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Spatial correlation functions of paracrystals with radial symmetry
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We develop a phenomenological model to describe the structure of radially symmetric paracrystals whose
long-range order are destroyed by propagation of particle fluctuations. General expressions are derived for
the spatial correlation functions in one-, two-, and three-dimensional spaces. And the spatial correlation in
paracrystals in reciprocal space is further discussed and clarified. The developed method can be used to
quantitatively analyze the microstructure of paracrystalline materials in both real and reciprocal spaces via
scattering experiments and computer simulations.
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I. PHENOMENOLOGICAL MODEL OF PARACRYSTALS
WITH RADIAL SYMMETRY

In this work we consider the two-point correlation func-
tions of paracrystals with radial symmetry, first discussed in
detail by R. Hosemann [1–3]. Although the previous studies
of paracrystals have enjoyed some success by describing the
properties of metal, protein, glass, and soft materials with
Cartesian symmetry [1,2,4–15], the theory of paracrystals
with radial symmetry remains to be further developed for
potential applications in various amorphous materials. This
provides the main motivation for this work. A key concept
in constructing a paracrystal model is the propagation and ac-
cumulation of particle fluctuations. Along the radial direction
throughout the lattice, the long-range order is destroyed by the
accumulated fluctuations. Following the method of Hosemann
and Guinier, we can express the radial distribution function
g(r) as the sum of probability distributions hn(r) associated
with different shells with mean nL and variance nσ 2,

g(r) =
∞∑

n=1

hn(r). (1)

Based on the properties of paracrystals in different shells, one
can construct h2(r), h3(r) . . . hn(r) according to the following
procedure:

h2(r) =
∫

dr′h1(r′)h1(r − r′)∫
dr′h1(r′)

,

hn(r) =
∫

dr′hn−1(r′)h1(r − r′)∫
dr′h1(r′)

,

(2)
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which can be recognized as one-dimensional convolution of
the radial variable. It can be shown that hn(r) in Eq. (2) satis-
fies the characteristics of paracrystals in the radial direction

rn =
∫

drrhn(r) = nL, σ 2
n =

∫
dr(r − rn)2hn(r) = nσ 2,

(3)

where rn and σ 2
n are the average and variance of hn(r), re-

spectively. Physically, Eq. (3) depicts a crystal lattice with
accumulated fluctuations with increasing n. This ensures the
main characteristics observed in paracrystals. To obtain g(r)
via Eqs. (1) and (2), a detailed knowledge of h1(r) is needed.
Once h1(r) is properly described, the corresponding two-point
spatial correlation functions in both real and reciprocal spaces
can be constructed. Therefore, h1(r) can be regarded as a
“generating” function for constructing g(r). In previous stud-
ies of paracrystal theory in Cartesian coordinates, a Gaussian
distribution function with mean L and variance σ 2 is used
to define h1(r). However, it is not mathematically tractable
to calculate the two- and three-dimensional correlation func-
tions using Gaussian distribution as a generating function,
where the expression of hn(r) becomes more cumbersome
with increasing n values. Because the domain of h1(r) is
always positive, in this study we adopt the following Gamma
distribution function as a basis function:

h1(r) = A

�(α)βα
rα−1 exp(−r/β ) = AF (r; α, β ), (4)

where h1(r) = 0 for r < 0, � is the gamma function, and A is
a constant to ensure that g(∞) = 1. α and β are respectively
the shape and scale parameters to characterize the Gamma
distribution function F (r; α, β ). It is instructive to point out
that in the case of large α values the functional behavior of
F (r; α, β ) ∼ Gaussian function and is reduced to the previous
paracrystal studies in one-dimensional space. With a proper
A, one can show that the mean and variance of h1(r) in Eq. (4)
are proportional to αβ and αβ2, respectively. On the basis of
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FIG. 1. Theoretical predictions of g(r) by Eq. (6) with parame-
ters: L = 1; 1/σ 2 = 25, 20, 15; and A = 1. As indicated, the main
characteristics of g(r) are determined by the value of α = L2/σ 2 and
β = σ 2/L, which are related to the ratio of particle fluctuation to
lattice size. With increasing L2/σ 2 or decreasing σ 2/L value, the
oscillation behavior gradually becomes discernible, and the vari-
ance of each peak accordingly reduces. In addition, g(r) reveals
the property of paracrystal whose particle fluctuation is propagated
and accumulated throughout particle shells. In long range, r > 6L,
because of the overlapping fluctuation g(r) converges to unity.

