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Reaction-diffusion equations are widely used as the governing evolution equations for modeling many
physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with
reactions on a one-dimensional domain that is evolving. The model equations, which have been derived from
generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inho-
mogeneous domain stretching and shrinking. Inhomogeneously growing domains are frequently encountered in
biological phenomena involving stochastic transport, such as tumor growth and morphogen gradient formation. A
method for constructing analytic expressions for short-time moments of the position of the particles is developed
and moments calculated from this approach are shown to compare favorably with results from random walk
simulations and numerical integration of the reaction transport equation. The results show the important role
played by the initial condition. In particular, it strongly affects the time dependence of the moments in the
short-time regime by introducing additional drift and diffusion terms. We also discuss how our reaction transport
equation could be applied to study the spreading of a population on an evolving interface. From a more general
perspective, our findings help to mitigate the scarcity of analytic results for reaction-diffusion problems in
geometries displaying nonuniform growth. They are also expected to pave the way for further results, including

the treatment of first-passage problems associated with encounter-controlled reactions in such domains.
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I. INTRODUCTION

Reaction-diffusion partial differential equations have been
widely employed to provide mathematical models across
many physical, chemical, and biological processes [1-3], with
classic applications including the spread of bushfires, the
development of animal coat patterns, and the spread of epi-
demics. In recent decades the fundamental development of
reaction-diffusion equations has focused on extensions to in-
corporate physical complexities in two key areas: anomalous
subdiffusion [4-11] and domain growth [3,12-23]. Anoma-
lous subdiffusion, which has been reported in numerous
experimental observations [24-32], refers to diffusion pro-
cesses in which the mean-square displacement scales as a
sublinear power law in time. Domain growth is used gener-
ically to refer to stretching and shrinking of the domain over
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time. In this work we have developed reaction-diffusion equa-
tions to allow for the possibility of including both features,
subdiffusion and domain growth, simultaneously.

As a preamble, we comment here briefly on the method-
ology employed in our derivation of reaction-diffusion
equations, including the possibility of subdiffusion, on a
growing domain. The first fundamental derivation of the diffu-
sion equation was carried out by Einstein using a random walk
formalism [33]. In this approach Einstein considered random
walks at fixed intervals of time with steps from a step length
probability density with a finite variance. The extension to
continuous time random walks (CTRWs) with waiting times
between steps, drawn from a power-law probability density,
led to the derivation of the fractional diffusion equation for
subdiffusion [34-36].

Reaction diffusion equations with standard diffusion were
formulated by simply adding reaction kinetics terms to the
standard diffusion term [37]. It was not possible to obtain a
physically consistent model for subdiffusion with reactions
following this simple approach. In particular it was found that
negative reaction kinetics terms added to the subdiffusion term
could result in negative solutions overall [5]. This led to a
reinvestigation of the underlying CTRWs with consideration
on how to incorporate particle deaths and births at the level

©2020 American Physical Society
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of the random walks [5—11]. One can immediately envisage
that different system dynamics could ensue depending on
whether or not newborn particles inherit the same waiting
time as their parent particles before taking a random walk
[8]. It is now generally recognized that fractional dynamics,
including subdiffusion, cannot be incorporated into model
equations involving other complexities such as reactions or
space- and time-dependent forces simply by replacing stan-
dard macrosopic transport terms with fractional macrosopic
transport terms. We have been mindful of this in the present
work by deriving the modeling equations from physically
consistent CTRWs.

A useful approach, in the CTRW paradigm, for dealing
with reaction subdiffusion systems in the case where newborn
particles do not inherit the waiting times of parent particles
is to construct an ensemble of different species of reacting
particles by considering their most elementary representation;
that of single particles that are created (birth process) at some
point in time and space and then removed (death process) at
some later point. In this approach, single particles with death
probabilities, undergoing continuous time random walks are
considered first, and then collections of such particles arising
from the birth processes are considered in an ensemble repre-
sentation [10,11]. The reaction subdiffusion equation can then
be derived by taking the diffusion limit of the master equation
for this ensemble of walkers [11]. Standard reaction diffusion
equations can also be derived using this methodology, and it
is capable of modeling phenomena on a vast array of scales,
from single chemical molecules to ecosystems. Examples in-
clude a reaction-subdiffusion model for the space and time
distribution of degrading chemical morphogens at the cellular
level [10] and models for the non-Fickian spread of contam-
inant plumes with chemical degradation at the macroscopic
level [38].

The study of subdiffusion on growing domains is still in its
infancy, and the inclusion of reactions within this framework
is an outstanding problem. Reaction diffusion models with
standard diffusion on a growing domain have been studied
in a series of papers [12-18,39]. Specific examples include
a model with diffusion and degradation for the formation
of morphogen gradients on a growing domain [20], and a
model with diffusion, a constant per capita birth rate, and a
population size dependent death rate, for insect dispersal on a
growing domain [16]. In the case of morphogen gradients, say,
degradation may occur at timescales over which both diffusive
transport arising from concentration differences and advection
mediated by tissue growth are non-negligible. This justifies
the inclusion of death terms in the relevant PDEs [40,41].

We now proceed to give a brief overview of recent progress
on subdiffusion on growing domains and how it relates to the
goals of this paper. In Refs. [42,43], Ali et al. put forward
a procedure to map the behavior of stochastic trajectories
from time-dependent domains (especially, expanding radial
domains) onto fixed domains for the case of fractional Brown-
ian motion (as well as for normal Brownian motion and Lévy
flights). Le Vot, Abad, and Yuste [44] used a CTRW approach
to obtain evolution equations for unbiased diffusion, including
anomalous diffusion, in uniformly expanding or contracting
media. Later these results were extended to account for the
effect of a biasing force field [45] or a velocity field [46].

Another significant advance was made by Angstmann, Henry,
and MacGann [47], which employed a generalized CTRW
formalism [36,48] to deal with the general case of random
walkers that move diffusively or subdiffusively in domains
with inhomogeneous growth and contraction rates. In particu-
lar, this means that some regions of the domain may expand,
while others may simultaneously shrink. The next step was
the inclusion of chemical reactions in models with normal
diffusion. This was done in Refs. [22,49,50], where evolution
equations for encounter-controlled reactions between reac-
tants performing normal diffusive walks in uniformly evolving
domains were derived and solved for the special cases of
particle coalescence and annihilation. Here we take the for-
malism developed in Ref. [47] as a starting point by including
chemical reactions in the transport equations that hold for
arbitrarily evolving domains. Such reactions are not restricted
to death processes as in Refs. [22,49,50] but may also involve
particle birth.

Because of the notorious difficulties to deal with inho-
mogeneous domain growth, the problem is often studied
numerically (see, e.g., Refs. [39,51]), even in the case of nor-
mal diffusion without ongoing reactions. We are actually not
aware of previous works where extensive analytical results are
presented, as we do here both for normal and for anomalous
subdiffusion in the early-time regime. We see this as a first
step to develop approximations beyond this regime and to
obtain acceptable approximations for the positional PDF on
the basis of the behavior of the associated moments.

In turn, an improved knowledge of reaction-diffusion in
arbitrarily evolving domains will help to refine some of the ex-
isting models for biological systems and phenomena such as
tumor growth. In Ref. [52] the spreading of a specific mutant
population on the growing surface of tumoral spheroids was
studied. The portion of the surface occupied by such mutants
(“mutant sector” in the language of Ref. [52]) may increase
or decrease deterministically due a selective advantage or dis-
advantage. However, genetic drift introduces stochasticity at
the boundary of the mutant sector. In two dimensions the two
boundary points of the corresponding arc of circumference
move randomly and can be thought of as coalescing random
walks. The extinction of the mutant surface population subject
to genetic drift is thus tantamount to vanishing separation
distance of the boundary points. A sufficiently fast surface
growth is able to avoid such an extinction, since it keeps the
separation positive except in a vanishingly small number of
statistical realizations. The underlying first-passage problem
can be described in terms of a diffusion equation for the
separation distance of both boundary points on the growing
circular boundary. The type of surface growth considered in
Ref. [52] was a homogeneous one, but a more realistic de-
scription would clearly involve nonuniform growth.

Inhomogeneous surface growth also plays a critical role
in the formation of stromatolites, i.e., laminated, sedimen-
tary rocks originally formed by layer-upon-layer deposition
of dead microbes such as cyanobacteria (single-celled pho-
tosynthesizing microbes), whereby only the most superficial
layer contains living microbes. Recently, a KPZ-like deter-
ministic equation has been used to model its surface growth
[53,54]. In Sec. VI we will discuss in detail how the mo-
tion on such surfaces of microbicides subject to birth and
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death processes could in principle be modeled with our
equations.

We begin in Sec. II by setting up a formalism and co-
ordinate system to describe nonuniform domain growth. In
Sec. III we first consider a single-particle CTRW on a growing
domain, with a death probability between steps. The CTRW
on the growing domain is mapped to an auxiliary CTRW
in terms of comoving coordinates, i.e., spatial coordinates
referring to the initial fixed domain. Then the master equa-
tion is obtained for this auxiliary process. We subsequently
consider an ensemble of particles undergoing CTRWs with
death probabilities and creation probabilities between steps
and the master equation for the auxiliary CTRW on the fixed
domain with reactions is obtained. In Sec. IV we derive the
diffusion limits of the auxiliary CTRW master equation with
a jump length density corresponding to unbiased jumps of
fixed length on the evolving domain, and with two distinct
waiting time densities, exponential and Mittag-Leffler. These
densities are known to limit to standard diffusion, and subd-
iffusion respectively on fixed domains. The fixed length jump
on the growing domain maps to a space- and time-varying
jump length for the auxiliary CTRW on the fixed domain.
An iterative method for evaluating moments to higher orders
in time is introduced and moments are evaluated for special
cases. These moments are first evaluated for the auxiliary
process and then mapped to moments on the evolving domain.
The moment calculations are shown to compare favorably
with numerical simulations, both on the auxiliary domain and
on the evolving domain. In Sec. V we map the diffusion limit
equations for the auxiliary CTRW on the fixed domain back to
the evolving domain. This yields reaction-diffusion equations
for systems undergoing standard diffusion, or subdiffusion, in-
cluding reactions, on arbitrarily evolving domains. In Sec. VI
we deal with the aforementioned problem of stromatolite
growth. We conclude with a brief summary and outlook in
Sec. VIL

II. SPATIAL AND TEMPORAL DOMAIN
EVOLUTION FUNCTION

To obtain the governing evolution equations for diffusing
particles on an evolving domain it is useful to establish a
mapping between points on the evolving domain at time # and
points on the initial fixed domain at time ¢ = 0 [47].

