with the
possibility of separate phase transitions to the vector chiral
LRO and the magnetic QLRO phases (spin-chirality decou-
pling) and the corresponding universality classes [4–9].

The standard XY model can be generalized by the inclusion
of higher-order harmonics, leading to the Hamiltonian,

H = −J1

∑
〈i, j〉

cos(φi − φ j ) − Jq

∑
〈i, j〉

cos[q(φi − φ j )], (1)

where φi ∈ [0, 2π ] represents the ith site spin angle on the XY
plane, J1 and Jq are exchange interaction parameters, and 〈i, j〉
denotes the sum over nearest-neighbor spins. The first term J1

is a usual magnetic, i.e., ferromagnetic (FM) (J1 > 0) or AFM
(J1 < 0) coupling, whereas the second term Jq represents a

*milan.zukovic@upjs.sk

generalized nematic (Nq) (Jq > 0) or antinematic Nq (ANq)
(Jq < 0) interaction.

Model (1) with q = 2 has been studied for the nonfrus-
trated FM-N2 interactions (both J1 and J2 positive) [10–16]
and more recently for the frustrated AFM-AN2 interactions
(both J1 and J2 negative) [17]. In both cases, this gener-
alization led, for sufficiently large ratio J2/J1, to a new
phase transition between the magnetically and the nemati-
cally ordered phases belonging to the Ising universality class
and in the frustrated case additionally to a separate chi-
ral phase transition above the BKT transition line [17]. On
the other hand, in the model on a bipartite square lattice
with a frustration parameter, it has been found that for the
magnetic and nematic couplings of comparable strengths,
the chirality becomes disordered before the BKT transition
line [18].

Even more interesting is the case when J1 and J2 compete.
The ground-state phase diagrams of Heisenberg and XY mod-
els with different types of bilinear and biquadratic exchange
interactions with square and rhombic symmetries produced a
variety of different phases [19]. Theoretical investigations of
the model on a square lattice with the geometrically nonfrus-
trated but mutually competing FM-AN2 interactions revealed
the existence of a new phase at very low temperatures [20,21].
Geometrically frustrated models with the magnetic and ne-
matic couplings having opposite signs on a triangular lattice
have also found their interdisciplinary applications for mod-
eling of DNA packing [22] and structural phases of cyanide
polymers [23].

Furthermore, a recent series of papers [24–26] has shown
that increasing the order of the couplings to q > 2 on a square
lattice with FM-Nq interactions can lead to drastic changes in
the phase diagram topology, featuring new phases and phase
transitions belonging to a variety of universality classes. This
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FIG. 1. Temperature dependencies of the specific heat c (upper row), magnetic and generalized nematic order parameters m1 and m3

(middle row), and standard and generalized chiral order parameters κ1 and κ3 (lower row) for three representative values of � = 0.2 (first
column), � = 0.555 (second column), and � = 0.8 (third column), and different sizes L from 36 to 384.

pointed to a rather surprising lack of universality in systems
showing the same φ → φ + 2π symmetry.

Motivated by the above theoretical considerations and by
the recent investigations of the ground-state properties of such
a model with geometrical frustration [23], which suggested
an interesting physical behavior with potential interdisci-
plinary applications, in the present paper, we focus on the
critical behavior of the geometrically frustrated model on a
triangular lattice with the antiferromagnetic and generalized
third-order antinematic interactions. In such a model, besides
the phenomenon of geometrical frustration the two interac-
tions compete, which leads to a novel critical behavior.

II. MODEL AND METHODS

We consider model (1) for q = 3 on the triangular lattice
and the interaction parameters J1 < 0 and J3 < 0 in the form
J1 = −�, J3 = � − 1 with � ∈ [0, 1] to cover the interac-
tions between the pure AN3 (� = 0) and the pure AFM
(� = 1) limits.

Monte Carlo (MC) simulations, based on the standard
Metropolis algorithm, implemented on graphical processing
units, were employed to simulate the studied system. We
considered systems of linear sizes starting from L = 36 up
to 384 with periodic boundary conditions. Occasional checks
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were performed on larger systems with L = 768. The sim-
ulations were carried out in two different modes. The first
mode was used to probe the whole relevant temperature range
from T = 0.01, which approximates ground-state conditions,
up to T = 0.52, corresponding to the paramagnetic phase. At
each temperature step 6 × 105–2.5 × 106 MC sweeps (more
sweeps for large lattice sizes) were used with typically about
20% discarded for equilibration. The second mode was used
to determine the critical behavior with up to 1.6 × 107 MC
sweeps per temperature step and configurational averaging
of up to 100 independent runs. The rather large number of
MC sweeps was necessary due to long autocorrelation times,
particularly, at low and transition temperatures.

