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Fractional Brownian motion (FBM), a non-Markovian self-similar Gaussian stochastic process with long-
ranged correlations, represents a widely applied, paradigmatic mathematical model of anomalous diffusion. We
report the results of large-scale computer simulations of FBM in one, two, and three dimensions in the presence
of reflecting boundaries that confine the motion to finite regions in space. Generalizing earlier results for finite
and semi-infinite one-dimensional intervals, we observe that the interplay between the long-time correlations
of FBM and the reflecting boundaries leads to striking deviations of the stationary probability density from
the uniform density found for normal diffusion. Particles accumulate at the boundaries for superdiffusive FBM
while their density is depleted at the boundaries for subdiffusion. Specifically, the probability density P develops
a power-law singularity, P ~ r*, as a function of the distance r from the wall. We determine the exponent k as a
function of the dimensionality, the confining geometry, and the anomalous diffusion exponent « of the FBM. We
also discuss implications of our results, including an application to modeling serotonergic fiber density patterns

in vertebrate brains.
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I. INTRODUCTION

Following pioneering works of Einstein [1], Smoluchowski
[2], and Langevin [3], normal diffusion can be understood as
random motion that is local in time and space. This means
that normal diffusion is a stochastic process that fulfills two
conditions, (i) it features a finite correlation time after which
individual steps become statistically independent, and (ii) the
displacements over a correlation time feature a finite second
moment. If these conditions are fulfilled, the central limit
theorem applies, resulting in the well-known linear relation
(r?) ~t between the mean-square displacement of the mov-
ing particle and the elapsed time ¢ [4].

If at least one of the preconditions for the central limit
theorem is violated, deviations from the linear relation (r?) ~
t may appear, giving rise to anomalous diffusion (for reviews
see, e.g., Refs. [5-10] and references therein). For example,
sufficiently broad distributions of waiting times between in-
dividual steps can lead to subdiffusive motion (for which
(r?) increases slower than ¢) while broad distributions of step
sizes may produce superdiffusion (where (r?) increases faster
than ). Anomalous diffusion is often characterized by the
power-law dependence

(r¥) ~ %, (1)

where « is the anomalous diffusion exponent which takes
values 1 < o <2 for superdiffusion and 0 <« < 1 for
subdiffusion.

Another important mechanism leading to anomalous dif-
fusion consists of long-range correlations in time between
the displacements of the particle. The prototypical mathe-
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matical model of a stochastic process with long-time cor-
related steps is fractional Brownian motion (FBM) which
was introduced by Kolmogorov [11] and further studied by
Mandelbrot and van Ness [12]. FBM is a self-similar Gaus-
sian stochastic process with stationary long-time correlated
increments. It gives rise to power-law anomalous diffusion
(1). In the superdiffusive regime, 1 < @ < 2, the motion is
persistent (positive correlations between the steps) whereas
it is antipersistent (negative correlations) in the subdiffu-
sive regime, 0 < o < 1. In the marginal case « = 1, FBM
is identical to normal Brownian motion with uncorrelated
steps.

FBM has been applied to model the dynamics in a wide
variety of systems, including diffusion inside biological cells
[13-18], the dynamics of polymers [19,20], electronic net-
work traffic [21], as well as fluctuations of financial markets
[22,23]. FBM has been analyzed quite extensively in the
mathematical literature (see, e.g., Refs. [24-27]) but only
few results are available for FBM in confined geometries,
i.e., in the presence of nontrivial boundary conditions. These
include the solution of the first-passage problem of FBM
confined to a semi-infinite interval [28-31]), a conjecture for
a two-dimensional wedge domain [32], and corresponding
results for parabolic domains [33]. In addition, the probability
density of FBM on a semi-infinite interval with an absorbing
boundary was investigated in Refs. [34-36]. The difficulties
in analyzing FBM in confined geometries are related to the
fact that a generalized diffusion equation for FBM applicable
to solve boundary-value problems is yet to be found, and
the method of images [5,37], typically invoked for boundary-
value problems, fails.
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Recently, FBM with reflecting walls has attracted consid-
erable attention as computer simulations have demonstrated
that the interplay between the long-time correlations and the
confinement modifies the probability density function P(x, t)
of the diffusing particles. For FBM on a semi-infinite interval
with a reflecting wall at the origin, the probability density
becomes highly non-Gaussian and develops a power-law sin-
gularity, P ~ x*, at the wall [38,39]. For persistent noise
(superdiffusive FBM), particles accumulate at the wall, k < 0,
whereas particles are depleted near the wall, k > 0O for antiper-
sistent noise (subdiffusive FBM). Analogous simulations of
FBM on a finite interval, with reflecting walls at both ends,
have shown that the stationary probability density deviates
from the uniform distribution found for normal diffusion [40].
Particles accumulate at the walls and are depleted in the
middle of the interval for persistent noise whereas the opposite
is true for antipersistent noise.