For simplicity, in the following, we will assume a finite
domain of initial size L(t = 0) = Ly. At a given time ¢ we
associate each point on the evolving domain y(¢) € [0, L(¢)],
with a point on the initial domain x € [0, Ly] through a one-to-
one mapping y(t) = g(x, t). It should be noted that, although
in the present discussion we assume that the domain remains
finite at all times, there is no problem in considering it as
large as necessary, or even infinite (see Sec. IV). Here, and
subsequently, we use a bar to denote any function of the space
variable x on the original domain. Especially in cosmology,
this x coordinate is also termed “comoving distance” [19,49].
The mapping must satisfy the initial condition g(x, 0) = x, the
boundary conditions g(0,7) =0 and g(L,t) = L(¢), and the
non-negativity condition g(x, ) > 0.

Assuming that the domain is a differentiable manifold,
the mapping g(x, t) can be represented uniquely in terms of

a local growth rate function fi(x,t), which has dimensions
of [TT~!. We partition the initial domain into n intervals of
equal length, 6x = Ly/n. On the evolving domain, the length
of each partitioned interval may change in time. We let §y;(#)
denote the length of the ith partition at time r. We can now
define a local growth function fi(x;, t) through the evolution
equation [47]
ddyi

el i (xi, t)8y;. )]

Integrating Eq. (1), and using the initial condition 6y;(0) =
8x results in the expression

t
dyit) = [eXp/ i (x;, S)dS}Sx = V(x;, 1) éx, 2
0
where, in the rightmost equation, the dimensionless quantity

b(x, 1) = olo RCrs)ds 3

has been introduced. In the language of cosmology, this quan-
tity is referred to as “the scale factor.” Summing all the §y;
intervals and taking the limit as n — oo produces the mapping
between the domains, which can be expressed as a function of
the local growth rate. Explicitly,

y = HILIEOX(;(S);,- = / v(z,t)dz = g(x,1). 4)
im

0

The local growth rate function might be positive or nega-
tive, at different locations, allowing for local expansion and
contraction, respectively. This may result in a significant dis-
tortion of the original morphology of the domain, as illustrated
schematically in Fig. 1 for the particular case of periodic
boundary conditions. The evolution equations that we derive
are unaffected by the complexity of the distortions, with the
only restriction being that the domain remains a differentiable
manifold.

Our derivation of the governing evolution equations for
reaction and diffusion on an evolving domain utilizes the
mapping between the growing domain and the fixed domain.
Note that if f(y, ) represents a function of the space variable
on the evolving domain y, and f(x,t) represents the corre-
sponding function on the fixed domain x, then these functions
are related through the mapping g(x, t) via

fo.t)=f@ G0, 1) = fx,1). (5)

The advantage in using the representation on the fixed
domain is that this enables us to employ standard time deriva-
tives and then map them to the evolving domain.

It should be noted that our results are also valid for d-
dimensional evolving domains when the diffusion processes
along each Cartesian direction are independent, that is, when

— =008y, (©6)

where the superscript j denotes the jth Cartesian direction.
An important special case is obtained when i (x;, 1) = ju(t),
which corresponds to an isotropic d-dimensional exponential
domain evolution.

The use of auxiliary fixed domain formulations to inves-
tigate growing domain problems in the analysis of systems
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FIG. 1. Schematic illustration of an evolving domain. Here the
domain initially expands uniformly as an ellipse before local ex-
pansions and contractions lead to a more irregular profile. The red
shading is used to illustrate how particular intervals evolve in time
with different local space- and time-dependent growth rates. Note
that, although we have depicted the one-dimensional domain as a
ring, in general, the medium would be a line with two independent
ends.

involving reaction and diffusion on a growing domain is not
new. For example, Mackenzie and Madzvamuse [39] used
a Lagrangian reduction of the arbitrary Lagrange-Eulerian
(ALE) mapping [55] to investigate numerical approximations
to a reaction-diffusion problem on a growing domain. The
ALE scheme had been widely used in numerical methods
for fluid flow switching between Lagrangian and Eulerian
descriptions. While such approaches involve deterministic
PDEs, it is also possible to develop equivalent descriptions
in terms of Langevin equations, as done in Refs. [42,43].
In the case of normal diffusion, the main advantage of the
Langevin description is that it provides a good starting point
for numerical simulations. However, in the case of subdiffu-
sive walks, Langevin equations become much less intuitive
and thus harder to deal with.

Here we will follow a different path, and we will consider
mappings from growing domain coordinates to fixed domain
coordinates at the level of the random walks. As discussed
above, this level of description is required for obtaining funda-
mental results in subdiffusive systems with reactions or forces,

and it also covers the case of standard diffusion with reactions
and forces (see also Ref. [47] for the case without reactions).

III. MASTER EQUATIONS IN FIXED DOMAIN
COORDINATES FOR CTRWs ON A GROWING DOMAIN

As discussed above, a CTRW on a growing domain can be
mapped to a unique CTRW on a fixed domain—the domain
at time zero. In this section we derive the master equation
for this auxiliary CTRW on the fixed domain. We begin by
constructing the probability density function for a single par-
ticle undergoing a CTRW on a growing domain with possible
particle death. This function is then mapped to the fixed do-
main and the evolution equation for the mapped function is
obtained by differentiating with respect to time. In the next
step a collection of such particles, created at different points in
space and time, is considered, and we find the master equation
in the coordinates of the fixed domain for this ensemble.

A. Single particles with death probabilities

We begin by deriving the governing equation for single-
particle diffusion on a growing domain with an associated
death probability.

Subsequently we consider an ensemble of such particles,
and we also include birth events. We let g, (y, t|yo, 0) denote
the probability per unit time for a particle that started at yo
at time t = 0 to arrive at y at time ¢ after n jumps, and we
suppose that initially

qo(y, t1y0, 0) = 8(y — y0)8(t — 0"). (N

After n + 1 steps, the arrival probability rate can be expressed
with a recursion relation as

L(r) t
Gnr1 (s t]y0, 0) = f / W(y,y" 1,100/, 1,1")
0 0

X gn(y', t'|yo, 0)dt’ dy'. (8)

The interpretation of this is that the probability rate for a par-
ticle to arrive at y at time ¢ after n 4 1 steps is the probability
rate for a particle that arrived at y" at an earlier time ¢/, then
waited for a time ¢t — ¢/, and survived death, before jumping
to y at time ¢. The position y” represents the location on the
growing domain of a point at time ¢ that was at a point y" at
the earlier time ¢'. The term 6(y, ¢,¢') is the probability of
surviving death at a point on the domain, referenced as y’ at
time 7/, and W(y, y”, t, t’) is the probability density for waiting
atime ¢t — ¢’ and transitioning from y” to y at time ¢.

The probability per unit time for a particle to arrive at y at
time ¢ after any number of steps is obtained by summing over
all n in Eq. (8). This results in

L@ pt
q(y, t1y0, 0) = qo(y, t1y0, 0) +/ / W(y,y", t,t")
o Jo

x 00, t,1)q(, t'lyo, 0)dt’ dy’, )
where
oo
a0, 10, 0) = Y gy, tly0, 0). (10)
n=0
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In Eq. (9) the quantity
9(}/71‘,1‘,) = e—f,'/w(\",x)ds (11

stands for the survival probability of a particle arriving at
location y' at time #’, where w(y, s)ds is the (infinitesimal)
probability of a particle dying between times s and s + §s, and
the quantity w(y, s) has dimensions of [T]~'. At this stage, it
is worth noting that, while the above mortality law may not
be the most general one, it does not preclude a dependence
of the form w = w(p(y, 1)), i.e., an explicit dependence of the
survival probability 6 on the probability density (or “concen-
tration”) p(y, ¢) of finding a particle at position y at time 7.

