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Field-induced freezing in the unfrustrated Ising antiferromagnet
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We study instantaneous quenches from infinite temperature to well below Tc in the two-dimensional square
lattice Ising antiferromagnet in the presence of a longitudinal external magnetic field. Under single-spin-flip
Metropolis algorithm Monte Carlo dynamics, this protocol produces a pair of magnetization plateaus that prevent
the system from reaching the equilibrium ground state except for some special values of the field. We explain
the plateaus in terms of local spin configurations that are stable under the dynamics.
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I. INTRODUCTION

The Ising model is the basis for much of our modern under-
standing of both magnetism and phase transitions and serves
as the go-to proving ground for new theoretical and numerical
methods. After a century of intensive study, this deceptively
simple model has yet to reveal all its secrets. One area of on-
going research is the Ising model’s dynamics, which provide a
rich variety of behaviors that can be generalized to understand
more complicated systems. We are interested in instantaneous
quenches to very low temperatures (well below Tc). In 2001,
Spirin et al. showed that in the square-lattice Ising ferro-
magnet, Monte Carlo dynamics cannot always reach ground
state after a quench to zero temperature [1,2]. Instead, the
system can become permanently stuck in states with stable
stripe defects. Interest in this phenomenon increased when
the same group proved [3] that the probability of becoming
stuck is related to critical percolation theory. This freezing
and variations on it have been the subject of a steady stream of
research [4–9] along with Ising model dynamics more broadly
[10–15].

In this paper, we take a different approach: rather than
introducing disorder or new interactions, we consider the
Ising antiferromagnet (AFM) in a uniform external field on
a two-dimensional (2D) square lattice. Using single-spin-flip
Metropolis Monte Carlo dynamics, we perform instantaneous
quenches from T = ∞ → Tf (where Tf � Tc) and find that
the field supports a pair of metastable magnetization plateaus
whose lifetime diverges at low temperature. We describe the
plateaus in terms of stable local spin configurations. Between
the plateaus is a “valley of ergodicity” where the system
eventually converges to the correct ground state.

Monte Carlo (MC) works by drawing sample states from
the Boltzmann distribution e−βH . The starting point is typi-
cally some randomized (far from equilibrium) state and then
updates are performed for some time without collecting data
until the system has reached equilibrium. In practice, this
process requires Monte Carlo updates that can move domain
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walls. In our case, the field breaks these updates, producing lo-
cal energy minima where no single spin can be flipped without
increasing the energy. This is true even for very small fields
which do not change the equilibrium ground state. Unlike the
ferromagnet [1–9], our system reaches a frozen state quickly,
eliminating the need for long simulations. The AFM’s frozen
states are extremely numerous, such that the probability of
reaching the true ground state vanishes rapidly (in contrast to
the ferromagnet, where the ground state is reached most of the
time [1]). This system provides a simple case for understand-
ing ergodicity breakdown in Monte Carlo more generally and
may have useful parallels to other sticky problems such as the
random-field Ising model [16] and spin glasses [17].

II. THE ISING ANTIFERROMAGNET

The Ising antiferromagnet in an external field h is defined

H = J
∑
〈i, j〉

σiσ j − h
∑

i

σi, (1)

where σi = ±1, J = 1, and 〈i, j〉 represents a sum over near-
est neighbors on an L × L two-dimensional (2D) square lattice
with periodic boundary conditions. Hereafter, we will set
J = 1 and use dimensionless units. The equilibrium zero-
temperature behavior1 is quite simple: for h = 0, there are
two degenerate ground states composed of alternating up and
down spins. The energy of each of these states is

Eg = −2JL2. (2)

We define m to be the average magnetization such that
−1 � m � 1,

m ≡ 1

L2

∑
i

σi. (3)

The field shifts the energy of a state with magnetization m by
−hmL2. For |h| > hs = 4, the field is strong enough to drive

1We refer to equilibrium behavior to distinguish from out-of-
equilibrium behavior after a quench or metastable states like the
magnetization plateaus.

2470-0045/2020/102(3)/032112(11) 032112-1 ©2020 American Physical Society

https://orcid.org/0000-0001-5570-8282
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.032112&domain=pdf&date_stamp=2020-09-08
https://doi.org/10.1103/PhysRevE.102.032112


ADAM IAIZZI PHYSICAL REVIEW E 102, 032112 (2020)

a first-order phase transition to the fully polarized state. The
magnetization is therefore [18]

m(T = 0, h) =
⎧⎨
⎩

−1 h < −4,

0 −4 < h < 4,

1 h > 4.

(4)

At finite temperature, there are thermal fluctuations that
reduce the ordering and round off the step-function-like be-
havior of m(h). At sufficiently high temperatures (T > Tc =
2.27) the magnetic order is completely destroyed, even at
h = 0.

The dynamics of the ferromagnetic case [1–5,7,9,15,19,20]
and variants [6,8] have been well studied. Studies of quenches
in the ferromagnet have established the existence of a lim-
ited set of stable striped states with straight domain walls
[1–4,19,20]. In the absence of a field, the antiferromagnet can
be mapped onto the ferromagnet by a simple transformation
of flipping all spins on one sublattice. Adding a uniform
external field breaks this transformation. There have been
relatively few studies of the AFM Ising model in a uniform
field: a handful of mostly theoretical papers [21–25] and some
Monte Carlo studies [26,27], none of which have reported the
plateaus that we will describe here.