The above results for the probability density of reflected
FBM are all restricted to one dimension whereas many of
the applications in physics, biology and beyond are in two or
three dimensions. It is therefore interesting and important to
ask whether reflected FBM in higher dimensions also features
unusual accumulation and depletion effects of particles near
reflecting boundaries and to determine the functional form of
the probability density in these cases.

In the present paper, we therefore analyze by means of
large-scale computer simulations the properties of reflected
FBM in various confined geometries. After providing some
additional results in one dimension, the main focus will be
on reflected FBM in two and three space dimensions. In all
cases, we find that particles accumulate at the reflecting walls
for persistent noise and are depleted close to the walls for
antipersistent noise, just as in one dimension. The probability
density behaves as a power of the distance from the wall,
P ~ r“. We determine the exponent « as a function of the
dimensionality, the confining geometry, and the anomalous
diffusion exponent o of the FBM.

Our paper is organized as follows: We define reflected
FBM in one and higher dimensions in Sec. II, where we also
discuss the details of our numerical approach. Sections III,
IV, and V are devoted to results for one, two, and three space
dimensions, respectively. In Sec. VI, we discuss an interesting
application of reflected FBM to model serotonergic fibers in
vertebrate brains [41,42]. We conclude in Sec. VII.

II. REFLECTED FRACTIONAL BROWNIAN MOTION
A. Definition of fractional Brownian motion

We start by defining FBM in one space dimension. FBM
is a continuous-time centered Gaussian stochastic process.
The covariance function of the position X at times s and ¢ is
given by

(X()X (@) =K(s* — [s —1]* +1), 2

defined for anomalous diffusion exponents « in the range
0 < a < 2. Setting s = ¢, this yields anomalous diffusion with
a mean-square displacement of (X?) = 2Kt%, i.e., superdiffu-
sion for & > 1 and subdiffusion for @ < 1. Correspondingly,
the probability density of unconfined (free space) FBM takes

the Gaussian form

1 x2

P(x,t) = Nrrred exp ( 4Kt“>' 3)
We now discretize time by defining x, = X(¢,,) with ¢, = en
where € is the time step and #n is an integer. This leads to
a discrete version of FBM [43] that lends itself to computer
simulations. It can be understood as a random walk with iden-
tically Gaussian distributed but long-time correlated steps.
Specifically, the position x, of the particle evolves according
to the recursion relation

Xpr1l = Xp + En- (4)

The increments &, are a discrete fractional Gaussian noise,
a stationary Gaussian process of zero mean, variance o2 =
2K €%, and covariance function

Cy = Enbman) = 30°(n+ 11" = 20" + [n — 1|%).  (5)

The correlations are positive (persistent) for « > 1 and neg-
ative (antipersistent) for o < 1. In the marginal case, o =
1, the covariance vanishes for all n # 0, i.e., we recover
normal Brownian motion. For n — o0, the covariance takes
the power-law form (&,,€,,4,) ~ a(a — 1)|n|*72.

To reach the continuum limit, the time step € needs to be
small compared with the considered times . Equivalently, the
size o of an individual increment must be small compared
with the considered distances or system sizes. This can be
achieved either by taking € to zero at fixed ¢ or, equivalently,
by taking ¢ to infinity at fixed €. In this paper, we chose
the latter route by fixing € = const. and considering times
t — o0.