The following quantities were calculated: the internal en-
ergy per spin:

e = 〈H〉
L2

, (2)

the specific heat per spin,

c = 〈H2〉 − 〈H〉2

T 2L2
, (3)

the magnetic (m1) and generalized nematic (m3) order param-
eters,

mk = 〈Mk〉
L2

= 1

L2

〈√√√√3
3∑

α=1

M2
kα

〉
, k = 1, 3, α = 1–3,

(4)

where Mkα is the αth sublattice order parameter vector given
by

Mkα =
(∑

i∈α

cos(kφαi ),
∑
i∈α

sin(kφαi )

)
, (5)

and finally, the standard (κ1) and generalized (κ3) staggered
chiralities,

κk = 〈Kk〉
L2

= 1

2L2

˝∣∣∣∣∣∣
∑
p+∈�

κkp+ −
∑
p−∈∇

κkp−

∣∣∣∣∣∣
˛
, k = 1, 3,

(6)

where κkp+ and κkp− are the local generalized chiralities for
each elementary plaquette of upward and downward triangles,
respectively, defined by

κkp = 2{sin[k(φ2 − φ1)] + sin[k(φ3 − φ2)]

+ sin[k(φ1 − φ3)]}/3
√

3. (7)

The susceptibilities of the order parameters can be defined in
the following way:

χo = 1

T L2
(〈O2〉 − 〈O〉2), O = M1, M3, K1, K3. (8)

It is also useful to calculate the following quantities:

Dlk = ∂

∂β
ln

〈
Ol

k

〉 =
〈
Ol

kH
〉

〈
Ol

k

〉 − 〈H〉,

O = Mk, Kk, l = 1, 2, k = 1, 3. (9)
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FIG. 2. Phase diagram on the �-T parameter plane with the
generalized AN3, CAFM, AFM, C, and paramagnetic (PM) phases.
The empty circles represent temperatures corresponding to the max-
ima of the specific heat for L = 96, the filled circles result from
the data collapse of magnetic or nematic order parameters and sus-
ceptibilities, and the filled squares are obtained from the finite-size
scaling (FSS) analysis of the correlation function critical exponent.
The cyan diamonds correspond to the chiral transition temperatures
obtained from the data collapse of the chiral order parameters and
susceptibilities. The down-triangle symbols at the edges represent
the limits of the CAFM phase in the ground state (from Ref. [23])
and up-triangles represent the known value of the BKT transition
temperature for the standard XY model.

At standard second-order phase transitions, the order param-
eters (4) and (6) and the extreme values of the quantities (8)
and (9) scale with the system size as

o(L) ∝ L−β/ν, (10)

χo,max(L) ∝ Lγ /ν, (11)

Dl,k,max(L) ∝ L1/ν . (12)

Within the QLRO phases, the respective order parameters
scale with the system size as

o(L) ∝ L−ηo(T ), (13)

where ηo(T ) is the temperature dependent critical exponent of
the correlation function for the order parameters o = m1 and
m3 [27].

III. RESULTS

A. Order parameters and phase diagram

The ground-state investigations of the present model [23]
led to the conclusion that by inclusion of even a relatively
small value of the J3 interaction, the chiral AFM state of the
pure J1 < 0 and J3 = 0 models, characterized by the phase an-
gles �φ = ±2π/3, qualitatively changes. In particular, within
0 < � � 0.997, it shows a peculiar canted AFM (CAFM)
phase in which pairs of neighboring spins on each triangular
plaquette form angles with �-dependent values in such a way
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FIG. 3. Temperature dependencies of the magnetic (upper row) and generalized nematic (lower row) susceptibilities for three representative
values of � = 0.2 (first column), � = 0.555 (second column), and � = 0.8 (third column), and different sizes L.

that two neighbors are oriented almost parallel with respect
to each other and almost antiparallel with respect to the third
one. Thus, at finite temperatures, one would expect that, at
least, in the vicinity of the limiting values of �, there might
be two phase transitions: first from the paramagnetic to the
AN3 (AFM) phase for � � 0 (� � 0.997), followed by the
second one to CAFM at lower temperature.