III. MONTE CARLO DYNAMICS

Markov chain Monte Carlo (MCMC or simply Monte
Carlo) is one of the most common numerical techniques in
statistical physics (and beyond). At the core of MCMC is a
Markov process: a procedure for stochastically generating a
sequence of states via a transition probability function P(x →
x′). In order to be a valid Markov process, P(x → x′) must (i)
produce a stationary distribution π (x) such that the probabil-
ity of occupying each state x remains constant over time, (ii)
be aperiodic (nonrepeating), and (iii) be ergodic (every state
x′ can be reached from every other state x in a finite number of
steps [28]). Meeting all three of these conditions is required to
ensure that the MC program correctly samples the Boltzmann
(or other) distribution and that expectation values (e.g., 〈m〉)
and their error bars accurately reflect the properties of the
distribution without systematic error. Once a MC program has
achieved this (typically after some transient) it is said to have
reached equilibrium and has no memory of its initial state.

When designing a Monte Carlo program, condition (i) can
be met by enforcing the detailed balance condition,

π (x)P(x → x′) = π (x′)P(x′ → x), (5)

and condition (ii) is satisfied by using random numbers. Con-
dition (iii) is more difficult to guarantee because ergodicity is
not a trivial property of the transition probabilities (dynam-
ics), but depends also on the parameters and—for practical
purposes—on the amount of computer time available. In the
context of Monte Carlo methods, ergodicity refers to the
practical issue of whether all possible configurations are at-
tainable in a reasonable amount of time.2 For example, single
spin-flip updates in the ferromagnet can—in principle—reach

2This is the common usage of ergodicity as it applies to Monte
Carlo methods [28, p. 159] [29, p. 27] [30].

all possible configurations, but below Tc the time required
to flip between the competing ground states rapidly diverges
with size, and finite-time simulations often remain stuck in
either the m > 0 or m < 0 portion of the state space (common
for symmetry-breaking transitions). More insidiously, simula-
tions can become stuck in some nonobvious subspace where
they exhibit apparently well-behaved dynamics and error bars,
but nonetheless produce incorrect results.

The difficulty is that Monte Carlo is used precisely when it
is impossible to brute-force test all possible combinations x, x′
to ensure that they are connected by a finite number of steps.3

In most cases, a well-designed Monte Carlo program running
for a very long time will only visit a vanishingly small fraction
of the full state space. Guaranteeing ergodicity is therefore
impossible in most cases.4 Instead, one typically tests for
ergodicity empirically by checking that the simulation appears
to produce equilibrium behavior and that the autocorrelation
time is short, but this does not guarantee that it is sampling
the full space.

In this work, we use the standard Metropolis algorithm
[32] with randomly selected single spin-flip updates [29]. For
each update, we select a spin σi at random and flip it with
probability

P = min
[
1, e−(

∑
j σ j−h)�σi/T

]
, (6)

where σ j are its nearest neighbors. Updates that decrease the
energy or leave it unchanged are always accepted and up-
dates that increase the energy are accepted with P = e−�E/T

(similar, but not identical, to Glauber dynamics [33]). Each
Monte Carlo sweep (MCS) consists of L2 of these attempted
spin flips, and we will use the abbreviation kMCS to indicate
units of 103 MCS. We focus on instantaneous quenches from
T = ∞ → TF by starting with a randomized initial state and
performing MC updates at TF . To facilitate replication of our
work, we have made our complete Fortran program available
online [34].

Since the Ising model has no intrinsic physical dynam-
ics, any Monte Carlo update scheme is necessarily artificial.
Monte Carlo updates need not bear any resemblance to phys-
ical processes, since the goal is just to sample the state space
according to the probability distribution. Therefore, simula-
tion time does not necessarily correspond to physical time in
any meaningful way.5 This is especially true for more compli-
cated update schemes like cluster algorithms or loop updates
in quantum Monte Carlo. Nonetheless, single-spin-flip up-
dates do resemble plausible physical dynamics and are often

3For the Ising model, the number of states scales like 2L2
, so even

for L = 100 there are over over 103010 states. For more complicated
algorithms, such as quantum Monte Carlo, the state space can easily
reach 10109

[31, p. 112].
4A trivial way to guarantee ergodicity would be to draw completely

random spin configurations and do a weighted average using the
Boltzmann weights. In this case, P(x → x′) = 2(−L2 ) is constant.
This procedure, however, would be extremely inefficient, since most
random configurations have high energy and will make only expo-
nentially small contributions to the average.

5Simulation time is a measure of the number of Monte Carlo sweeps
(MCS) that have been performed.
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FIG. 1. Magnetization for instantaneous quenches from T = ∞
followed by 40 kMCS at β = 1/TF for L = 512. Each point is the
average of 200 independent quenches; error bars are smaller than
the markers. Inset: Enlarged view around hs to show the vanishing
T -dependence.

used in analogy to physical dynamics [1–7,9,15,19,20,33,35].
Similar physical dynamics could also be obtained by adding
a small transverse field h(σ+ + σ−) (although this would be
the quantum Ising model, a wholly different problem). Fur-
thermore, MCMC is a common technique and it is interesting
to understand Monte Carlo dynamics in their own right. The
breakdown of ergodicity we will describe here represents a
simple way to understand nonergodic behavior that occurs in
more complicated Monte Carlo methods [31,36–38] where the
underlying mechanisms are more difficult to understand.