We assume that the transition probability density is com-
posed of two independent probability densities: the jump
density, A(y, ") = A(y — "), for a jump of length y — y”, and
the waiting time density, ¥ (¢,1") = ¥ (¢t — '), for a particle to
wait for r — ¢’ time before jumping. Hence we write

Wy, y' t, 1)y =2y =y W@ —1). (12)

The probability of finding a particle, undergoing a CTRW
on a growing domain, in the infinitesimal volume interval
[Y",y" + dy’] at time ¢ can be written as

PO, tlyo, 0)dy”
t
=/ O -1, t, )0, 'y, 0)dy dt’,  (13)
0

where

d)(t—t/)zl—/_ V(s)ds (14)
0

is the jump probability survival function, and p(y”, t]yo, 0) is
the probability density for being at y” at time ¢. In order to
formulate a master equation for the evolution of p(y, t|yo, 0),
we find it convenient to consider an auxiliary CTRW process
on the initial fixed domain [47]. One advantage of this is
that standard time derivatives can be carried out on the fixed
domain, and the corresponding functions can then be mapped
back to the growing domain. A second advantage is that the
equations for the auxiliary process on the fixed domain can be
solved in this coordinate system, and the solutions can then
be mapped on to the evolving domain. First we relate the
densities on the evolving domain to associated densities on
a fixed domain using the transformation of Eq. (4). Explicitly,
the probability of finding a particle at time ¢ within the interval
[y, y + dy] is given by

dy
p (. tlx0, 0)dy = p(y, tlxo, 0) T dx

= p(g(x, 1), t|x0, 0)V(x,t)dx

= p(x, t|xg, 0)v(x,t)dx

= p(x, tlxp, 0) dx. (15)
The quantity p(x, t]|xp, 0)dx defined in the last line has a
clear physical interpretation: it is the probability of finding
a particle at time ¢ within the interval [x, x + dx] on the

fixed domain, [x, x 4 dx] being the x interval corresponding
to [y, y + dy] at time 7. Because of probability conservation,

one has the relation p(y, t|xg, 0) = (dy/dx)p(x, t|xo, 0). Sim-
ilarly, one has

q(y, tlxo, 0)dy = q(x, t|xo, 0) dx = G(x, t|xo, 0)V(x, 1) dx.
(16)
Along the same lines, the jump length density on the fixed
domain is obtained from probability conservation:

A, X, ) dx = (v, y)dy, (17)
implying
A, X, 1) =, OMx, X, 1), (18)
On the fixed domain we now have the arrival rate probability
density, for arriving at x at time ¢,

Lo
4(x. %0, 0) = Gox. £}, 0) + f AGe X, 1)
0

t
X / vt —tHa (X', t,t)g(x, 1 |xg, 0)dt’ dx’
0
(19)

and
t

Z)(x,tle,O)=/ O(r —1)a (x,1,1)q(x, t'|x0, 0)dt’, (20)
0

where we have defined
v(x, 1)

v(x,t)

GOt 1) = e J AT Asg (x4 ¢y = B(x,t,1") (21)
with 8(x, t,t") = 0(y, t,t').

To derive the evolution equation for p, we differen-
tiate Eq. (20) with respect to time. This results in (see

Appendix A)
= Ly t
9P 11x0, 0) / Ax, ', t)f K(t — )5 1.1)
ot 0 0
x p(x', t'|xg, 0)dt’ dx’
—/ K(t —tha(x,t,t)p(x, t'|xg, 0)dt’
0
_[ﬂ(xrt)+a)(xat)]p(x’t|x010)’ (22)
where
_ E[lﬁ(t)]}
K@t)=L""! 23
® [c[cba)] 29

is a memory kernel and L[Y ()] denotes a Laplace transform
of Y (¢) with respect to time.

B. Ensemble of particles with birth and death probabilities

We now consider an ensemble of particles composed of
individual particles that are created at particular locations,
undergo random walks, and are annihilated at other locations.
We hereafter assume that newborn particles are created with
zero age, i.e., their “internal clock” used as a reference for
the waiting time distribution is set to zero. Let us denote
by x(v,t)dtdy the probability of a particle being created
in the region [y, y + dy] during the interval [z, t + dt]. Here
x(y, t) has dimensions of [L]~'[T]~'. The ensemble density
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of particles at location y at time ¢, found by summing over all
possible starting points yy and birth times #, is then given by

L@ pt
u(y, t) =/ / PO tlyo, 10)x o, to) dty dyg.  (24)
0 0

The case of a single particle initially located at y; which gives
rise to no offspring is recovered by setting x (o, fp) = §(y; —
¥0)8(to — 0T).

Again we find it convenient to consider the auxiliary sys-
tem on the fixed domain using the mapping given by Eq. (15)
and the auxiliary function definitions

i(x,t) =u(y,t) and X(x,t) = xO,1). (25)

The ensemble density of particles for the auxiliary system on
the fixed initial domain is then

t ploy
ﬁ(X,t)Z/ / b(xo, 1)p(x, t|xo, o) X (X0, to) dxo dto. (26)
o Jo

The master equation for the ensemble is found by differenti-
ating with respect to time. In this way we find

di(x, t torho 9p(x, tlxo,
a(x, 1) 2/ / V(xoyt)M)_((xo,to)dxodto
dt o Jo ot

Lo
+/ D (x0, £)P(x, 1|x0, 1) X (X0, 1) dXp. 27
0

This can be simplified by noting that

L(t)
x(y,t)=/ o, tlyo, ) x (o, 1) dyo, (28)
0
and thus
Ly
R0 = / B(x0, DP(x. 1x0, R (s Ddxo. (29
0

We further replace the derivative in Eq. (27) using the single-
particle master equation (22), together with Eq. (26), so that

_ L !
doi(x,t) _ / A, x/, l)/ K@ — t/)ﬁ(x” t/)
ot 0 0

x (X', t,t)dt dx'
— / Kt —ia(x, t)Ha(x, t, ) dt’
0
— [a(x, 1) + o(x, t)]alx,t) + x(x,1). 30)

Equation (30) is the master equation for an ensemble of
CTRWs, including reaction kinetics, on a fixed domain. The
ensemble density at position x and time ¢ maps to the en-
semble density for CTRWs, including reaction kinetics, on a
growing domain at position y and time 7.

It is worth noting that in the limit of a nongrowing
domain fx(x,?) = 0, one recovers results previously known
from the literature. For example, taking 6(x,t,t') =
exp{— ftt, r_lu(x,s)lds} and j(x,t) = rolu(x, t)]i(x,t)
leads to Eq. (26) in Ref. [8] upon performing the appropriate
changes in notation.

IV. REACTION DIFFUSION EQUATIONS AND REACTION
SUBDIFFUSION EQUATIONS IN FIXED DOMAIN
COORDINATES FOR GROWING DOMAIN PROBLEMS

In this section we consider the governing equations in the
diffusion limit of the master equations for CTRWs in the fixed
domain coordinates corresponding to CTRWSs on an evolving
domain. This yields the partial differential equations and frac-
tional partial differential equations that can be used to model
the evolution of an ensemble of CTRWs on a growing domain
with reactions. These governing equations are used as a basis
for moment calculations on growing domains with standard
diffusion, and with subdiffusion. When deriving the equations
or discussing the behavior of their solutions, we will assume
that boundary and finite size effects are absent and thus deal
with the case of free normal or anomalous diffusion. This
implies that the particle concentration in the vicinity of the
interval end points must remain negligible at any finite time.
This is formally attained by considering the case of an infinite
system (in our formalism, this could be achieved, for example,
by rewriting the interval [0, Ly] as [—Ly/2, Lyp/2] and then
letting Ly — o0o) and an initial condition for the diffusing
particle(s) with a sufficiently strong localization, which will
be our implicit assumptions in what follows.

First we consider the diffusion limit. The latter requires
a simultaneous limit where length scales and timescales ap-
proach zero without introducing singularities. The details of
this depend on the details of the jump length and waiting time
densities. For CTRWs on fixed domains a jump length density
for unbiased jumps of fixed length, can result in standard
diffusion if the waiting time density is an exponential, or
subdiffusion if the waiting time density decays as a power law
in time. We now consider these possibilities on the growing
domain.

The jump length density for unbiased jumps of fixed length
on the growing domain can be written as

A Y) =180 — Ay —y)+ 80+ Ay =)D, (3D

where Ay is a fixed length interval on the growing domain.
The master equations that we derived above describe the
evolution of an auxiliary CTRW on the fixed domain; thus
we need to map the jump density on the growing domain,
Eq. (31), to a jump density on the fixed domain. The end
positions y — Ay and y + Ay after a jump are related to their
corresponding positions x — €~ and x + €™ in the fixed do-
main by Eq. (4), ie., y— Ay=gx —€",t) and y+ Ay =
8(x + €7, t). Therefore, the jump density in the fixed domain
is just

A X, ) =38 —e —x)+3(x+et —x). (32
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After replacing the jump density in Eq. (30) with Eq. (32) we
obtain
ol t
% /K(t—t)u(x—e Yo (x—e,t,t)dt
1 t
+ 3 f Kt —tHax+et,tHox+et,t,t))dt
0

— / K@ —t)ia(x, o (x, t,t')dt’
0
—[ax, t) + olx, )]ax, t) + x(x, ). 33)

In order to advance further, one now needs explicit ex-
pressions for €* in terms of Ay. While we have not been
able to write an explicit expression for the step sizes € and

€7, it is straightforward to obtain the approximations (see
Appendix B)

A 1 "dp(x,
0

D(x, 1) 20(x,1)? ox
(34)
Using the relations (34), we can perform a Taylor expansion

of the functions in Eq. (33) around the point x, retaining terms
up to order Ay?. This results in

aﬁ(x,t)_ Ay? 32
ar  20(x, 1) | 9x2

_ [/t —8/1()6, 5) dsi|
0 ox

a t
X — / Kt —ti(x, t)e(x, t, 1) dt/}
dax 0

t
/ K(t —t)ia(x,t)o (x, t,t")dt
0

— [(x, 1) + @(x, D]ax, t) + 5 (x, 1) + O(AY>).
(35)

A. Standard diffusion

In the theory of CTRWs it is well known that the standard
diffusion equation can be derived from the diffusion limit of
the master equation for a CTRW with nearest-neighbor steps
and an exponential waiting time density [36],

|
V()= —e . (36)
T

The memory kernel given by Eq. (23) can readily be evaluated
in this case yielding

1
K@) = ;S(I). 37

Substituting this memory kernel into the master equation for
the auxiliary CTRW, Eq. (33), we obtain the result

di(r,1) Ay
a  2tix,1)?

o (x, s)
B |:/(; ox

—[(x, 1) + w(x, Oalx, 1) + % (x, 1) + O(AY).
(38)

2
{ 9 u(x 1o (x,t,1)

:|a—u(x 1o (x,t, t)}

Finally we consider the diffusion limit, Ay — 0 and 7 — 0
with

A 2

D= lim =2

Ay,t—0 2T

(39
and note that o (x, ¢, 1) = 1, to obtain

da(x,t) D 92 Qi x, s)
ot (x, 1) {8x2 O 1) = |;/; ox }&”(X t)}

—[(x, ) + olx, £)]ulx, t) + x(x,t). (40)

As it turns out, the equation for the ensemble density of
particles u(x, t) on the fixed domain is significantly simpler.
Indeed, from Eq. (15) one finds

u(x, t) = v(x, t)i(x, 1), 41)
and then
du(x, 0 1 0 1
ux. 1) =D— - — ——ulx,1t)
ot ox D(x,t) dx v(x,t)

— o, Hulx,t) 4+ x(x, 1)(x, t). 42)

Equations (40) and (42) are the main results of the first part
of this paper. They are the reaction diffusion equations, in
fixed domain coordinates, for particles undergoing standard
diffusion with reactions, on a growing domain. Solutions to
these equations at position x and time ¢ can be mapped to pro-
vide the concentrations of diffusing particles with reactions
on a growing domain at position y and time ¢. The mapping
requires the identification u(y, ) = it(x, t) with y = g(x, 1),
Ax, 1) = & log (3) and D(x, 1) = exp[ [ i(x, s)ds].