We now generalize FBM from one to higher dimensions.
FBM in d dimensions can be defined as the superposition
of d independent FBM processes, one for each Cartesian
coordinate [44,45]. This means the d-dimensional position
vector 1, follows the recursion relation

Lppt =T, +§,, (6)

where the components &7 of the d-dimensional fractional
Gaussian noise feature the covariance function

(DD ) = Lo2(ln 4+ 1% =21l + In — 11)8;. (D)

It is easy to show that this definition is invariant under
rotations of the coordinate system. We also note that the
generalization of FBM to higher dimensions as superposition
of independent components is not unique. More complicated
correlation structures between the components have been
considered in the mathematical literature (see, e.g., Ref. [46]).

B. Reflecting boundaries

Let us now discuss how to define the boundary conditions
that confine the FBM to a given geometry. Reflecting walls
can be implemented by suitably modifying the recursion
relations (4) and (6). As the fractional Gaussian noise is
understood as externally given [47], it is not affected by the
walls. In one dimension, an “elastic” wall at position w that
restricts the motion to x > w (i.e., a wall to the left of the
allowed interval) can be defined by means of

Xn+1 =w+|xn+$n_w|~ (8)
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This definition was employed in recent studies of reflected
FBM [38-40,45], but it is by no means unique. The recursion
relation

R £ TR L X T
n+l X, otherwise

€))

defines an “inelastic” wall at which the particle does not move
at all if the step would take it into the forbidden region x < w.
Alternatively, the recursion

Xpp1 = max (x, + &,, w) (10)

places the particle right at the wall if the step would take it into
the forbidden region x < w. Definition (10) can be understood
as a discretized version of the definition of reflected FBM
in the mathematical literature where it is employed, e.g., in
queueing theory [48,49].

In addition to these hard walls one can also introduce soft
walls by adding repulsive forces to the recursion relation,

Xn+1 an+§n+F(xn)- (11)
We consider exponential forces,
F(x) = Foexp[—A(x — w)], (12)

characterized by amplitude F; and decay constant A. Note that
a factor € stemming from the time step has been absorbed
in the amplitude Fy. Boundaries restricting the motion to
positions x < w (i.e., walls at the right end of an allowed
interval) can be defined in analogy to Eqgs. (8) to (11).

In higher dimensions, we use appropriate generalizations
of the wall implementations (8), (9), and (11). This is unam-
biguous for the “inelastic” wall which prevents the particle
from moving if it would enter the forbidden region,

r {r,, + &, ifr,+ &, isin allowed region
n+1 =

r, otherwise. (13)

For other wall implementations, some care is required to
properly deal with the directions of the motion and of the wall
forces, in particular in complex geometries. For example, a
simple reflection analogous to Eq. (8) becomes ambiguous
if the allowed region features sharp corners, and, unless the
geometry is highly symmetric, the directions of the wall forces
depend on details of the modeling potential.

In the following, the majority of our simulations utilize the
“inelastic” walls (9) and (13). However, for reflected FBM to
be a well-defined self-contained concept, it is important to es-
tablish that its properties do not depend on the precise choice
of boundary conditions (so that it can be applied to situations
in which details of the interactions between the particles and
the wall are not known). In Sec. III C, we therefore carefully
compare trajectories and probability densities resulting from
different wall implementations. The data show that the wall
implementations affect the immediate vicinity of the wall only
and become unimportant in the continuum limit, i.e., on length
scales large compared with o and A~

C. Simulation details

In the following sections, we report results of computer
simulations of our discrete-time FBM in one, two, and three
dimensions for anomalous diffusion exponents « in the range

between 0.3 (deep in the subdiffusive regime) and 1.95 (deep
in the superdiffusive regime and almost at the ballistic limit
o = 2). Each simulation uses a large number of particles,
up to 107. We fix the time step at € = 1 and set K = 1/2
(unless noted otherwise). This implies a variance o> = 1 of
the individual steps. Each particle performs up to 2% & 5.4 x
10® time steps.

As discussed in Sec. IT A, this large number of steps
allows us to reach the continuum (scaling) limit for which
the time discretization becomes unimportant, and the behavior
approaches that of continuous time FBM. Expressed in terms
of the linear system size L, the continuum limit takes the form
L/o > 1. In our simulations, the linear system sizes range
from L = 100 for the most subdiffusive o = 0.3 to L = 10°
for some calculations using o values close to two.