IV. OBSERVATIONS

In Fig. 1 we plot the magnetization m resulting from in-
stantaneous quenches to finite inverse temperature β = 1/T
at external field h followed by 40 kMCS.6 At the highest
temperature here (T = 1 < Tc) the magnetization behaves as
expected for equilibrium, with the finite temperature rounding
off the sharp edges in the zero-temperature curve [Eq. 4].
At lower temperatures the behavior is quite unusual. The
magnetization develops two plateaus that become progres-
sively sharper as T → 0. Unlike conventional magnetization
plateaus, these do not pass through the equilibrium zero-
temperature magnetization curve, but are instead substantially
higher. For 0 < h < 2 there is a plateau at m1 ≈ 0.0569 and
for 2 < h < 4 there is a plateau at m2 ≈ 0.283. These frozen
states do not break any obvious symmetries of the system
(see Figs. 4 and 5); the number of these states grows rapidly
(probably exponentially) in L.

The first signs of the plateaus appear around β = 4 and
they are well-defined by β = 16. Stranger still, the correct

6We will use the SI prefix k for brevity: 40 kMCS = 40 × 103

Monte Carlo sweeps.
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FIG. 2. Time dependence of magnetization for instantaneous
quenches from T = ∞ to β = 1/TF followed by 5 kMCS (solid
lines), 10, 20, 40, and 80 kMCS (same-color broken lines, descend-
ing) with L = 512. Each point is the average of 200 independent
quenches; error bars are smaller than the markers.

ground state is restored in “valleys of ergodicity” between
the plateaus at h = 0, 2. These valleys become narrower as
T → 0. Near and slightly below the hs, ergodicity is at least
partially restored; this third valley of ergodicity becomes nar-
rower and closer to hs as T → 0. At hs, the T -dependence
vanishes rapidly (as seen in the inset), which will be discussed
further in Sec. VI F.

The magnetization plateaus in Fig. 1 are not merely the
result of slow equilibration but completely frozen dynamics.
We explore the time dependence further in Fig. 2. For each β,
we show the results of a quench followed by 5, 10, 20, 40, and
80 kMCS. The central, flat regions of the plateaus constitute
the strongly frozen regime, where a frozen state is reached
quickly and there is no further progress.7 As we lower the
temperature, the plateaus grow from their centers (h = 1, 3)
and become wider as T → 0. The temperature controls the
width of the flat strongly frozen region of the plateaus, but
once in a frozen state, the temperature itself is effectively
irrelevant.

Outside of the strongly frozen regime are the valleys of
ergodicity, centered around the ergodic points (h = 0, 2). At
the ergodic points, the relaxation to the correct ground state is
fast, but as we move away from these points the relaxation
time grows rapidly, becoming effectively infinite in in the
strongly frozen regime. This slow relaxation time explains the
slopes of the valleys of ergodicity and appears as a clear time
dependence in those regions in Fig. 2 (whereas the ergodic
points and strongly frozen regimes are fully converged by
5 kMCS). The nature of this slow relaxation and the exact
boundary between this regime and the strongly frozen regime
are interesting, but we do not address them further in the
present study.

7Often very few (<10) MCS are required to reach a strongly frozen
state.

032112-3



ADAM IAIZZI PHYSICAL REVIEW E 102, 032112 (2020)

TABLE I. Populations (%) of local spin configurations [Fig. 3, Eq. 9] for 64 × 64 systems after quenches to T = 0 with h = 0, 1, 2, 3, 4
(averaged over many independent final states). For h 
= 4, simulations were run until Paccept = 0 for all sites [Eq. 11]; for h = 4, 50 kMCS were
performed before taking a measurement. The rightmost column is sampled from (randomized) T = ∞ states. 〈m〉 is the (directly measured)
average magnetization and E − E0 is the excess energy calculated by multiplying the populations of each Cy

x by the excess energy of that local
configuration compared to the ground state. All quantities have statistical error of less than one unit in the last digit.

Config. h = 0 0 < h < 2 h = 2 2 < h < 4 h = 4 T = ∞
# Samp. 2000 2000 8000 2000 2000 7000

C−4
−1 0 0 0 0 0 3.12

C−4
+1 49.0 28.7 49.8 11.1 1.3 3.13

C−2
−1 0 0 0 0 0 12.50

C−2
+1 1.0 12.7 0 11.3 6.9 12.50

C0
−1 0 0 0 0 0 18.74

C0
+1 0 11.5 0.2 23.7 18.3 18.74

C+2
−1 1.0 12.9 0 0 0 12.51

C+2
+1 0 0 0 18.1 28.3 12.51

C+4
−1 49.0 34.3 49.9 35.9 22.7 3.12

C+4
+1 0 0 0 0 22.6 3.13

〈m〉 0 0.0569 0.0012 0.283 0.5467 0.000

E − E0 0.02 0.43 0.002 0.28 0.0 –

The valleys of ergodicity become progressively narrower
as T → 0, and for T = 0 we expect that the correct ground
state will only be reached at exactly h = 0, 2. Extrapolating
from Fig. 1, we can predict the form of the magnetization for
quenches to exactly zero temperature:

m(T = 0, h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 h = 0,

0.0569 0 < h < 2,

0 h = 2,

0.283 2 < h < 4,

0.5467 h = hs = 4,

1 h > hs,

(7)

which is dramatically different from the equilibrium behavior
[Eq. 4]. (The actual values used here are from Table I.)

Hereafter we will focus on instantaneous quenches from
T = ∞ to the strongly frozen regime. In this regime, finite-
size effects vanish quickly. Heuristically, this is the result
of the coarsening process [39,40] halting while the correla-
tion length is still short. Finite-size effects are discussed in
Appendix A. We will also restrict our analysis to systems
with periodic boundary conditions (PBC). The case of open
boundary conditions (OBC), which is largely the same except
for the presence of prominent finite-size effects, is described
in Appendix B.