The first term on the right-hand side (rhs) can be interpreted
as a net probability flux, whose divergence accounts for the
time change of the particle concentration inside the interval
[x, x + dx] in the absence of chemical reactions. In this latter
case, one has the following continuity equation:

8u(x,t)_D8 1 9
ot 9x v(x, 1) dx v(x, 1)

u(x,t). (43)

The same equation holds if u(x, ¢) is replaced with a density
p(x, t|xg, 0) referring to a deterministic initial condition. Note
that in the case of a uniformly evolving domain ¥ = v(¢), one
obtains the diffusion equation

Z)u(x,t)_ D 9%u(x,1)
a  v()?  ax2

) (44)

a result already known from previous works [it follows, e.g.,
by taking v = 0 in Eq. (36) of Ref. [19]]. For i1 > 0, say, the
shortening of the jump lengths on the fixed domain due to
the growth process is described by a time-dependent effective
diffusion coefficient which decreases as the inverse of the
squared scale factor. The time dependence of the diffusion
coefficient can be eliminated by introducing a new Brownian
conformal time 7(¢) = fé v(s)~2ds [19]. In general, writing
D) = #, we can relate Eq. (44) to the class of diffusion
problems referred to as rescaled Brownian motion, where
[56-58] D(t) = ak,t®~". In this rescaled Brownian motion, if
0 < a < 1, the long-time growth of the mean-square displace-
ment of a freely diffusing particle is described by a sublinear
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power law, and it is interesting to note in this context that
subdiffusion can also be observed on a uniformly evolving
domain, if the growth scale factor v() o t# with0 < B < %

1. Moments of u(x,t) for short times

The analytical solution of Eq. (42) is not easy to obtain in
general. An exception is the case of homogeneous expansion
where b = v(¢). Fortunately, in more general cases, some use-
ful information can still be extracted directly from Eq. (42). In
what follows, we will show how to obtain the short-time be-
havior of the moments of u(x, ¢) in a systematic way. We will
illustrate the procedure for the case where ji(x,?) = Hox?,
ie., forv(x,t) = exp[uoxzt], but the procedure can readily be
carried out for other forms of the local growth function. For
further simplicity, we will assume that there are no reactions,
ie., w(x,t) =y =0.

We start by inserting the short-time power expansion of
D(x, t) into Eq. (43), which yields

ou

"u
R _ D 1 o tm 2m+r—27 45
o + ZZ( )" Con, Il o @49

m=1 r=0

with Ci0= 2, ci1 = 6, Cip = 2, Cro = 12, etc. Multlplylng
this equation by x", integrating the resulting equation over
the whole interval, and assuming that x"u and x™d,u are
negligible for sufficiently large values of |x|, one finds

d{x"(t)) =
= D mX:(:) amn(n +m — D)(pot)" (X" 22y (46)
withag = 1,a; = -2, a; = 2, a3 = —4/3, etc. Equation (46)

can be written as

s e DM QUD"
S ©) _DMXZ(:) - {(x )

Cm+n)QC2m+n—1) 47)
+ (MM Quon)[32m +n + 1) — 1]
+ 2(x™ Y 20t ),

forn > 1 (note that for m = 0 and n = 1 the term proportional
to 2m +n — 1 is absent). For the time evolution of the first
four integer-order moments, one has

d();(tf)) = D[—2pu0t (x(1)) +4,u§t2(x3(t))
_4M8[3<x5(t)) + .-, (48)
2
d(xdt(t)) = D[2 — 8ot (x2(1)) + 120220 (1)) + -+ 1,
(49)
3
d(xdt(t)) — D[6(x(1)) — 180t (3(1)) + - - - 1, 50)
4
w :D[12<x2(t)) _32M0l(x4(t)> 4+ (51)

This nonclosed hierarchy of equations can be solved iter-
atively to increasing order of powers of f. For example,
assume that the initial distribution of particles u(x, 0) has
nonzero moments: (x"(0)) = (x3) # 0. Then, one sees that

the rhs of Eq. (48) is d(x(t))/dt = —2Dut (xo) + O(t*) be-
cause (x") = O(1). Thus, (x(t)) = (x0) — po{xo)Dt> + O@3).
We can improve this approximation by noting that the next-
order correction contributed by the rhs of Eq. (48) stems from
the term proportional to (x*) and is quadratic in time. This is
because, from Eq. (50), we know that (x3(¢)) ~ (xg) + O(1).
Therefore, to order t2, Eq. (48) can be written as follows:

(X(t)>
dt
Thus,

(x(2)) = (xo)

Other moments can be evaluated with the same procedure. For
example, for the third-order moment, one finds

@)

The result (53) for (x(¢)) can be further improved by inserting
Egs. (53) and Eq. (54) into Eq. (48), and then taking into ac-
count that (x°) ~ (xg) + O(t). This iterative procedure works
also for even-order moments. In this way one finds

(@) — dpo(x)D* + 0(t%)  (55)

D[—2p0t (x0) + 4ugr* ()] + 0. (52)

— po(x0)Dr* + Fug(xg)De’ + 0@t (53)

= (xg) + 6(x0) Dt — Yuo(xp)Dt* + O(F?). (54

= (xé) + 2Dt
and
xh0)

Improved expressions with an additional corrective term are
given by

(x()) =(x0) — po(x0) D + ug{xo)Dr?
+ (8D (xo) — polx3))Dudt* + 0¢®), (57

= (xg) + 12(x5)Dt + O(?). (56)

(2 (t)) =(xg) + 2Dt — 4po(xg)Dt?
+ (4polxg) — D) uoDt* + O@t*), (58)

() =[x3) + 6(x0) Dt — Ipaox3)Dr?

+ (810(x3) — 38D (x0)) woDt® + Ot*Y),  (59)
(1)) =(xg) + 12(3)Dt + (12D — 1640(x3)) D> + O(2?).
(60)

By inspection, one easily notes that, at least up to the
fourth-order moment, the leading correction to (x™) arising
from the domain growth takes the form —m? o (x3")Dt*. We
note the important role of the initial condition x,, as opposed
to the case of a uniformly evolving domain. In the case of
the first-order moment, when py > 0, the term — g (x0)Dr?
reflects an accelerated motion towards the origin as a result
of the confining effect of the domain growth in x space (for
o < 0, this motion is directed away from the origin).

One may wonder how many terms in Eq. (46) should be
taken, and up to what order in 7 the x moments should be
known, if one wants to find (x*) up to order th+1 or equiv-
alently, d(x")/dt up to order t*. From Eq. (46) one can see
that this is achieved if we know (x"+?"~2) up to order ¥,
that is, we have to know the (x"~2) up to order ¥, (x") up to
order t*~!, etc., and finally (x"*%~2) up to order ¢°.
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FIG. 2. (x) — xo vs time for u(x, t) = pox?, u(x, 0) = 8(x — xo),
Xo =20, D=1/2, and uy = 107°. The squares are simulation re-
sults. The dotted line corresponds to results obtained from the
numerical solution of Eq. (43). The broken and solid lines are the
analytical expressions to order ¢> and order 3, respectively, given in
Eq. (53).

In Fig. 2 and Fig. 3 we compare the results from Eq. (53)
and Eq. (55), respectively, with estimates of the moments
obtained from simulations and from numerical solutions of
Eq. (43). The simulation method for nonuniform domain evo-
lution is a straightforward generalization of that described in
Sec. IILLE of Ref. [45] for the case of a uniformly evolving
domain. We have taken the waiting time pdf and the jump
length pdf used therein to perform the simulations.

For the special case where all the particles are initially
placed at x =0, one has (xj) =0 for n > 1, (x") =0 for
n = odd, and Egs. (58) and (60) become

(1)) =2Dr — R oD’’’ + O(r°), (61)
(1)) =12D%* + 0(th). (62)
300 " T T T
. 7
250 |+ , s i
200 | K ’ ]
S 7 7
| 150 | , s i
N/g ,
~ z
100 - . /, i
2
50 + i
0 1 1 1 L
0 100 200 300 400

t

FIG. 3. (x?) — x(zJ vs time for u(x, 1) = pox?, u(x, 0) = 8(x — xp)
with xy = 20, D = 1/2, and 1y = 107%. The squares are simulation
results. The dotted line corresponds to results obtained from the
numerical solution of Eq. (43). The broken and solid lines are the
analytical expressions to order ¢ and order ¢, respectively, given in
Eq. (55). Note that the expression of order ¢ is just the well-known
expression for a static domain (case o = 0).

400 . ; . -
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FIG. 4. (x?) vs time for wu(x,t) = pex?, u(x,0)=48(x), D=
1/2, and 1y = 1075, The squares are simulation results. The dotted
line corresponds to results obtained from the numerical solution of
Eq. (43). The broken and solid lines are the analytical expressions
to order ¢ (or equivalently, for a static domain) and order #3, respec-
tively, given in Eq. (61).