The correlated Gaussian random numbers &, that repre-
sent the fractional noise are precalculated before each actual
simulation by means of the Fourier-filtering technique [50].
For each Cartesian component of the noise, this method starts
from a sequence of independent Gaussian random numbers
x; of zero mean and unit variance (which we generate by
using the Box-Muller transformation with the LFSR113 ran-
dom number generator proposed by L’Ecuyer [51] as well
as the 2005 version of Marsaglia’s KISS [52]). The Fourier
transform ¥, of these numbers is then converted via &, =
[C(»)]1*%,, where C(w) is the Fourier transform of the
covariance function (5). The inverse Fourier transformation
of &, gives the desired noise values.

III. ONE SPACE DIMENSION

A. Summary of earlier results

Wada et al. [38,39] recently employed computer simula-
tions to study one-dimensional FBM restricted to the semi-
infinite interval (0, co) by a reflecting wall at the origin.
They observed that the mean-square displacement (x?) of a
particle that starts at the origin follows the expected power
law #* just as for unconfined FBM. However, the probability
density was found to be highly non-Gaussian with particles
accumulating at the wall in the superdiffusive regime o > 1.
For subdiffusive FBM, « < 1, particles are depleted near the
wall.

More specifically, the probability density function P(x, t)
of the particle position x at time ¢ fulfills the scaling form

Px,t)=

— 73 Zalx/(01*/)] (14)
in the continuum limit x 3> ¢. The dimensionless scaling
function Z, (z) is non-Gaussian near the wall; it develops a sin-
gularity for z — 0. Based on the extensive simulation results,
Wada et al. conjectured a power-law singularity Z,(z) ~ 7
for z < 1 with the exponent given by k = 2/a — 2.

Analogous results were also obtained for biased FBM on
the interval (0, oo) [39]. If the bias is towards the wall, a
stationary distribution develops in the long-time limit. Its
probability density also features a power-law singularity at
the wall, P(x) ~ x*, controlled by the same exponent x =
2/a —2.

Guggenberger et al. [40] performed simulations of one-
dimensional FBM confined to a finite interval by reflecting

032108-3



THOMAS VOITA et al.

PHYSICAL REVIEW E 102, 032108 (2020)

5 M o (from top) | e s e |
10°¢ o 1.8 T T T A TR T e Rt v
1.6
10% & 13
1.0
T I o
Y% 0 0.5 1 15 2
. 025} ' ' '
10 . 02} _J'
40.15F L]
> | ]
10" v oolr . " -
0.051
= | ]
100 0 s
10° 10 102 100 10" 10°  10° 107
t
FIG. 1. Mean square displacement (x?) on the interval

(=L/2,L/2) with L = 1000 for several o. The data are averages
over 10000 particles starting at x = 0. The reflecting walls
are implemented by using Eq. (9). The dashed line marks the
value L?/12 ~ 83333 expected for a uniform distribution of
particles over the interval, and the dash-dotted line marks the
value L?/4 = 250000 expected if all particles collect at the walls.
The solid lines are fits of the initial time evolution to (x?) ~ t<.
Inset shows the normalized stationary mean-square displacement
A(a) = (x?)/L? vs the anomalous diffusion exponent « using
interval lengths between L = 100 for « = 0.3 and L > 10000 for
the largest «. The open squares mark the values expected in the
limits « — 0 and & — 2. The statistical errors of (x?)y/L? are much
smaller than the symbol size.

walls at both ends. They established that, for all « # 1, the
stationary probability density P(x) deviates from the uniform
distribution observed for normal Brownian motion. Fora > 1,
the probability density is increased at the walls and reduced in
the middle of the interval. For o < 1, the opposite behavior
is observed. However, the functional form of the probability
density on a finite interval has not yet been studied systemati-
cally.

In the rest of this section, we therefore analyze one-
dimensional FBM on long intervals of lengths L > o, with
reflecting walls at both ends. We use up to 22 time steps.
This allows us to determine the probability density and, in
particular, analyze its functional form close to the walls.
In addition, we carefully study the effects of different wall
implementation on the probability density.