Eqs. (2,4), hn(r) can be written as

hn(r) = AF (r; nα, β ). (5)

As expected, the functional form of Eq. (5) satisfies the
properties of Eq. (3). Therefore, g(r) can be expressed as

g(r) = A
∞∑

n=1

F (r; nα, β ). (6)

Figure 1 gives several examples of g(r) evaluated according
to Eq. (6), with A = 1; α = 25, 20, 15; and β = 1

α
. Using

Eq. (6), we proceed to discuss the reciprocal space structures
in the following section.

II. TWO-POINT CORRELATION FUNCTIONS
IN RECIPROCAL SPACE

In this section, we discuss the two-point correlation func-
tions in reciprocal space, using the phenomenological model
constructed in the first part of this paper. In general, the
structure factor S(Q) can be evaluated through the Fourier
transform of the pair correlation function g(r) − 1 [16],

S(Q) = 1 + ρ

∫
dr exp(−iQ · r)[g(r) − 1], (7)

where Q is the momentum transfer of scattered beam parti-
cles, r the relative position between two particles, and ρ the
number density. In writing Eq. (7), we ignore the contribution
of the δ-function term, (2π )dρδ(Q), to the structure factor,
where d is the dimensionality of the space. In the presence of
radial symmetry, the “radial” part of the structure factor, S(Q),

can be directly related to the radial distribution g(r) through
cosine, Bessel, and spherical Bessel transforms for one-, two-,
and three-dimensional spaces, respectively.

A. One-dimensional structure factor

In the one-dimensional case, Eq. (7) is reduced to

S(Q) = 1 + 2ρ

∫
dr cos(Qr)[g(r) − 1]. (8)

To obtain a compact form of Eq. (8), it is helpful to start with
the cosine transform of hn(r), which is

Hn(Q) = 2
∫

dr cos(Qr)hn(r) = 2A
cos(nαθ )

Rn
, (9)

where we define the variables R ≡ (1 + β2Q2)α/2 and θ ≡
tan−1(βQ). Putting Eq. (9) into Eq. (8) we obtain the analytic
expression of S(Q) as

S(Q) = 1 + 2Aρ
R cos(αθ ) − 1

R2 − 2R cos(αθ ) + 1
. (10)

B. Two-dimensional structure factor

For the isotropic case in two-dimensional space, one shall
express Eq. (7) in terms of the Bessel transformation,

S(Q) = 1 + 2πρ

∫
drrJ0(Qr)[g(r) − 1], (11)

where J0 is the Bessel function of the first kind of order 0.
Similarly, the Bessel transformation of hn(r) is the starting
point to calculate Eq. (11). In this case, Hn(Q) is

Hn(Q) = 2π

∫
drrJ0(Qr)hn(r) = (2παβA)

× 2F1

(
nα + 1

2
,

nα + 2

2
; 1; −β2Q2

)
, (12)

where 2F1 is the ordinary hypergeometric function. Therefore,
the analytical closed form of S(Q) is

S(Q) = 1 + B
∞∑

n=1

n × 2F1

(
nα + 1

2
,

nα + 2

2
; 1; −β2Q2

)
,

(13)

where B = 2παβAρ. It should be noted that Eq. (13), to our
best knowledge, does not have a simpler form such as those
in Eqs. (10) and (16). Therefore, the application of Eq. (13)
might not be useful. Despite this limitation, it is still worth-
while to discuss and explore the physical meaning underlying
the behavior of S(Q). The corresponding numerical results of
S(Q) are given in Fig. 3.