The above findings highlight yet again the importance of
the initial condition, to the extent that the time dependence
of the leading correction to the second- and fourth-order mo-
ments is different than that obtained for the case xo #% 0. For
example, the short-time correction to leading order is cubic
in the present case, and therefore weaker than the quadratic
dependence obtained when xy = 0 [cf. Eq. (58)].

Comparisons between moment calculations and simula-
tions for (x>(¢)), with the initial distribution of particles given
by a Dirac § function at x = 0, are shown in Fig. 4. It is
noteworthy that (x?(¢)) does not scale linearly in time, as an-
ticipated on a nonevolving domain. Note also that the moment
calculations reproduce the numerical results with improved
accuracy as the order is increased. For the case xy = 0, it is in-
structive to compare the result (61) with the case of a uniform
exponential growth and contraction with v(¢) = exp[ftot]. In
this case, one has the exact result,

(P ())exp = 2DT(1) = Dty (1 — 21, (63)
valid for all times ¢. For short times this can be expanded as
((1))exp = 2Dt — 2Dfigt* + O(t%). (64)

The correction (positive or negative) due to the domain evolu-
tion at early times is stronger in the uniform case, since it is
proportional to 2.

Let us focus on the case of a growing domain. In con-
trast with the case w(x,?) = u(x) = puox?, for a uniform
exponential growth the particle motion on the fixed domain
experiences a strong confinement already for small excursions
from the origin, typically corresponding to short travel times
t. This is due to the aforementioned effective reduction of
the diffusion coefficient on the fixed domain [cf. Eq. (44)].
Therefore, after a short time ¢, the correction to a pure dif-
fusive motion is more important than in the case p(x) o< x2,

032111-9



E. ABAD et al.

PHYSICAL REVIEW E 102, 032111 (2020)

where the domain growth is practically zero at short dis-
tances from the origin and v(x,?) ~ 1 in this regime [cf.
Eq. (43)]. An analogous reasoning applies for the contracting
case u(x), figp < 0.

Finally, it is also worth mentioning that, in the contracting
case o < 0, it is possible to obtain a hierarchy that is valid
at all times, not only in the early-time regime. To this end,
one uses a modified local growth rate fi(x,?) = pox>/(1 —
wox?t), with 1o < 0. This yields v(x, #)~! = 1 — pox?t for all
times, whence the exact (albeit nonclosed) hierarchy

d(x"(1))

—— = Dnln— D(x"72(1)) — 2n* oDt (x" (1))

+ n(n 4+ DudDe* (x"7(1)) (65)

follows.

2. Moments of u(y, t) for short times

The short-time moments of u(x,?) can be employed to
get the short-time moments of u(y,r) by expanding y" =
&(x, t)". For example, to first order in ¢ one has y* = x" +
nt [y i(z,0)dz + O(t%). In particular, for fi(x,t) = pox?,
one finds

() = (x) + 5 pot () + 15 mgt > () + 0((x7)r*)  (66a)
and
0F) = () + % ot (x*) + 32 15> (x°) + O((x*)r%). - (66b)

Then

2
¥(®) = (yo) + Fuolyg)t + <Mo(yo>D + ‘1‘_00(y3>),2 +0@?)
(67)
and
02@0) = (y5) + (2D + Fr0(yo)) + 35 (9010{y5)D
+ g + o). (68)

It is worth noting that the leading correction to the first- and
second-order moments has the same sign as po and is linear
in time; therefore, it is stronger than the quadratic correction
observed in the case of the x moments. In the case of the first-
order moment, the leading correction can be interpreted as a
deterministic drift of the form vz, with a velocity given by v =
o (y(z)) /3. Note that the diffusivity D does not appear in this
term; indeed, the diffusive motion is a subleading correction
to the dominant drift arising from the domain evolution.

In contrast, the leading contribution of the domain evolu-
tion to the second-order moment is of the same order as the
intrinsic diffusive motion, leading to an apparent diffusivity
D + wo(yg)/3 which describes particle spreading to dominant
order.

For the case y = 0, insertion of Egs. (61) and (62) into
Eq. (66b) yields

(1) = 2Dt + oD’ + 0). (69)

In Figs. 5 and 6 we compare these results with numeri-
cal estimates of the moments (y*). These results have been

3.0 T T T T

2.0F .

15k 7 -

=y,

0.0

0 100 200 300 400

FIG. 5. (y) — yo vs time for u(x, t) = pox* and u(y, 0) = 8(y —
yo) with yo = 20, D = 1/2, and uo = 107°. The squares are simula-
tion results. The dotted line is obtained from the numerical solution
of Eq. (43). The broken and solid lines are the analytical expressions
to order ¢ and order ¢2, respectively, given in Eq. (67).

obtained by solving Eq. (43) numerically. From the numerical
solution u(x, ¢) one then finds u(y = g(x, t), t) and, from this
function, (y").

As complementary information, we show the numerical
plots of the u(x,t) and u(y, t) for + =400 and ¢ = 2000 in
Figs. 7 and 8. The bimodal form of u(x, t = 2000) shows the
clear influence of the evolving domain on the distribution for
the auxiliary domain.

As an aside we note that, in view of the relation

o0
ulk,t) = Flu(x, 1)} = f e u(x, 1)
—00
o0 .
(—ik)"
dx=)" (" (1)), (70)
m!
m=0
700 . . . .
'l
600 | -
-.‘.
500 F . i
a
...' - A
s 400 - n PR
| g~ -7
~§ 300 - P - .
200 - il _
100 | - .
0 1 1 1 1
0 100 200 300 400

t

FIG. 6. (y*) — ¥ vs time for u(x, t) = pox” and u(y, 0) = 8(y —
yo) with yg =20, D = 1/2, and o = 107, The dotted line is ob-
tained from the numerical solution of Eq. (43). The broken and
solid lines are the analytical expressions to order ¢ and order ¢2,
respectively, given in Eq. (68).
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FIG. 7. (a) u(x,t) and (b) u(y,t) for t =400, D = 1/2, o = 107°, and u(x, 0) = 8(x — x¢) with x, = 20. This deterministic initial
condition implies u(x, t) = p(x, t). The solid lines represent the numerical solution of Eq. (43), whereas the squares are simulation results.
The broken line corresponds to the solution for the static case (ug = 0).

the obtained expressions for the moments may be used
to obtain an early-time approximation for the full Fourier-
transformed probability density function by truncating the
above series to different orders.

Finally, we note that the results obtained for the mo-
ments (x") in the absence of reactions, w = j = 0, can be
straightforwardly extended to include a pure death process
with constant rate (@ = wp, and ¥ = 0). This is done by
noting that #(x, t) for this case and the corresponding so-
lution u(x, t) for the case without reactions, are related to
one another by #i(x, 1) = u(x, t) exp[—wot]. Therefore (") =
(x™) exp[—wot], where (") and (x") are the moments associ-
ated with & and u, respectively.

B. Subdiffusion

Subdiffusion can be obtained from CTRWSs with a heavy-
tailed power-law waiting time density [36]. The Mittag-Leffler
density has been widely studied in this context. This is
defined as

a—1 t o
vt = azaﬂ[—<—> } (71)

T T

0.02 + 4

=
= 001k |
0.00 1 1 L 1 1 1
- -40 -20 0 20 40 60 80

FIG. 8. (a) u(x,t) and (b) u(y, t) for t = 2000, D = 1/2, and o

where
Z*

T(ak + B) 72)

Eap(@)=)_
k=0

is the Mittag-Leffler function.

Rather than substitute the corresponding memory kernel
directly into the master equation, we first note a num-
ber of Laplace transform properties. Using the expression
LIy @)] = ¥(s) =1/(z%s* + 1) for the Laplace transform of
the density (71) in Eq. (23), we obtain [59]

l—a

LIK(@)] = >

(73)

o’

whence the result

-«

c / K@ —)Y(@)dt = —LIY@®)]  (74)
0

-E()t
follows by straightforward application of the convolution the-
orem for the Laplace transform.

‘We note, on the other hand, that

L[oD} Y ®)] = s'"“LIY ()], (75)

T
0.008 - B
0.006 - 4
g
S 0.004 | B
0.002 B
0.000 i LU CEEH
400 600

= 107° and u(x, 0) = 8(x — xy) with x, = 20. The lines represent the

numerical solution of Eq. (43), whereas the squares are simulation results. The broken line corresponds to the solution for the static case

(o = 0).
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where D,l""Y (t) denotes the Griinwald-Letnikov fractional
derivative of order 1 — « of the function Y (¢). This operator
is known to be equivalent to the Riemann-Liouville fractional
derivative,

t !
L f o) g (76)
C(a)at Jy (¢ —1t)
for sufficiently smooth functions [see, e.g., Egs. (13)—(15) in
Ref. [60]].
Comparing Eq. (74) with Eq. (75), we find that for a
Mittag-Leffler memory kernel one has

oD Y (x,1)] =

/ K(t—thY(t)dt = tia oD} Y (2). (77)
0

Consequently, the auxiliary CTRW master equation, Eq. (33),
can be written as

ou(x,t)
ot
AY?*D(x, )2 [ 92 i(x,t
_ Ay 1) > 5 (x.1,0) gDl _u(x )
2T« 0x a(x,t,0)

! Bﬁ(x, S) d _ 11—« ﬁ(x, t)
_[[) ox dsi|a|:0'(x,t,0)opt m]}

—[a(x, t) + &(x, D]alx, 1) + g (x, 1) + O(AY*).