V. LOCAL CONFIGURATIONS

The magnetization plateaus do not reflect any ordering
or symmetry-breaking transition. Instead, they are an out-of-
equilibrium phenomenon that can be understood in terms of
local spin configurations that are stable under our dynamics.
We will set J = 1 and define x, y as follows:

x = σi = ±1, (8a)

y =
∑

j

σ j = 0,±2,±4, (8b)

where σi is the spin that we will attempt to flip and {σ j} are its
nearest neighbors (which should be considered fixed). We will
describe these local spin states using the following notation:

Cy
x . (9)

In Fig. 3 we show 10 local spin configurations that describe all
possible combinations of x = ±1 and y = 0,±2,±4 (other
configurations are reachable by rotations and permutations of
the neighbors).

In the language of these local states, the Metropolis al-
gorithm chooses a random spin, which is at the center of a
configuration Cy

x and attempts to flip it to Cy
−x. This results in

a change of energy,

�E = (y − h)�x = −2(y − h)x. (10)

From Eq. 6, the probability of accepting this spin flip is

P = min[1, e−�E/T ] = min
[
1, e−(y−h)�x/T

]
. (11)

At zero temperature the updates are even simpler: changes are
accepted if and only if E (Cy

−x ) � E (Cy
x ).

When y = h, Cy
x and Cy

−x are degenerate, so �E = 0.
�E = 0 updates are special because they are reversible (they
can be undone), whereas reversing a �E < 0 update requires
a �E > 0 update, which is impossible at T = 0.8 Reversible
updates are only present when h is tuned to one of the five pos-
sible values of y = 0,±2,±4. These values of h correspond
to the valleys of ergodicity observed in Fig. 1. For all y 
= h,
each pair Cy

+1 and Cy
−1 has one stable and one unstable state.

At finite temperature, all updates are (strictly) reversible,
but updates that increase the energy are exponentially sup-
pressed. At sufficiently low temperatures the suppression

8These reversible (�E = 0) updates are also called “active spins”
by Ref. [3], and “flippable states” by Ref. [4].
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FIG. 3. Schematic of all possible local spin configurations
Cy

x [Eq. 9] with center spin x = σi = ±1 and nearest neighbors
y = ∑

σ j = 0, ±2 ± 4 [Eq. 8]. In the updates, the neighbors are
treated as fixed and the center spin is flipped Cy

x → Cy
−x . For each

pair (row) Cy
±1, the configuration with lower energy is stable and the

other is unstable (at T = 0). If they are degenerate, then the update is
always accepted. For h = 0, the transitions are described by the white
arrows; the stable state is for x to be antiparallel to y, and when y = 0,
C0

±1 are degenerate. For h > 0, C0
−1 becomes unstable and always

flips to C0
+1 (as indicated by the green arrow). As h increases, it is able

to overcome the effects of the neighbors. For h > 2, the direction of
the C+2

±1 transition changes (as described by the blue arrow). Above
h = 4, the spin always flips to (+) and only Cy

+1 is stable (red arrow).

becomes so strong that updates are irreversible on any
practical timescale. For example, when h = 1, β = 16, the
probability of flipping a stable C0

+1 to higher-energy C0
−1 is

e−2×16 ≈ 10−14 [see Eq. 11]. Therefore, approximately 1011

MCS would have to be performed before one of these updates
it likely to be accepted (for a 100 × 100 system), which is
over one million times the length of the longest simulations
considered here. In plateau states, every site occupies one of
these stable local configuration from which updates are expo-
nentially suppressed. In the strongly frozen regime (the central
flat part of the plateau), the numerical results demonstrate that
this probability is low enough to stabilize the plateaus for
extremely long times. Even very long simulations were never
observed to escape from a plateau state in the strongly frozen
regime.

VI. EXPLANATION OF THE PLATEAUS

We can describe spin states in terms of local spin con-
figurations (Fig. 3). Configurations C±4

∓1 correspond to bulk
AFM ground states, which have one sublattice fully occupied
by C+4

−1 and the other occupied by C−4
+1 . C±2

∓1 correspond to

horizontal and vertical domain walls [see Fig. 4]. In frozen
states, every single spin is at the center of one of several stable
local configurations. Except where explicitly stated otherwise,
this section will describe the zero temperature limit.

A. T = ∞
Our quenches start from a randomized initial spin state cor-

responding to T = ∞. All C0,±2,±4
±1 are stable. The expected

proportions can be derived from simple combinatorics (see
Appendix C). The numerical results in Table I validate these
predictions.

B. h = 0

At h = 0, the system can be mapped exactly onto the
Ising ferromagnet [2]. The stable local configurations are C+4

−1 ,
C+2

−1 , C−2
+1 , and C−4

+1 , while C0
+1 and C0

−1 are degenerate and
switching between them is reversible. In terms of domains, the
stability of C+4

−1 and C−4
+1 means bulk AFM domains are stable,

and the stability of C+2
−1 and C−2

+1 makes straight-line domain
walls stable as well. Domain wall corners (C0

±1) are unstable.
This means that even at zero temperature, there are reversible
updates that move domain walls and make it possible to reach
the ground state in finite time. In practice, after an instanta-
neous quench to T = 0 the system will become stuck in a
stable stripe state [1–4] with probability P = 0.3390..., which
can be derived from a connection to continuum percolation at
the critical point [3]. The domain walls in these stripe states
account for the ≈2% of C±2

∓1 states in Table I.9 Note that the
AFM ground states and the stripe defect states are all frozen
states under these dynamics.

C. First plateau

The first (m1) plateau occurs for 0 < h < 2. The field
breaks the degeneracy between C0

+1 and C0
−1, so now only

C0
+1 is stable and there are no reversible local spin flips. Bulk

domains and straight domain walls remain stable, but now
corners and diagonal domain walls with excess (+) spin are
stable as well, giving rise to a net magnetization. The m1

plateau is composed of an ensemble of all states that obey
these domain wall rules. In Fig. 4, we show an example of an
m1 plateau state.