C. Three-dimensional structure factor

In the three-dimensional case with radial symmetry, Eq. (7)
is reduced to the following spherical Bessel transformation:

S(Q) = 1 + 4πρ

∫
drr2 j0(Qr)[g(r) − 1], (14)

where j0(x) = sin(x)/x is the spherical Bessel function of the
first kind of order 0. The technique to calculate Eq. (14) is
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similar to that of one-dimensional case. The first step is to
obtain the spherical Bessel transformation of hn(r). Therefore,
we have

Hn(Q) = 4π

∫
drr2 j0(Qr)hn(r)

= 4πAαβ

Q

n

Rn+1/α
sin[(1 + nα)θ ]. (15)

Via Eqs. (14) and(15), one can obtain the following analytical
form of S(Q):

S(Q) = 1 + 2B
R2 sin(φ + θ ) − 2R sin θ − sin(φ − θ )

QR1/α−1[R2 − 2R cos(αθ ) + 1]2
,

(16)

where φ = αθ . As a guide for the eye, the corresponding
results of S(Q) from Eqs. (14) and (16) are given in Fig. 4.
In summary, S(Q) of the paracrystal with radial symmetry
in one-, two-, and three-dimensional spaces are given in
Eqs. (10), (13), and (16). Except for the two-dimensional
case, the structure S(Q) can be described by simple analytical
expressions.

III. DISCUSSION AND SUMMARY

The structure factor S(Q) of paracrystals with radial sym-
metry are given in Eqs. (10), (13), and (16). Although a
Gamma distribution function is used as a generating func-
tion in this work, the one-dimensional results produced by
Eq. (10), as shown in Fig. 2, are similar to those in Refs. [1–3],
where Gaussian distributions are employed. However, in the
two- and three-dimensional cases, the behavior of S(Q), as
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FIG. 2. Theoretical predictions of S(Q) by Eq. (10) and numer-
ical cosine transform of g(r) by Eq. (8) with ρ = 1. The other
parameters used here are the same as those in Fig. 1. The dash lines
and symbols are analytical and numerical results, respectively. The
agreement between these curves confirms the validity of Eq. (10).
Within the probed Q range, the degree of oscillation becomes more
pronounced as L2/σ 2 increases. For the high-Q regime beyond the
second peak, the S(Q) damps to unity rapidly without discernible
peaks.
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FIG. 3. Numerical computations of S(Q) by Eq. (11) with ρ =
1/(2π ). All the other parameters used here are the same as those in
Fig. 1. Similarly to the one-dimensional case in Fig. 2, within the
probed Q range, the first peak becomes more pronounced as L2/σ 2

increases. Comparing to Fig. 2, the slight upturn of these curves
around Q ≈ 5/L is observed and beyond Q ≈ 2π/L the high-Q
oscillations are suppressed.

illustrated in Figs. 3 and 4, is very different from that of
Eq. (10) except the first peak around Q ≈ 2π/L. With increas-
ing dimensionality, the upturn in low-Q regime, all the way
below Q ≈ 5/L, becomes more discernible while the high-Q
oscillations are strongly suppressed. The origin of the unusual
upturn is related to the fact that beyond the first shell the
separation between different successive shells is significantly
broader than those of typical liquids, such as Leonard-Jones
or Yukawa fluids. Namely, the repulsion beyond first shell
normally is not as strong as that of first shell to maintain the
periodicity of peak position, which is the main characteristic
of paracrystals. Therefore, the closer distance between suc-
cessive shells beyond first nearest-neighbor balances out the
upturn and further reflects in the value of the compressibility
revealed by S(0). This can be verified by fixing the first peak
position and making the other peak positions closer in g(r), as
shown in Fig. 5. On the other hand, the frustration of high-Q
oscillation could be attributed to the variance of first shell rel-
ative to that of other shell in g(r). In paracrystal, the variances
of other shells are always n times that of first shell, as indi-
cated in Eq. (3). It can be evidenced by reducing the variance
of first shell in g(r) in a factor relative to other shells beyond
first peak, as shown in Fig. 6. In summary, we derive general
expressions of the spatial correlation function for paracrystals
with radial symmetry in one-, two-, and three-dimensional
spaces. The validity of analytic scattering functions is con-
firmed by the direct computation of their Fourier transform.
And the physical insight behind the low-Q upturn and high-Q
oscillation of scattering functions is discussed and clarified.
These results can be further applied to quantify the structural
characteristics of paracrystalline materials in real as well as
reciprocal spaces via scattering experiments and computer
simulations.
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FIG. 4. Theoretical predictions of S(Q) by Eq. (16) and numeri-
cal spherical Bessel transform of g(r) by Eq. (14) with ρ = 1/(4π ).
The other parameters used here are the same as those in Fig. 1. The
dash lines and symbols are analytical and numerical results, respec-
tively. No noticeable discrepancy between these curves demonstrates
the analytical formula of Eq. (16). Similarly, within the probed Q
range, the degree of oscillation of first shells gradually becomes more
discernible as L2/σ 2 increases. Compared to the two-dimensional
case in Fig. 3 stronger upturn of these curves is observed around
Q ≈ 5/L. Additionally, beyond Q ≈ 2π/L the high-Q oscillations
have nearly vanished.
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FIG. 5. The origin of the upturn below Q ≈ 5/L regime. The
two-dimensional case is illustrated in (a) and (b), along with
the three-dimensional one in (c) and (d). The green curves have the
value of L2/σ 2 = 25 for g(r) and S(Q) as those in Figs. 1, 3, and
4. The orange curves are obtained by making the shells closer in the
green g(r) of (a) and (c), while keeping that of first shell fixed in the
paracrystal with radial symmetry. It is clearly seen that those upturns
both in (b) and (d) disappear because of this change.