(78)
We consider the diffusion limit, Ay — 0 and t — 0 with
Ay2
D, = lim , (79)
Ay, t—0 27«
and then
dii(x,t) B ) 2 g H(x,1)
=D,v(x,t — ,t,0)0D, ¢ ————
ot e 5 [T 0P e
t a - ,
. [ [ Alx.s) ds}
0 0x
. o H(x, 1)
— 1, 0) Dl —— 2
ox [0(" )oDy 6(x,t,0)]}
- [ﬁ(xv t) + a)(-xs t)]”_l(x’ t) + )_((-xs t)
(80)

Equation (80) can be rewritten as
du(x,t)
ot

9 9
=D, v(x, 1) o= {D(x, ! o [a(x, t,0)D} ™

i(x,t) ]}
y A E)
5(x.1,0)

— [, 1)+ ox, D]atx, 1) + x(x, 1) (81)

or, in terms of the ensemble density of particles on the fixed
domain, u(x,t) = v(x, t)i(x,t), as

du(x,t) zpai{ﬁ(x,t)_lai[‘_’(x’t)_l
X

ot ox
u(x, t) i| }
e—fO’ (x,s)ds

—o(x, Hulx, t) + x(x, )v(x, 1), (82)

rlo—
e Jo @(x,8)ds Olel—ot
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FIG. 9. Numerical solution u(y, ) (solid line) and simulation
results (squares) fora = 1/2, D, = 1/2, o = 1075, w(x, 1) = wy =
5 x 1073, and u(x, 0) = 8(x). The broken line is the corresponding
solution for the case of a static domain.

where we have used the relationship
G(x,1,0) = B(x, 1, 0)0(x, 1) = e ho@@sp e p)=1,

Equations (80), (81), and (82) are the main results of
this second part of this paper. They are the reaction subdif-
fusion equations, in fixed domain coordinates, for particles
undergoing subdiffusion with reactions, on a growing domain.
Similar to the case with standard diffusion, solutions to these
equations at position x and time ¢ can be mapped to provide
the concentrations of diffusing particles with reactions on a
growing domain at position y and time 7.

For the case w(x, t) = w(t) one finds a simpler expression

in terms of u*(x, ) = u(x, t )eo @®)ds,

ou*(x,t 3 9
+ 70 OD(x, e Jo @,
(33)

In general, Eq. (82) cannot be solved exactly, but one can
resort to numerical methods instead. For example, in Fig. 9
we show the numerical solution of Eq. (82) for a particular
yet representative case. The solution has been obtained by
means of a straightforward extension of the fractional Crank-
Nicolson method described in Ref. [61] (see Appendix C).

Moments of u(x,t) for short times

We proceed here in the same way as for the case of standard
diffusion. For example, assume that we have an expansion of
the form pu(x, #) = pox?, and no reactions. Then it is easy to
see that the hierarchy of moment equations obtained for subd-
iffusion is recovered from that in Sec. IV A 1, Egs. (46)—(51),
by simply replacing (x"(¢)) with OD,I ~*(x"(t)) and D with D,
The iterative procedure for solving this hierarchy of equations
is also similar to that employed in Sec. IV A 1. The first two
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equations for odd-order moments are [cf. Egs. (48) and (50)]

d
();(;‘)) = Dy[—2uot 0D, (x(1))
+ 45 oD} (1)) =4t oD U @)+ -],
(84)
3
dix d:’” Do[60D;~* (x(1)) 180t oD, " (£} (1) +--- |-
(85)
To order t° we have (x"())(t) = (x")(0) = (xg), and so
Eq. (84) can be approximated, to order %, by
d(JC(t)) _ _ZMOIDa ODrl_a <)C()) + 0(1‘0()
dt
= —2uoDy (xO>F( ) + o(t). (86)

Here we have used the fact that OD,I"" 1 =t*"!/T'(«), which
is a special case of the more general result
'+ p8) jatp1
o+ B )

The integration of Eq. (86) yields

oD/~ 1P = (87)

20 (x0)

I4a I4a
Trar@ et ™ Ho. 68

(x(1)) = (x0) —

Similarly, one finds

6(xo)
'l +a)
We can improve these approximations in an iterative way. For
example, from the approximations in Eqgs. (88) and (89), we
find that the equation for d (x)/dt to order t'** is
d{x(1))
dt

(1) = (xp) + Dy t* +0(%).  (89)

= —2uoDyt 0D} (x0)

+ 4ugDyt” oD " (xg) + o' T).  (90)

Taking into account Eq. (87) and integrating the resulting

equations, we easily find the first-order moment up to order
2+a.
t :

20 {x0) Dy [1ta 415(x5) D [+
(1 + o)(a) Q2+ o) ()
+ o(t*1). 91)

(x()) = (x0) —

It is easy to see that the insertion of Egs. (88) and (89) into
Eq. (84) leads to an equation for d (x)/dt to order '+, which
would in turn lead to an expression for the first-order moment
to order 212 and so on.

Let us briefly discuss the difference in behavior between
the normal diffusive and the subdiffusive case. From Eq. (91),
we immediately see that the leading correction to the case
of a static domain is of the order 7!, i.e., stronger than
the quadratic correction predicted by Eq. (57). This reflects
the fact that the domain growth plays a more dominant role
when the intrinsic particle motion is subdiffusive rather than
diffusive. The result corresponding to normal diffusion is re-
covered in the limit o — 1.

The short-time behavior of even-order moments can be
obtained in a similar way. The equations for the first two
even-order moments are [cf. Egs. (49) and (51)]

2
D) — D [29D} () — 8ot D %0
+ 12056 0D} (@) + -+ ], 92)
4

<dt(t)> Dqo[12D} 7 (x*(t)) =320t oD} ~* (x* (1)) + - - .
93)

To order t~!*¢, the equation for (x?) reads

2
d(xdt(t)) = 2D, D71 + o(t7"F), (94)
so that

(@) = () + 1+ o(1%). (95)

I +a)

Note that, to this order, the expansion plays no role.

Assume that all the subdiffusive particles are initially
placed at x = 0. In this case (xj) =0 for n > 1. Inserting
this expression into Eq. (93), one sees that the equation for

x*)/dt to order 1'% takes the form

dix*(r)) 24

D2 l—1+20t +0(l_l+2a). (96)

dt TQa) ©
Consequently,
) = 24D, 12 4 o(t?*) (97)
T+ 2) '

An improved differential equation for (x?(t)) can be ob-
tained by taking advantage of the fact that we now know a
more accurate expression for (x?(¢)) [cf. Eq. (95)] which can
be inserted into Eq. (92). The resulting equation is

d(x*(t)) _ 2D, 16D?2 16D 1o
di  ~ T(a) TQa)

Note that, to this order, it is not necessary to include the
moment (x*(¢)) (and, a fortiori, higher order moments), since
the contribution coming from this term will be at least of order
t!+3%_ The integration of Eq. (98) yields

oA = Doy _
ra+a)

—l4a _

+o(r*).  (98)

16D§ Mo

142« 142«
d+t2ar2e) o0
99)

The main term is simply the standard exact expression
for the mean-square displacement of a subdiffusive parti-
cle evolving on a static domain. In Fig. 10 we compare
the approximation given by Eq. (99) with results obtained
by numerical integration and by random walk simulations.
From Eq. (99), one clearly sees that the leading correction
introduced by the domain evolution is of the order 120 ag
opposed to the cubic correction characteristic of the normal
diffusive case [cf. Eq. (61)]. Once again, the limit o — 1
yields the result for normal diffusion.

The short-time behavior of the moments of u(y, t) for sub-
diffusion is readily obtained by the method already used in the
normal diffusive case. Note that Egs. (66a)—(66b) continue to
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FIG. 10. (x?) vs time for pu(x,t) = puox?, u(x,0) = 8(x), and
1o = 107° for subdiffusive particles with « = 1/2 and D, = 1/2.
The dotted line represents numerical results, whereas the squares are
simulation results. The broken line corresponds to the static case, i.e.,
to the main term in Eq. (98), whereas the solid line corresponds to the
analytical short-time approximation given by the full equation (98).

hold in the subdiffusive case. Inserting Egs. (89), (91), (97),
and (99) into Egs. (66a)—-(66b), we find

20 (o)

t1+ot
rQ+a) “

1 3
() = (o) + rolvglr +
o
10
for yo # 0. Note that the linear drift term already encountered
in the normal diffusive case remains dominant. For yy = 0,
one has

+ 22(5) 2 + o(t?) (100)

2D,
T +4a)
implying that the first correction arising from the domain

evolution is proportional to #'*2*, and thus more important
than the cubic correction given by Eq. (69).

16MOD§
L2+ 2a)

o

(y2) tl+20{ + 0(1‘14*20()7

(101)

V. REACTION DIFFUSION EQUATIONS AND REACTION
SUBDIFFUSION EQUATIONS IN GROWING DOMAIN
COORDINATES FOR GROWING DOMAIN PROBLEMS

In the preceding section we derived the evolution equa-
tions for the diffusion limits of the master equations for an
auxiliary CTRW with standard diffusion, and with subdif-
fusion. The auxiliary CTRW was defined as a CTRW on a
fixed domain, with variable jump lengths, corresponding to
a CTRW on an evolving domain with fixed nearest-neighbor
jump lengths. The evolution equations were obtained in the
coordinate system of the fixed domain. In this section we
obtain the corresponding evolution equations in the coordinate
system of the evolving domain by mapping the equations
Eq. (40) for standard diffusion and Eq. (80) for subdiffusion
back to the growing domain. It is important to note that this
is largely a formality. The governing equations are easier to
solve for the auxiliary process on the fixed domain.