Temperature dependencies of the measured quantities,
plotted in Fig. 1 for representative values of � and various
lattice sizes, indeed, indicate such a behavior. In particular, the
specific heat measurements show two peaks for 0.0 < � <

0.5 and 0.6 < � � 0.997 [Figs. 1(a) and 1(c)], indicating two
phase transitions. On the other hand, in the case of roughly
equal interactions (0.5 � � � 0.6), there is only a single
peak [Fig. 1(b)], suggesting the presence of only one phase
transition.

A better picture of the nature of the respective phases can
be obtained from the temperature variation of the magnetic
(m1) and generalized nematic (m3) order parameters, plotted
in the middle row of Fig. 1. They show that, for 0 < � < 0.5,
the magnetic order vanishes at temperatures lower than the
nematic one [Fig. 1(d)]. The gap between the two transition
temperatures shrinks with the increasing � and in the vicinity
of � = 0.555, it disappears completely [Fig. 1(e)]. Thus, at
� ≈ 0.555, the transition from the paramagnetic phase is to
neither AN3 nor AFM phases but straight to the CAFM phase.
Furthermore, the mutual competition of the AFM and AN3
couplings pushes the transition temperature to lower values,

for intermediate � corresponding to only 50-60% of the value
of the pure XY model (� = 1). For 0.6 < � � 0.997, the
order of the respective transitions is reversed, i.e., the nematic
phase vanishes at lower temperatures than the magnetic one
[Fig. 1(f)]. This means that for most values of �, there are
two distinct QLRO phases: the low-temperature CAFM phase
characterized by simultaneous magnetic and nematic ordering
and the intermediate-temperature one with purely generalized
AN3 or purely AFM ordering. It is worth mentioning that,
within the CAFM phase, owing to the geometrical frustration
induced by the triangular lattice geometry and the competition
between the AFM and AN3 interactions, on approach to zero
temperature, both order parameters m1 and m3 fail to reach
the saturation value, albeit the latter one is very close to it for
sufficiently small values of � (see also Ref. [23]).

It should be kept in mind that, besides the magnetic and ne-
matic orderings, in the present frustrated model there are also
chiral orderings in the system. The last row of Fig. 1 presents
temperature dependencies of the standard (κ1) and generalized
(κ3) staggered chiralities. With the increasing temperature,
there is an anomalous decrease in the former in the vicinity
of the AN3-CAFM phase transition for 0.0 < � < 0.5 and
the latter in the vicinity of the AFM-CAFM phase transition
for 0.6 < � � 0.997. Nevertheless, both remain nonzero up
to the temperatures close to the transition to the paramagnetic
state where they simultaneously vanish [28]. The question
whether the transition temperatures of the chiral (C) phase,
characterized by a finite values of the chiral order parameters,
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FIG. 4. Temperature dependencies of the generalized (staggered) chiral susceptibilities χκ1 (upper row) and χκ3 (lower row) for � = 0.2
(first column), � = 0.555 (second column), and � = 0.8 (third column), and different sizes L.

coincide with those at which the magnetic and nematic phases
vanish will be addressed below. The resulting phase diagram
is presented in Fig. 2.

B. Finite-size scaling analysis

1. Order-disorder transitions

Observing the order parameters presented above for dif-
ferent lattice sizes, one can note apparent size dependence in
the quantities m1 and m3 in the whole temperature interval.
On the other hand, the chiralities κ1 and κ3 only show no-
ticeable dependence in the vicinity of the phase transition and
within the paramagnetic phase. This points to different types
of ordering of the respective quantities; whereas the vanishing
of the former indicates QLRO the nonzero constant values
of the latter signal true LRO. Based on the behavior of the
previously studied models for q = 1 and q = 2, this scenario
can be expected, and it is also corroborated by the behavior
of the respective susceptibilities, presented in Figs. 3 and 4 on
a semilogarithmic scale. In the whole temperature intervals
below transition temperatures, the magnetic and generalized
nematic susceptibilities appear to diverge as a power law, con-
firming the QLRO nature of the orderings. On the other hand,
the chiral susceptibilities only diverge at the transition to the
paramagnetic phase. Note that, at the low-temperature AN3-
CAFM and AFM-CAFM transitions, there are only round
maxima in χκ1 [Fig. 4(a)] and χκ3 [Fig. 4(f)], respectively,

insensitive to lattice size and, thus, not related to any phase
transitions.