The initial random state is a mix of all Cy
x . As the

simulation progresses, it eventually flips all the unstable
states (C+4

+1 ,C+2
+1 ,C0

−1,C−2
−1 ,C−4

−1 ), leaving only stable local
states (C+4

−1 ,C+2
−1 ,C0

+1,C−2
+1 ,C−4

+1 ). In Table I we show the
result of averaging over many realizations of these frozen
plateau states; only the expected stable local configurations
are present. Once the system is composed of only stable local
spin configurations, no further updates are possible since any
single spin flip would raise the energy and be rejected. Two
of these stable states are the true AFM ground states, but

9The final state has a stripe with probability P ≈ 0.3390 [3].
With periodic boundary conditions, a single stripe has two do-
main walls of length L, each with 2L C±2

±1 states, so we expect
(0.3390) × 2 × 2L/L2 ≈ 2% of local states to be C±2

±1 for L = 64.
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FIG. 4. Example m1 plateau state generated by an instantaneous
quench from T = ∞ → 0 with h = 1 and L = 20. Markers ± in-
dicate spin, and the background shading shows the AFM domains.
Each spin is at the center of a stable local configuration and no
further updates are possible. Excess (+) spin is located at domain
wall corners.

almost all initial states will intersect with some other stable
state first and become permanently stuck there. There are so
many plateau states that the ground state is never reached in
practice.

In Fig. 6(a), we show a histogram of the magnetization in
the m1 plateau. The distribution of magnetizations within the
frozen plateau states is very narrow and does not overlap with
the ground state or the other plateau. The excess energy above
the ground state [Fig. 7(a)] is also narrowly distributed about
a mean of E − E0 ≈ 0.427 with a standard deviation of 0.005,
which matches the energy calculated from the populations of
local configurations in Table I.

D. h = 2

Around h = 2, the simulation recovers ergodicity. There
is now a �E = 0 update: C+2

+1 ↔ C+2
−1 . The presence of this

reversible update allows free movement of domain walls and
makes it possible to reach the true ground state even for zero
temperature quenches (although the time required to do so
can be very long). For T = 0, ergodicity is only recovered
at exactly h = 2, but for finite temperature there is a valley of
ergodicity centered around h = 2 which becomes broader at
higher temperatures.

Quenches with h = 2 are actually slightly better at finding
the true AFM ground state than quenches with h = 0 because
the stripe defects [2] that appear at h = 0 are no longer sta-
ble. It is possible to become stuck in an analogous diagonal
stripe state, but this is much less common. These diagonal
stripe defects appear in Table I as a small population of C0

+1.
The stability of these diagonal stripes is likely affected by
the aspect ratio [3]; it is therefore possible that for some
nonsquare system one could guarantee reaching the ground
state for h = 2, although we have not investigated that here.
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FIG. 5. Example m2 plateau state generated by an instantaneous
quench from T = ∞ → 0 with h = 3 and L = 20. Markers ± in-
dicate spin, and the background shading shows the AFM domains.
Each spin is at the center of a stable local configuration and no further
updates are possible. Excess (+) spin is located along the domain
walls.

E. Second plateau

In the second (m2) plateau (2 < h < 4) the stable local
states are C+4

−1 ,C+2
+1 ,C0

+1,C−2
+1 ,C−4

+1 (see also Table I). An ex-
ample of such a configuration can be seen in Fig. 5. In the
m2 plateau, bulk domains are still stable, but straight domain
walls are not. Only diagonal domain walls are stable, and these
host the excess (+) spin, causing the net magnetization of
m2 ≈ 0.283.

Similar to the m1 plateau, the magnetization [Fig. 6(b)] and
energy [Fig. 7(b)] in the plateau states are narrowly distributed
and well-separated from both the ground state and the other
plateau. The excess energy distribution has an average of
E − E0 ≈ 0.283 and a standard deviation of 0.002, which
matches the energy calculated from the local configurations
in Table I. Somewhat counterintuitively, this energy is lower
than the m1 plateau, even though it is further from the correct
ground state.

F. h = hs

At h = hs, there is no freezing, but the behavior is still un-
usual. Notably, the temperature dependence vanishes rapidly
as T → 0 with m(h = hs) → 0.5467. Even at zero temper-
ature, the simulation does not freeze; it instead samples a
highly degenerate manifold of ground states, where there is
coexistence of the fully polarized state and both AFM ground
states. We show an example of such a state in Fig. 8: there
are patches of both AFM ground states as well as fully po-
larized areas. For T = 0, the simulation samples a range of
magnetizations, but the energy always converges to the exact
ground state [Eq. 2]. The behavior at h = hs can be mapped
onto a “reversible random sequential adsorption process” [41,
p. 220] or the zero-mobility hard squares problem [42–45],
which are described in Appendix D.
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FIG. 6. Magnetization histograms for the (a) m1 and (b) m2

plateaus resulting from 2000 independent instantaneous quenches
from T = ∞ → 0 for a 256 × 256 system with h = 1 and h = 3,
respectively. Measurements were taken after reaching Paccept = 0 for
all sites [Eq. 11]. Both panels use the same bin width. These distribu-
tions are narrow and well-separated both from each other and from
the ground state.