We recall that the space coordinate y on the evolving
domain can be represented by g(x,t), and we have defined

functions on the growing domain, ¢(y,7) = ¢(g(x,1),1) =
¢(x,t) in terms of functions on the fixed domain using the
mapping (5). In this way we identify the following:

u(y,t) = i(x,t), (102)

u(y, 1) = p(x, 1), (103)

v, 1) = D(x, 1) = —ag;x’ D et a10a
X

0g(x,t * :
nO.1) = D, 1) = g(axt ) _ / A(e el iGds g
0

(105)

Many results can now be obtained in a straightforward way
from simple chain rules, for example,

Ipx, 1) _ @y, t)v

1), 106
o By . 1) (106)
Note that
av(x, 1) _ /r afu(x, s) s | ot A ds
ox 0 ox
t 8_ ,
:[/ A S)ds}a(x,t) (107)
0 ox
and
av(x,t ov(y,t) ]9 vy, )]
bent) [ ovhho) |dy _ [ 9v0L1) Se.r).  (108)
ax ay dax ay
so that
" oj(x, vy, t
/ (x s)ds: v(y )‘ (109)
0 dx ay
We also note that
ov(x,t -
V(at ) = B, 0RO = e o, (110)
and then
ov(x,t)
ERrve w(, vy, t). (111)

Partial derivatives, with respect to time, of functions on
the fixed domain are replaced with material derivatives of
the corresponding functions on the growing domain. Thus, if

L, t) = C(x,t), then

3¢ (x, 1) _ %00 + 3¢ (y, 1) dy
ot ot dy ot
Finally in this preamble we note the following result, obtained
by combining Eqs. (111) and (112),
1 [dv(y0) n vy, 1)
vy, 1)L ot dy

(112)

ny, 1) = n(y, t)]- (113)

A. Standard diffusion

Using the results presented earlier in Sec. V, it is now
straightforward to transform the evolution equation for the
auxiliary process with standard diffusion, Eq. (38), to an
evolution equation in the coordinates of the evolving domain.
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There are various ways to express the resulting equation,

du(y, 1) 82u(y,t)_ du(y, 1)
P TN DT
=@, 1) + oy, DHluy, 1) + x (v, 1), (114)
or
du(y, 1) 82u(y,t)_ du(y, t)
P 1D
1 do(y,t) do(yt)
[a(y,t) ot ay n(y’t)}u(y’t)
+x 0,1, (115)
or
du(y,t) u(y, 1) _ du(y, t)
o =D 0y N, H— (116)
1 dv(yt) 1 dv(yt)
S ey e G|

—o@, Huy,t) + xO, 1). (117)

B. Subdiffusion

We now carry out the transformation of the evolution equa-
tion for the auxiliary process with standard diffusion, Eq. (80),
to an evolution equation in the coordinates of the evolving
domain. In this transformation, the fractional derivatives with
respect to time of functions on the fixed domain are replaced
with comoving fractional derivatives on the evolving domain,
defined as [47]

Li/t @@ 0.0 1), 1)
@) o1 0fgg v, t),t),

x (r — ) lar.

SCITYf () =

(118)

The evolution equation for subdiffusion with reactions on the
evolving domain can now be written as

du(y, t) 92 _ u(y, t)
—D,— 8prl—a
ot "oy {“(y”’O)OCf [a(y,r,m

ou(y, t)
dy

=[G, 1) + 0@y, Oluly, 1) + x (v, 7). (119)

Equation (119) is a major result of the paper. It provides a
general evolution equation that can be employed to describe
the space and time concentration of a system of particles
that are undergoing subdiffusive transport, with mean-square
displacement growing as t*, with particle deaths occurring
at rate w(y,t), particle births occurring at rate x(y,?), on a
domain y € [0, L(¢)] that is evolving as y = g(x, t) at time ¢
from each initial location x € [0, L]. The quantities, n(y, t)
and u(y, t) are well defined in terms of the growth function
g(x,t) via

—n(1)

N 1) = i, 1) = —ag(ax’ )
t
and
HOv ) = A 1) = - log (—ay),
ot ox

and o(y,t,0) =& (x,t,0) includes contributions from the
growth function and the death rate via

o(x,0,1) = ¢ hiwds,= fowsds, (120)

In practical terms this evolution equation on the growing do-
main would rarely be solved, instead it is more straightforward
to solve the evolution equation for the formulation of the
auxiliary process on the fixed domain, Eq. (82).

Note that if we take the limit as « — 1 in Eq. (119), we
recover the equation for standard diffusion with reactions on
an evolving domain, Eq. (114). Note also that if the growth
rate is zero, ji(x,t) =0, then n(y,t) =0 and y =x, and
Eq. (119) reduces to the equation for subdiffusive transport
with reactions on a fixed domain [6,7], i.e.,

2
u(x, 1) :Daa—{e(x,t,O)oD}“[ u(x,r) :”
ot ox? 0.0 | (21

—ow(x, Hulx,t) + x(x,t).

Finally we note that if there are no reactions, then Eq. (119)

reduces to
du(y.t) _ ) 8 - BE 009 ds £ ol u(y, 1)
ot “8y2 01| o= Jo AE ' Gi0).5) ds
du(y, t)
-y, t)——
dy

— p(y, Duly, 1). (122)

This is in agreement with Eq. (40) in Ref. [47] in the special
case of uniform growth where u(y,t) = r and y(x, t) = xe"
so that n(y) = ry.

VI. EXAMPLE

In this section, we will show how our formalism could
be used for describing a specific reaction-diffusion process
occurring in a growing surface. In order to apply the equations
in this paper, it is necessary to have explicit expressions for
the domain growth function fi(x,7) and the birth and death
rates jy(x,7) and @(x, ). As an illustration we consider a
population with logistic growth dynamics, spreading along
an evolving interface whose height A(r, t) above a horizontal

baseline r € [0, L] is given by
dh(r,t) 1[oh(r,t)]?
=v+Ar{l+ = . (123)
2 ar

ot

In this model, v represents a vertical growth rate parameter,
A represents a surface normal growth rate parameter, and it
is assumed that the height is a slowing varying function of
r,i.e., dh/dr < 1. This surface growth model has been used
to model laminations in growing stromatolites [53,54]. The
application considered here could model the lateral spread of
microbicides on the surface of a growing stromatolite. In the
application to stromatolite growth the height would typically
be measured in mm and the growth rates v and A would be
measured in millimeters per year.
The arc length along the interface is given by

r / 2
s(m):/ /1+|:8h(r,t):| g
0 87'/

(124)
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The initial fixed domain coordinate x € [0, Ly] can then be
defined as

x = s(r,0), (125)

and the evolving domain coordinate y € [0, L(¢)] is given as

y(x, t) = s(r(x), t). (126)

Note that Eq. (125) defines r(x) used in Eq. (126). The growth
rate fi(x,t) can then be obtained by differentiating Eq. (4)
with respect to x, taking the logarithm, and differentiating with

respect to ¢,
d ad
a(x,t) = —log <_y>

127
ot 0x (127)

In logistic growth a population with number density u(x, ),
representing the number per mm, evolves via

dulx, 1) u(x, t)}

Jat Uo

yulx, t)[l - (128)

where i is the threshold carrying capacity and y is a net per
capita growth rate. This then identifies

yu(x,t)
Uup ’

X(x,t) =yu(x,t) and o(x,t)= (129)
The expressions for fi(x,t), @(x,t), and ¥ (x,t) can be em-
ployed in the evolution equations of u(x,t) with standard
diffusion, Eq. (42), or subdiffusion, Eq. (82), and the solutions
u(x, t) can be mapped onto corresponding locations y at time
t on the evolving domain using Eq. (126). The solutions of
Eq. (42) or Eq (82) could be obtained using numerical meth-
ods such as a modification of the fractional Crank-Nicolson of
Ref. [61] or a modification of the discrete time random walk
algorithm presented in Ref. [62].

VII. SUMMARY AND OUTLOOK

In this paper we have derived evolution equations for a
system undergoing diffusion and reactions on an arbitrarily
evolving one-dimensional domain. Evolution equations have
been obtained for both standard diffusion and subdiffusion.
The evolution equations were obtained from the following
sequence of steps. First we identified a general mapping be-
tween the initial fixed domain and the evolving domain. We
then derived master equations for an auxiliary CTRW on a
fixed domain with birth and death processes, corresponding
to a CTRW with unbiased fixed length steps on a growing do-
main with birth and death processes. We considered particular
waiting time densities, corresponding to standard diffusion in
one case and subdiffusion in another, and we obtained dif-
fusion limits of the master equations for the auxiliary process
on the fixed domain. We then mapped the governing equations
back to the evolving domain.

Interesting behavior arises already in the case of a uni-
formly evolving domain, even in the absence of reactions.
As we have shown, mapping the normal diffusive dynamics
onto the initial fixed domain results in rescaled Brownian mo-
tion, i.e., Brownian motion with a time-dependent diffusion
coefficient. As pointed out in Ref. [31], this process is often
used as a fitting model for experimental data without physical

justification, but here we see that it emerges naturally from our
formalism for a random walk on a uniformly evolving domain.

Having derived the governing equations for arbitrarily
evolving domains, we then developed an iterative method
for obtaining analytic expressions for short-time moments
for standard diffusion and for subdiffusion on an evolving
domain. We showed that the moments calculated in this way
compared favorably with moment evaluations obtained from
numerical solutions of the governing equations, and from
numerical simulations of the processes.

Beyond this quantitative agreement, let us briefly enumer-
ate some key features of the underlying physics. We have seen
that the short-time behavior of the moments in the absence of
reactions is characterized by the strong influence of the initial
condition.

In this paper, we have largely focused on particular case
w = jox? (with o > 0, say) which lends itself particularly
well to analytical treatment. In terms of x coordinates, when
a particle starts away from x = 0, it is dragged towards the
origin in an accelerated fashion. In the case of normal dif-
fusion, the behavior of (x?) is characterized by a correction
to the standard contribution 2Dt which is quadratic in time
and which also contains the diffusion coefficient D. When
the particle starts at the origin, the correction to the diffusive
contribution is quadratic rather than cubic. For any starting
point yy # 0, the behavior of (y(¢)) is characterized by a linear
correction which does not depend on the diffusivity D. The
apparent diffusivity in y coordinates is also modified by an
additive contribution that stems from the domain evolution.
In the subdiffusive case, the corrections associated with the
domain evolution are stronger, since the relative influence of
subdiffusive transport is less important than that of Brownian
diffusion.