Both the qualitative and the quantitative characters of the
decay of the order parameters m1 and m3 can be elucidated
by performing their FSS analysis according to Eq. (13) in
the whole temperature interval. By fitting the dependence
of the order parameters on system size on a log-log scale,
we obtain the temperature dependence of ηo(T ) depicted in
Fig. 5. The values correspond to the negative of the slopes
of the linear fits. At low temperatures, the values of the crit-
ical exponent 0 < η < 1 for the magnetic and nematic order
parameters (upper row) confirm the algebraic nature of the
QLRO phases, whereas the jump to η = 1 signals the loss
of the QLRO and the onset of the exponential decay of the
correlation function, typical for the BKT phase transition. The
order-disorder transition is partially smeared out by finite-size
effects and, therefore, in order to determine the transition
temperature more precisely, it is useful to monitor the quality
of the fits. In particular, we evaluate the adjusted coefficient
of determination R2, which can signal deterioration of the
linear fit at the crossover between the two regimes if its value
noticeably drops below one as can be witnessed in the insets
of Fig. 5. The values of the critical exponent η at the tran-
sition temperatures, determined by such correlation analysis
(marked in Fig. 2 by filled squares), are presented in Table I.
It is worth noting that they all correspond, within statistical
errors, to the value of ηBKT = 1/4, expected at the BKT
transition [2,3].
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FIG. 5. The critical exponent η for the magnetic and generalized nematic (upper row) and chiral and generalized chiral (lower row) order
parameters for � = 0.2 (first column), � = 0.555 (second column), and � = 0.8 (third column). The insets in the upper panels show the
adjusted coefficient of determination R2 in the vicinity of order-disorder transitions.

As one would expect from the finite-size behavior of the
chiral order parameters (last row in Fig. 1), the value of
ηκk , k = 1, 3, is equal to zero for any temperature up to the
transition temperature to the paramagnetic state at which it
jumps to η = 1 (lower row of Fig. 5). The chiral transition
temperatures are depicted in Fig. 2 by the cyan diamond
symbols. Their values are very close to the BKT transition
temperatures but slightly higher. The difference is observed
for all values of � but the most clearly visible for � ≈ 0.555
as shown in the inset of Fig. 2.

We note that, compared to the BKT phase transitions with
only one critical exponent η, the determination of the chiral
critical exponents is a bit more involved as we have a set
of the critical exponents (exponent ratios) and the critical
temperature to determine. Particularly, the fitting of the expo-
nent ratio β/ν, which acquires relatively small values, did not
produce satisfactory results by fitting of Eq. (10). Therefore,
starting from the initially fitted values, we further performed
manual fine-tuning of the parameter set (mainly the exponent

β and the critical temperature) to achieve visually the best data
collapse. The values of the critical exponents corresponding
to the decay of the chiral order parameters, obtained from
the data collapse of κk and χκk , k = 1, 3 at different values
of � [29] are presented in Table II. For the frustrated XY
models on a triangular lattice with q = 1 (standard XY model)
[6] and the generalized model with q = 2 [17], the chiral
phase transition was concluded to be decoupled from the
magnetic one with the critical exponents consistent with the
three-state Potts model, νP = 5/6, γP = 13/9, and βP = 1/9,
albeit neither the possibility of the Ising universality class
was ruled out. The chiral critical exponents of the present
q = 3 model apparently deviate from both the Ising as well
as the three-state Potts universality classes. Interestingly, in
contrast to the q = 1 and q = 2 models, the present values of
the exponent ν are in good agreement with the Ising value
νI = 1. Also β is fairly close to βI = 1/8, but γ , in most
cases, underestimate γI = 7/4, expected for the Ising univer-
sality class. Nevertheless, the scaling relation 2β + γ = 2ν

TABLE I. Critical exponents η at the order-disorder transition line (filled squares in Fig. 2), and 1/ν at the AN3-CAFM and AFM-CAFM
transition lines (filled circles in Fig. 2).

� 0.1 0.2 0.3 0.4 0.5 0.555 0.6 0.7 0.8 0.9

η 0.270(21) 0.254(8) 0.249(8) 0.238(6) 0.239(15) 0.250(8) 0.252(17) 0.242(9) 0.244(17) 0.252(8)
1/ν 0.42(12) 0.433(10) 0.364(23) 0.409(27) 0.472(59) 0.474(3) 0.505(9)
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TABLE II. Critical exponents γ , ν, and β, at the chirality κ1 and
κ3 phase transitions.