In Fig. 9, we compare the temperature scaling of mag-
netization for quenches at hs to quenches at hs ± ε (where
ε = 0.01). At hs, the T -dependence vanishes rapidly. Small
deviations from hs, however, cause large temperature effects.
For hs + ε, the magnetization quickly converges to saturation
(m = 1). For hs − ε, the behavior is more interesting—the
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FIG. 7. Distribution of excess energy per site [relative to the
ground state, Eq. 2] in the (a) m1 and (b) m2 plateaus resulting
from 2000 independent instantaneous quenches from T = ∞ → 0
for a 256 × 256 system with h = 1 and h = 3, respectively (see also
Fig. 6). Simulations were run until the acceptance probability was
zero for all sites. The bins are the same width in both panels. Note
that the excess energy for h = 3 is lower than for h = 1 even though
the h = 3 plateau is further from equilibrium.
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FIG. 8. Example configuration for the saturation point generated
by an instantaneous quench from T = ∞ → 0 with h = hs = 4 and
L = 20. Markers ± indicate spin, and the background shading shows
the AFM domains. Note: this is not a frozen state.

magnetization first decreases [corresponding to the valley of
ergodicity just below hs (Fig. 1)] and then increases to m2 as
the temperature becomes low enough for hs − ε to lie in the
m2 plateau. Figure 9 includes the magnetization at 20, 40, and
80 kMCS after the quench. In most cases, the time evolution
has finished before 20 kMCS, and the three lines coincide.
The only deviation occurs for h = 3.99 in a small window
102 < β < 103. In this range the system is on the edge of the
m2 plateau and there is a longer relaxation time (see Fig. 2).

100 101 102 103 104

=1/T

0

0.2

0.4

0.6

0.8

1

m
(h

,T
)

20k MCS, h=3.99=h
s
-

20k MCS, h=4.00=h
s

20k MCS, h=4.01=h
s
+

40k MCS
80k MCS

FIG. 9. Magnetization of a 128 × 128 system with h = hs com-
pared to h = hs ± ε after instantaneous quenches from T0 = ∞ to
β = 1/T followed by 20 kMCS (◦), 40 kMCS (×), and 80 kMCS
(+). Each point is an average of 200 independent quenches. Error
bars are smaller than the markers. At h = hs the finite temperature
effects vanish rapidly and m(hs ) = 0.5469 for all T < 10−3.
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The reason for the vanishing T -dependence has nothing to
do with the conventional Ising ordering transition (which oc-
curs at Tc ≈ 2.27); it is a property of our dynamics. Each (−)
spin is surrounded by four (+) spins (C+4

−1 ), but (+) spins can
have any number of parallel neighbors, so there are six stable
local spin configurations: the degenerate pair C+4

±1 and four
other states with x = +1, y 
= 4: C+2

+1 ,C+4
0 ,C+4

+1 ,C−2
+1 ,C−4

+1

[see Table I]. The Cy 
=4
+1 states make up ≈55% of the local

configurations, but the likelihood of flipping them is exponen-
tially suppressed in 1/T ,

P
(
Cy

+1 → Cy
−1

) = e2(y−4)/T = e−8/T e2y/T , (12)

so their contribution to the dynamics is negligible. For exam-
ple, consider C+2

+1 : at T = 1 the update acceptance probability
for this state is already very low (P = 0.018). At 28% of the
population, only about 1% of accepted flips at T = 1 will be
C+2

+1 → C+2
−1 , so its contribution is weak and decreasing as

e−4/T . Flipping C0,−2,−4
+1 are suppressed even more strongly.

The dominant contribution to the dynamics comes from flip-
ping between the degenerate C+4

+1 and C+4
−1 states, which are

always-accepted �E = 0 updates (that do not depend on T ).
Combined with the exponential suppression of all other up-
dates, the result is a vanishing T -dependence.

VII. CONCLUSIONS

We have examined quenches to low temperature in the
2D square-lattice Ising antiferromagnet using single-spin-flip
Metropolis algorithm dynamics and showed that an external
field can cause a breakdown of ergodicity and stabilize a
pair of magnetization plateaus: metastable states that inter-
rupt progress toward the ground state. These plateaus are
extremely stable despite the absence of frustration or intrinsic
disorder (the conventional causes of freezing behavior). We
described the plateaus in terms of local spin configurations
that are stable under our dynamics. The plateaus consist of
an ensemble of states where each spin is at the center of
one of these stable local configurations. From such states, all
single spin flips increase the energy. This corresponds to an
extremely rough energy landscape without a clear gradient
pointing toward the ground state (at least from the perspective
of these dynamics). The local energy minima are so numerous
that the odds of reaching the true ground state are vanishingly
small, since paths to the ground state will almost always
intersect one of the plateau states, where the simulation will
become stuck. The underlying mechanism for this behavior
is the field lifting the degeneracy of local spin configurations,
eliminating reversible zero-energy Monte Carlo updates that
are crucial for finding the correct ground state.

The process of finding the ground state of the Ising model
from a random initial state is related to a broad class of
optimization and gradient descent problems in fields such as
machine learning. Often, the energy landscape is described in
terms of a simple height function in some high-dimensional
space with local minima that look like valleys. This descrip-
tion can be misleading: although the energy landscape is
indeed a surface in some high-dimensional space, dynamics
often include nonlocal moves, which means that the choice
of dynamics can dramatically alter the notion of what other

states are “nearby” and therefore of what states appear to be
local energy minima to the optimization algorithm. With our
single-spin-flip dynamics, each state is connected to exactly
N other states.10 Under Kawasaki dynamics (where pairs of
antiparallel nearest-neighbor spins are flipped [14,46]), each
spin state would be connected to a totally different set of
“nearby” states and the apparent local energy minima (with
respect to the dynamics) would therefore be different as well.
Indeed the field does not affect the Kawasaki transition prob-
abilities at all. From these two examples (Metropolis and
Kawasaki), we can see that the notion of which states are
nearby, and therefore which states appear to be local energy
minima, are completely dependent on the choice of dynamics.
By analogy, gradients also depend on the dynamics: a local
energy minimum under one choice of dynamics might lie on
a steep slope under another.