As an application we considered how a diffusion process in
an evolving domain corresponding to surface growth, above
a horizontal baseline, driven by constant vertical growth and
surface normal growth could be described in terms of the
formalism developed in this paper. The coordinates for the
evolving domain represent the arc length along the surface in
this application. Our KPZ-like approach is a suitable starting
point to describe layer-by-layer deposition in stromatolites.
In addition to this specific application, we have already men-
tioned in the Introduction some systems where both diffusive
transport and inhomogeneous domain growth are at play. A
general framework for applications would require extensions
in higher spatial dimensions, consideration of different bound-
ary conditions, inclusion of forces, and inclusion of stochastic
fluctuations.

Given the importance of boundary conditions for applica-
tions, we would like to briefly discuss their role in problems
involving diffusion in growing domains. The mathematical
treatment of boundary conditions follows the same lines as in
the case of a static domain. If the boundary coincides with
the limiting surface of the physical domain, it will evolve
with the same scale factor; such a boundary becomes static
when mapping the problem onto the auxiliary fixed domain,
and the subsequent implementation of the boundary condition
in x coordinates can take place in the same manner as on
a static domain. In some situations of interest, though, the
boundary could be static, implying that one would have a
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moving boundary in x coordinates. In such cases, sticking to
a description in terms of x coordinates would require solv-
ing a problem with a time-dependent boundary condition. In
general, such problems are more difficult than problems with
static boundaries; on the other hand, the effect of time de-
pendent boundary conditions (the so-called “Stefan problem”)
has been the object of comprehensive studies in the literature
(see, e.g., Refs. [63—65]). Of course, one could still use static
boundaries if one chose to work with y coordinates instead.
However, as we have seen in Sec. V, the price to pay is that
the corresponding reaction-diffusion equations are much more
complicated than those derived in Sec. IV for the auxiliary
domain.

We close by noting that the results obtained in the present
work may also be relevant for the study of encounter-
controlled reactions in nonuniformly evolving domains.
Consider, for example, two pulses describing two diffusing
particles that evolve on a domain with expansion rate p o< x2.
Further, assume that these particles react instantaneously upon
encounter. Strictly speaking, the computation of the reaction
rate is a first-passage problem, but an approximation based on
the overlap of the two pulses (defined via the respective pulse
widths and second-order moments) may yield acceptable re-
sults for a suitable parameter choice. If the initial separation is
small enough, the reaction rate will be dominated by the short-

J

time regime, and some of our results might prove useful. As
we have seen, for a given initial separation, the reaction rate
may display significant differences depending on the initial lo-
cation of the pulses with respect to the origin. More generally,
the study of first passage problems in nonuniformly evolving
domains may be of interest for biological applications, as we
explained in the Introduction when discussing the model of
Ref. [52]. Further examples are target and trapping problems,
such as the subdiffusive trapping problem studied in Ref. [66].
An extension of the results available in the literature for the
case of a static domain may unveil interesting effects arising
from the interplay between intrinsic transport and domain
evolution.
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APPENDIX A: AUXILIARY FIXED DOMAIN MASTER EQUATION DERIVATION

The master equation is obtained by differentiating Eq. (20) with respect to time. To avoid problems with the discontinuity in

the arrival rate density at ¢t = 0 we write [11]

G(x, t1x0, 0) = 8(x — x0)8(t — 07) + G (x, t|x0, 0) (A1)
and then
t
p(x, tlxg, 0) = @(t)6 (x, 1, 0)8y v, + / Ot — 13 (x, t,1)g" (x, 'x0, 0) dt’, (A2)
0
where g (x, t|xg, 0) is right continuous at ¢ = 0. We now use Leibniz rule and the results ®(0) = 1,65 (x,¢,¢) = 1 and 0P (t —
t")/9t = —r(t — t') to differentiate under the integral sign, arriving at
0p(x, 1%, 0) _

ot

==Y (1)a(x,1,0)8; 5, — PO[R(x, 1) + D(x, 1)]6 (x, 1, 0)8y 5,

t
+G"(x, )|x0,0) — / Yt —1)e(x, t,t)g" (x, ' |x0, 0)dt’
0

—/ O —1t)[ax, 1) + o, )6 (x, t, )G (x, ' |x0, 0) dt’. (A3)
0

This can be simplified using Egs. (19), (A2), (20), and (A1) to arrive at

3p(x. 10, 0) _
ot -

Ly t
/ Alx, X', t)/ Y —tHa (X, t,tHg(x, t'|xg, 0)dt’ dx’
0 0

t
— / Yt —t)a(x, t,t)g(x, t'|x, 0)dt’
0

=[x, 1) + o, H]p(x, 11x0, 0). (A4)

We now wish to replace the terms involving ¢ with terms involving p. Without loss of generality we can define a kernel K(r —t”)

such that

t t
/w(t—t/)q(x,t/|x0,0)6(x,t,t/)dt/=/ K@ —t)Hp(x, t'|xg, 0)5(x, ¢, t)dt, (A5)
0 0
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and then we can write Eq. (A4) as

3p(x. 0. 0) _
ot -

Lo '
/ Alx, X, t)/ K@t —thYo(x',t,t)p', t'|xy, 0)dt’ dx'
0 0

t
—/ K@t —tYo(x,t,t)p(x, t'|xy, 0)dt’
0

=[x, 1) + o(x, H]p(x, 11x0, 0). (A6)
Using the semigroup property
o(x,t,0)=6(x,t,t)5x,t,0) (A7)
in Eq. (AS5), and taking the Laplace transform L[.] with respect to time in the resulting equation, we obtain
Q(x7t|'x070) /_O(x,t|x0, 0)
LIVOIL| ————— | =LIKOIL| ——————— |- A8
(v ()] [ 50t 0) [K(®)] 50t 0) (A8)
On the other hand, we can also divide both sides of Eq. (13) by & (x, 7, 0) and take the Laplace transform to find
l_)(x’”x(), 0) Q(x’”x()ao)
—— | = L[| ———— |- A9
[ 50 |~ AP OE50 o) (A9)

Comparing Eq. (A8) and Eq. (A9), we obtain the result (23).

APPENDIX B: NONUNIFORM NEAREST-NEIGHBOR
STEPS ON A FIXED DOMAIN

Here we relate nearest-neighbor jump lengths of a fixed
size Ay on the growing domain to corresponding jump lengths
€' and €~ for the auxiliary CTRW on the original fixed
domain. The jump lengths on the e and €~ were defined in
Sec. IV by the relationsy — Ay = g(x —e~,¢t)andy + Ay =
g(x + €7, r). Taking into account that y = g(x, ), we can
rewrite these expressions as

+Ay = g(x £ €, 1) — 3(x, 1). (B1)
We now take Taylor series expansions around the point x and
retain leading order terms in €™ and €~ to arrive at

+\2

Ay = € g(x, 1) £ ) Zu(x, 1) + O[(e®)’]. (B2)

We can now solve the above quadratic approximations for e
and €7, noting that both terms must vanish when Ay = 0, to
arrive at

5 5 28 (x,
L FE@ D Eg@ )1+ TGP Ay
€ — . (B3)
8xx
We now expand each of these terms as a series expansion in
powers of Ay, arriving at

£ _ Ay Bux(x, 1)
gx(xvt) 2gx(x’t)3
Finally, using Eq. (4) we obtain Eqs. (34).

Ay +0(AY)).  (B4)

APPENDIX C: NUMERICAL METHOD FOR THE
SOLUTION OF THE FRACTIONAL
REACTION-DIFFUSION EQUATION IN
GROWING DOMAINS

In what follows, we describe the numerical finite difference
method used to solve the fractional Fokker-Planck equation

(

obtained in Sec. IV. This is exemplified for Eq. (80), which
we first rewrite as o,i(x, 1) = G(x, 1).

In any finite-difference method, one discretizes the vari-
ables in time and space. Let us denote by Ar and Ax the re-
spective time and spatial discretization steps. The discretized
functions will be hereafter denoted by f ].(m) = f(xj, ), where
m=0,1,....M and j=—-J,—J+1,...,0,...,J—1,J.
In the weighted average finite difference scheme employed
in the present work, we replace the fractional partial differen-
tial equation o;ii(x, t) = G(x, t) with the following discretized
version [61]:

I,_t(m+l) . L_t(m)
J J
Ar =G, tw) + (1 = O)G(x;, tnt1)

=G + (1 - )G, (&)

where ¢ € (0,1) is the weighting parameter determining
the convergence and stability of the algorithm. In this pa-
per, we take ¢ = 1/2, which corresponds to the so-called
Crank-Nicolson method [61]. We still have to approximate
the continuous differential operators appearing in G(x, t) by
expressions in terms of finite differences. We use standard
approximations for the ordinary derivatives, namely, the two-
point centered formula for the first-order spatial derivative,
and the three-point centered formula for the second-order
spatial derivative. The fractional derivative oD, is approxi-
mated by the Griinwald-Letnikov formula [59,61]

oD f(x, t)|xj,t,,, ~ (A1) Z wlilfa)fj(mfk), (C2)
k=0

,El_“) can be obtained from the recur-

where the parameters w
sive equation

2 —
w! ™ = (1 - Ta)wfjf’, k=12 (3

032111-18



REACTION-DIFFUSION AND REACTION-SUBDIFFUSION ...

PHYSICAL REVIEW E 102, 032111 (2020)

with wélf"‘) = 1. The resulting difference equation can be

rearranged as

b(m+l) (m+l)+b(n1+l) <m+l)+b(;-n:]) (]"_Z_Tl) =R, (C4)

where b(mH) is a quantity depending on the functions v, [,

and @, as well as on Ar and Ax. The term R on the right-hand

side also depends on the (approximate) numerical values of
the solutions i(x, ,,) at times ¢, smaller than t,,, 1, i.e., at times
t, with n =0, ..., m. Equation (C4) is a tridiagonal system
which can be efficiently solved by means of the well-known
Thomas algorithm.
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