0 3 6
 r (L)

0.5
1

1.5
2

 g
(r

)

0 10 20
 Q (L-1)

0.8

1

1.2

 S
(Q

)

0 3 6
 r (L)

0.5
1

1.5
2

2.5

 g
(r

)

0 10 20
 Q (L-1)

0.8

0.9

1

1.1

 S
(Q

)

(a) (b)

(d)(c)

FIG. 6. The origin of vanishing high-Q oscillation in S(Q). Sim-
ilarly to Fig. 5, the corresponding correlation functions in two- and
three-dimensional spaces are illustrated in (a)–(d), respectively. The
green g(r) is the same as that of Fig. 5. The orange lines are con-
structed by reducing the variance of first shell of the green g(r) in
(a) and (c), while leaving the other shells unchanged in the paracrys-
tal. It can be seen that in the orange lines of S(Q) in (b) and (d) the
high-Q oscillations become discernible.

A natural question that arises from the development of
this theoretical spatial correlation function is whether it can
be applied to facilitate quantitative structural investigation
of materials, in the context of elastic scattering, and obtain
additional information which is not available from existing
approaches. An area of potential interest is characterization of
spherical precipitates in alloys. In the current approaches [17]
for small-angle scattering data analysis, the spatial distribu-
tion of these second phase particles has been described based
on the assumption of hard sphere interaction. Although sat-
isfactory agreement between model fitting and experimental
spectra can be obtained from regression analysis, an intrinsic
discrepancy between the physical picture embedded in the
interacting hard sphere model and the dispersion of these
second phase particles is also obvious. Precipitates in al-
loys are created by mass transport through diffusion [18].
While a strain field is created during the formation process
and affects the spatial distribution [19], it is questionable
whether hard sphere repulsion can be used to describe the
inhomogeneous and complicated interaction among differ-
ent precipitates. The pair distribution function g(r), which
is obtained by Fourier transforming the fitted S(Q) from the
solution of Ornstein-Zernike equation with hard sphere inter-
action [16], is characterized by a sharp peak at r = D, where
D is the particle diameter. This formation of second phase
precipitates in a homogeneous matrix is the result of local
solute depletion. As a result, the average distance between a
tagged precipitate and its neighbors is considerably larger than
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the averaged diameter of precipitates because the physical
contact between neighboring precipitates, as indicated by the
g(r) of interacting hard spheres, is not energetically favorable
[18]. Moreover, the low-Q upturn characterizing the coherent
small-angle scattering spectra of precipitating strengthening
alloys has been attributed to the effect of grain boundary
and polydispersity [17,19–24]. This structural feature can be
experimentally assessed by the technique of ultra-small-angle
neutron or x-ray scattering. Our calculation suggests that the
contribution from multidimensional correlation cannot be dis-
regarded. The deficiency of existing approaches reflects the
merits of our phenomenological model for this specific appli-
cation.
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Julienne, P. Bartczak, J. Polański, J. Lelatko, M. Zubko, and
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