Although the details of the magnetization plateaus depend
on the specific update scheme, the underlying principle caus-
ing the breakdown of ergodicity is quite general: A Markov
chain can become nonergodic when there are few reversible
updates available.11 Naively, the fastest way to the ground
state is to use updates with a large negative �E , and by that
logic, �E = 0 updates are a waste of time. In fact, �E = 0
updates are critical for avoiding local energy minima because
they allow movement along equal-energy paths to find the
true global minimum. This fact is implicitly incorporated into
many Monte Carlo update schemes (like cluster methods) that
try to find groups of spins, etc., that can be updated without
changing the energy.

Here we have made no attempt to “fix” the frozen dynam-
ics. Using different dynamics or simulated annealing might
allow the system to reach the ground state, but our goal was to
study the freezing process itself. Understanding how Monte
Carlo methods fail is crucial because MCMC methods are
depended upon to serve as a reliable, unbiased “numerical
experiments” with well-defined statistical error and few ap-
proximations.12 In the case we have studied here (focusing on
the strongly frozen plateau regime), the dynamics are slowed
to a complete halt after a very brief transient. The MC sweeps
rapidly flip all the “available” spin flips; once every spin is at
the center of one of the stable local states, no further changes
are possible. Ironically, this makes this particular system very
easy to study since it freezes so quickly and so completely
that there is no need for long simulations, but it may still
yield useful comparisons to freezing in systems with intrinsic
disorder such as the random field Ising model [16] or spin
glasses [17], which are more challenging to study directly.

Our findings suggest a number of interesting avenues for
further research. The type of plateaus that occur in the 2D
Ising AFM are likely to be quite general, and similar plateaus
probably occur with other lattices, Hamiltonians and dy-
namics; examining these broader applications could uncover

10All the states that can be reached by a single spin flip.
11Here, reversible means updates that do not dramatically change

the energy.
12In contrast to various numerical techniques based on perturbation

theory or other expansions, which often include some poorly defined
systematic error.
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universal features. Using the framework described in Sec. V,
we can make some immediate predictions about quenches
in the one-dimensional (1D) and three-dimensional (3D)
Ising antiferromagnets. In 1D, our brief tests show evidence
for a single magnetization plateau from 0 < h < 2 around
m ≈ 0.14 (where h = 2 is the saturation field). The freezing
mechanism is the same: the field stabilizes domain walls
with an excess (+) spin: ... − + − + + − + −..., but we
have not investigated this case in detail. In 3D, we expect
three plateaus. There are six nearest neighbors, so y3D =
0,±2,±4,±6, and therefore we expect �E = 0 updates for
h = 0,±2,±4,±6, with plateaus between those points.

It may be possible to develop analytical approaches to
derive magnetizations and configuration populations in the
m1 and m2 plateaus from first principles. One method may
be to enumerate all possible plateau states based on the do-
main wall rules we identified in Sec. VI using a scheme
similar to Ref. [18]. That enumeration could quantify the
scaling of the number of plateau states and possibly allow
an analytical derivation of quantities such as the magnetiza-
tion. Alternatively, one could attempt to identify a connection
to percolation theory that describes the plateaus as Ref. [3]
did for the striped states in the ferromagnet. Even if such
approaches remain elusive, there is still much to be learned
from a more detailed study of the plateau states themselves.
For example, the freezing halts the coarsening process, but it
is not immediately clear if the distribution of domain sizes
in the plateau states corresponds directly to a point along
the conventional Ising coarsening process [15]. It also might
be instructive to investigate nonsquare aspect ratios,13 which
could affect the stability or magnetization of the plateaus.
For the ferromagnet, the aspect ratio affects the probability
of becoming stuck in the striped state [3].

Finally, we have focused on the strongly frozen regime near
the central flat portion of the plateaus where the relaxation
time is effectively infinite. There are a number of interesting
questions at nonzero temperature, for example: what is the
maximum temperature T ∗ at which the plateaus appear? The
edges of the plateaus and valleys of ergodicity may yield still
richer physics. In this regime, the relaxation time is finite
(but long) and there are nontrivial finite size and temperature
effects.
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APPENDIX A: FINITE-SIZE SCALING

One of the remarkable things about the metastable mag-
netization plateaus we describe here is that the finite-size

13Here the aspect ratio is ( height
width ).
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FIG. 10. Finite-size scaling of magnetization after quenches to
β = 32 with periodic boundary conditions. Each point is an aver-
age over 100+ independent quenches. The finite-size effects vanish
rapidly (compare to Fig. 1).

effects vanish so rapidly.14 This suggests that when the system
becomes stuck, the correlation length is still small. In Fig. 10
we show the magnetization curves for a quench to β = 32 for
several sizes L = 23, 25, 27, 29 (compare to Fig. 1). For the
m1 plateau, there are some finite-size effects for L = 8, largely
due to the proximity of the plateau states to the ground state.15

For larger systems, the m1 plateau appears fully converged
to the thermodynamic limit. In the m2 plateau, the finite-size
effects are weaker and even the 8 × 8 system agrees with
the largest size within error bars. There are more prominent
finite-size effects at higher temperatures and especially around
the valleys of ergodicity, but we do not discuss those regimes
here.