κ1 transition κ3 transition

� γ ν β γ ν β

0.1 1.71 1.00 0.11
0.2 1.68 1.00 0.11
0.3 1.54 1.00 0.15 1.72 1.02 0.12
0.4 1.75 1.06 0.10 1.82 1.10 0.10
0.5 1.66 1.07 0.13 1.56 1.06 0.13
0.555 1.73 1.13 0.08 1.75 1.14 0.10
0.6 1.65 1.00 0.14 1.68 1.01 0.14
0.7 1.68 1.00 0.11 1.75 1.03 0.12
0.8 1.70 0.96 0.13 1.74 0.98 0.13
0.9 1.71 1.02 0.13 1.69 1.02 0.13

is fulfilled within the error bars for all values of �, except
in the vicinity of � = 0.555 where all the phase boundaries
meet. The excellent data collapse of the chiralities and chiral
susceptibilities with the non-Ising critical exponents, listed in
Table II, is demonstrated in Fig. 6 for some representative
values of �.

2. Magnetic-nematic transitions

Let us now focus on the character of the phase transitions
between the identified QLRO phases, i.e., the AN3-CAFM
and the AFM-CAFM transitions, which occur at lower
temperatures within 0 < � � 0.997. To study the critical
behavior in this region for each lattice size, we ran 100 in-
dependent MC simulations with up to 1.6 × 107 sweeps per
temperature step to obtain temperature dependencies of the
mean values of the quantities (8) and (9) by configurational
averaging. Those were, subsequently, used in the FSS analysis
to obtain the critical exponents ratios. The results for selected
values of � = 0.4 and 0.7, representing the two branches
of the phase boundaries, are presented in Fig. 7. One can
note that the error bars considerably increase with lattice size,
which can be attributed to the gradual increase of autocorrela-
tion times as one goes to still lower temperatures and larger
system sizes. We note that the results of FSS analysis for
� = 0.1 and 0.9 with the transition points located at very low
temperatures are not included due to problems related to very
large autocorrelation times reaching the order of 105 for the
largest L.

Nevertheless, we were able to determine the critical expo-
nent ratios with reasonably high precision (see the insets). The
values of γ /ν = 1.746 ± 0.010 for � = 0.4 (AN3-CAFM
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FIG. 6. Data collapse for chiral order parameters κ1 and κ3 (insets) and their susceptibilities χκ1 and χκ3 (main panels) for different values
of � and the corresponding critical exponents listed in Table II.
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FIG. 7. Determination of the critical exponent ratios γ /ν (a) and (b) and 1/ν (c) and (d), using the FSS method at � = 0.4 (a) and (c) and
� = 0.7 (b) and (d).

transition) and γ /ν = 1.762 ± 0.012 for � = 0.7 (AFM-
CAFM transition) are close to the Ising values, but, in the
former case, the three-state Potts universality cannot be ruled
out either. However, the corresponding values of 1/ν for both
transitions are, beyond any doubt, different from either uni-
versality class and their values change with � (see Table I).
Consequently, also the values of γ will not be compatible
with any universality class. On the other hand, the ratios
of γ /ν along both transition boundaries appear to be con-
stant and compatible within the error bars with both Ising
and three-state Potts values. This points to the possibility of
the weakly universal behavior [30] governed by either the
Ising or the three-state Potts critical exponents ratios. To
determine the proper weak universality class along the low-
temperature phase transition boundaries, we performed the
data collapse analysis of the respective order parameters and
the corresponding susceptibilities using both the Ising and the
three-state Potts values. We found that a noticeably better col-
lapse could be obtained using the three-state Potts values at the
AN3-CAFM boundary, i.e., for 0.2 � � < 0.5, whereas the
Ising values gave better results along the AFM-CAFM bound-

ary, i.e., for 0.6 < � � 0.8. The results for � = 0.4 and � =
0.8 are presented in Fig. 8. Within 0.5 � � � 0.6, the critical
behavior is affected by proximity of different phase bound-
aries. We were not able to achieve a reasonably good collapse
of neither the order parameters nor the susceptibilities. This
may signify a direct BKT-type transition from the paramag-
netic to the CAFM phase as already suggested by the behavior
of different thermodynamic quantities presented in Fig. 1. The
corresponding transition temperatures estimated both roughly
from the specific heat maxima (empty circles) as well as more
precisely from the data collapse analysis (filled circles) are
shown in Fig. 2. It is interesting to note that the former appre-
ciably overestimate the true values along the AN3-CAFM and
AFM-CAFM branches (especially at higher temperatures),
whereas the values of the BKT transition temperatures esti-
mated from the specific heat peaks coincide rather well with
those from the FSS analysis. This is in contrast with the
nonfrustrated generalized XY model on a square lattice [16]
where the opposite phenomenon has been observed. Con-
sequently, the more precise location of the low-temperature
branches of the phase diagram from the data collapse analysis
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FIG. 8. Data collapse of (a) the magnetic susceptibility χm1 and order parameter m1 (inset) for � = 0.4 using the three-state Potts critical
exponents ratios and (b) the nematic susceptibility χm3 and order parameter m3 (inset) for � = 0.8 using the Ising critical exponent ratios.