In Fig. 11 we show the finite-size scaling at T → 0 in the
center of each plateau (note: the x-axis is a log scale). The
error bars in all cases are very small, but even so, L = 16 is
barely distinguishable from L = 1024.

APPENDIX B: OPEN BOUNDARY CONDITIONS

In the main text we have focused almost entirely on the
case of periodic boundary conditions (PBC), but it is worth
comparing to open boundary conditions (OBC). The behav-
ior is largely the same, but for OBC there are prominent
finite-size effects that can be described in terms of the local-
configuration framework developed in Sec. V. The bulk spin
states appear to be the same as for PBC, but the edges have
different stable local configurations so they have a different
average magnetization.

Along the boundaries the spins have only three neighbors,
so the possible values of yedge = ±1 ± 3. There are new fields

14Although we use large system sizes in our analysis (L = 512 in
Fig. 1), these are much larger than is necessary.

15For an 8 × 8 system m = 0.0569 corresponds to just three or four
excess (+) spins.
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FIG. 11. Finite-size scaling of magnetization for (bottom, h = 1)
m1 and (top, h = 3) m2 plateaus for quenches to zero temperature
with periodic boundary conditions, (semilog scale). Each point is
an average over many independent quenches (at least 400, more for
smaller systems). Error bars are smaller for larger systems due to
spatial self-averaging.

where the stable local configurations change (h = ±1,±3).
The effect of the edge spins is to break each plateau up
into two subplateaus: 0 < h < 1, 1 < h < 2 and 2 < h < 3,
3 < h < 4, which recombine in the thermodynamic limit. We
see these subplateaus and their finite-size scaling in Fig. 12
(compare to PBC in Fig. 10). In principle, it might be possible
that the �E = 0 updates along the edges at h = ±1,±3 could
cause new valleys of ergodicity, but we see no signs of this
actually occurring (at least not at such low temperature).

The corner spins have only two neighbors, which can add
up to ycorner = 0,±2. The bulk spins already have reversible
spins flips at h = 0,±2, so the corner spins do not contribute
anything new.

0 0.5 1 1.5 2 2.5 3 3.5 4
h

0.000

0.100

0.200

0.300

0.400

0.500

0.600

m

   L = 8
  L = 16
  L = 32
  L = 64
 L = 128
 L = 256
 L = 512
L = 1024

FIG. 12. Finite-size scaling of magnetization after quenches to
β = 128 with open boundary conditions. For OBC, the finite-size
effects are much more pronounced (compare to Figs. 1 and 10). Each
point is an average over ≈200 independent quenches.
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FIG. 13. Finite-size scaling of the plateau magnetization with
open boundary conditions under quenches to β = 128 as a function
of nedge/L2. (bottom) Both halves of the m1 plateau: h = 0.5, 1.5.
(top) Both halves of the m2 plateau with h = 2.5, 3.5. Each point is
an average over 200 independent quenches.

The most notable consequence of OBC is strong finite-size
effects with well-defined scaling. As L grows, the contribu-
tion from the edge states shrinks. In Fig. 13 we examine the
finite-size scaling of the magnetization in the new subplateaus.
As expected, the boundary conditions become irrelevant in
the thermodynamic limit. The finite-size deviation is linear in
nedge/L2, where nedge = 4(L − 1) is the number of sites along
the boundaries of the L × L square lattice. For 0 < h < 1 and
1 < h < 2, the magnetization converges to the PBC value of
m1 as L → ∞. For 2 < h < 3 and 3 < h < 4, the magneti-
zation converges to the PBC value of m2. Plotting m(h, L)
against 4L−2(L − 1) we recover an excellent linear scaling
law.

APPENDIX C: LOCAL CONFIGURATIONS AT T = ∞
For T = ∞, each spin will independently take values σi =

±1 with equal probability. There are 25 = 32 possible states
of the center spin and its four neighbors. Of those 24 = 16
have the center spin up, and 24 have the center spin down.
For the operators C−4

−1 , C−4
+1 , C+4

−1 , and C+4
+1 , there is only one

way to arrange four parallel neighbors, so those each ap-
pear with probability P = ( 1

2 )5 = 3.125%. For configurations
with three parallel and one antiparallel neighbors C−2

−1 , C−2
+1 ,

C+2
−1 and C+2

+1 , there are
(4

1

) = 4 states for each; therefore,
those states each appear with probability P = 4( 1

2 )5 = 12.5%.
Finally, for the configuration with two (+) and two (−)
neighbors (C0

−1 and C0
+1), there are

(4
2

) = 6 possible configu-
rations for each and those states each appear with probability
P = 6( 1

2 )5 = 18.75%. These predictions are confirmed by nu-
merical tests on 7000 random 64 × 64 spin configurations in
Table I.

APPENDIX D: MAPPING ONTO OTHER PROBLEMS AT hs

At the saturation point (h = hs), the AFM ground states
and the fully polarized state have the exact same energy, and
all three can coexist at no energy cost. At zero temperature
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the ground state jumps from m(h = 4 − ε) = 0 to m(h = 4 +
ε) = 1, which is smoothed out at finite temperature. The satu-
ration point has connections to two other statistical physics
problems. The first is the reversible random sequential ad-
sorption process [41, p. 220] where the “empty” state is the
fully polarized (all-C+4

+1 ) configuration and (−) spins (or C+4
−1

objects) are randomly adsorbed onto sites. The restriction of
local spin configurations becomes a rule that no (−) spin will
adsorb onto a site where any of its nearest neighbors are (−).
The second is the so-called hard squares problem [42–45]
with μ = 0, where hard-core particles with a radius of one
(excluding nearest neighbor sites) are adsorbing on a lattice.
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