provides evidence that, in fact, they do not connect to the
high-temperature BKT branch as the specific heat maxima
would suggest but rather only touch it at � ≈ 0.555.

IV. SUMMARY AND DISCUSSION

We studied critical behavior of the generalized XY model
on a triangular lattice with q = 3, which includes both geo-
metrical frustration as well as competition between the AFM
and generalized AN3 interactions. It has been previously
shown that inclusion of even very small AN3 interaction
changes the ground state from the 120◦ AFM structure to
a peculiar canted (CAFM) state [23]. In the present paper,
we demonstrated that, at finite temperatures, the model fea-
tures three phases: two intermediate-temperature phases with
purely AFM and purely AN3 types of ordering and one
low-temperature CAFM phase, wedged between the AFM
and the AN3 phases with mixed AFM and an AN3 type of
QLRO. Thus, for almost any interaction strength ratio, there
are two phase transitions: the high-temperature order-disorder
transition to either AFM or AN3 phase, followed by another
transition at lower temperatures to the CAFM phase. Two
exceptions include the limit of very small AN3 interaction
where only the AFM phase is present, and a very narrow
region of comparable AFM and AN3 interactions where only
the CAFM phase seems to be present with a direct transition to
the paramagnetic state. Although the high-temperature order-
disorder transitions are of the BKT type, the low-temperature
transitions between the AFM-CAFM and the AN3-CAFM
phases are concluded to belong to the two-dimensional weak
Ising and weak three-state Potts universality classes, respec-
tively. Besides the magnetic and nematic QLRO, all the
identified phases also feature true LRO of the standard and
generalized chiralities. They both vanish simultaneously at
the second-order chiral phase transitions with the critical ex-
ponents deviating from the Ising universality and the critical
temperatures slightly higher than the magnetic and nematic
BKT transition temperatures.

It is interesting to compare the present results with those
obtained for the geometrically frustrated generalized model
on a triangular lattice with q = 2 [17] as well as the non-
frustrated model for q = 3 on a square lattice with FM and

generalized N3 interactions [24–26]. Although both these
models display similar phase diagrams with separate magnetic
and nematic phases, the topology of the present phase diagram
is different. Namely, it features an additional new (CAFM)
phase, which results from the competition between the two
couplings absent in the above models. It is characterized by
the coexisting AFM and AN3 QLRO as well as the chiral
LRO. On the other hand, the intermediate-temperature AFM
(AN3) phase still coexists with the chiral LRO but lacks
AN3 (AFM) QLRO. In the nonfrustrated q = 3 model on a
square lattice, the nematic-magnetic N3-FM phase transition
was found to belong to the three-state Potts universality class.
In the present frustrated model, the critical exponents at the
corresponding AN3-CAFM transition do not comply with the
three-state Potts universality class but their ratios β/ν and γ /ν

do, i.e., the weak universality is valid. On the other hand, the
new AFM-CAFM phase boundary appears to belong to the
weak Ising universality class. The Ising-like character of this
transition can be related to selecting one of the angles ±3π/2
from two associated canted states when crossing from CAFM
to AFM phases (see Ref. [23]). Finally, similar to the frus-
trated q = 2 model on a triangular lattice, also, for the q = 3
case, we found evidence of decoupling of magnetic/nematic
and chiral phase transitions, albeit the critical exponents of the
latter were different from the q = 2 case.

The above findings raise further questions regarding the
relevance of the higher-order couplings for the critical be-
havior of the continuous XY models. For the nonfrustrated
generalized XY model on a square lattice, it was found that,
for q � 4, the topology of the phase diagram changes and
new phases emerge [24,26]. In the present frustrated model, a
new phase appeared already for q = 3. It would be interesting
to extend the present investigation to include higher-order
terms (q > 3) and study their effects on the phase diagram
topology as well as the character of the resulting phase
transitions.
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