B. Reflected fractional Brownian motion on a finite interval

We first study the time evolution of the mean-square dis-
placement (x?) of FBM on the interval (—L/2,L/2). The
particles start at the origin, i.e., in the center of the interval.
Figure 1 presents the mean-square displacement for an in-
terval of length L = 1000 for several different anomalous
diffusion exponents «. The figure demonstrates that (x?)
initially grows following the same * power law as unconfined
FBM. At long times it saturates at a stationary value (x>); that
changes with «, suggesting a nonuniform and «-dependent
distribution of particles in the stationary state. In the contin-
uum limit L > o, the stationary mean-square displacement
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FIG. 2. Log-linear plots of the probability density P vs position x
for @ = 1.6 and 0.8 at several times 7. The particles start at the center
of intervals of length L = 10° and 10?, respectively. Each distribution
is based on at least 10° particles. To improve the statistics, P is
averaged over a small time interval around each of the given times.
The statistical errors of P are smaller than the symbol size.

is proportional to L?. [This also follows from the scaling
law (15) discussed below]. The inset of Fig. 1 indicates that
A(ar) = (x?)/L?* evolves smoothly with o from the value }1
expected in the ballistic limit « — 2 (where all particles get
stuck directly at the walls) to the value O for « — 0 (where
the particles do no leave the center). The crossover time
t, between anomalous diffusion and saturation follows from
Uztf‘ = A(x)L?.

We emphasize that the functional behavior of the stationary
mean-square displacement shown here is strikingly different
from the one obtained for FBM in a harmonic confining po-
tential, represented by a force F'(x) = —bx in Eq. (11). (Note
that FBM does not fulfill a fluctuation-dissipation relation and
is thus not thermalized). There, the mean-square displacement
takes the value (x*)1™ = 1o2p=*I'(a + 1) [53]. In particu-
lar, the value of (xz)i?f“m /(62b™*/2) is unity for & — 0 and
at o« = 1, attains its minimum of about 0.89 at o ~ 0.46, and
reaches its maximum of two in the ballistic limit & — 2.!

We now turn to the time evolution of the probability density
function P(x,t). Figure 2 shows the probability density for
o = 1.6 and 0.8 at several different times. At early times, it is
not affected by the walls and takes a Gaussian form, just as for
free FBM. Once the distribution interacts with the reflecting
walls, particles start to accumulate close to the walls in the
superdiffusive case o = 1.6 while P remains suppressed at
the walls for the subdiffusive case o = 0.8. The probability
density reaches a nonuniform stationary state for times larger
than approximately 222,

It is interesting to compare the form of the stationary
probability density P for different interval lengths L. Figure 3
presents the corresponding simulation data for several L be-
tween 100 and 10° using scaled variables PL vs x/L. The
curves for different L collapse nearly perfectly onto a common

!These relations hold in the continuum limit (x*)1™ > o2,
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FIG. 3. Scaling plot of the stationary probability density showing
PL vs x/L for o« = 1.6 and o = 0.8 for several interval length L.
Each distribution is based on 10* to 10° particles; P is averaged over
a number of time steps after a stationary state has been reached.

master curve, demonstrating that the stationary distribution
fulfills the scaling form

P(x,L) = I%Ya(x/L) (15)

with high accuracy. Small deviations (almost invisible in the
figure) can be attributed to finite-size effects close to the wall
that vanish in the continuum limit L >> o. We have carried
out similar simulations for other values of the anomalous
diffusion exponent . All data fulfill the scaling relation (15)
but the functional form of the dimensionless scaling function
Y,(z) depends on «. Note that the scaling form (15) also
implies that the probability density of FBM on an interval
of fixed length becomes independent of the step size o in
the limit 0 — 0, guaranteeing that our reflected FBM has a
proper continuum limit.

Let us now focus on the behavior of the stationary prob-
ability density close to the reflecting walls. Based on the
results for reflected FBM on a semi-infinite interval [38,39],
we expect the probability density to feature a power-law
singularity at the wall. In Fig. 4, we therefore present a
double-logarithmic plot of the probability density as a func-
tion of the distance from the reflecting wall for several o
between 0.5 and 1.8. The figure shows that all curves
become straight lines close to the wall, indicating that the
stationary probability density indeed follows the power-law
P ~ (x — w)“. We determine the values of the exponent «
by power-law fits of the probability density close to the wall
but outside of the region influenced by finite-size effects,
ie., for 0 <K x —w <K L. The inset of Fig. 4 shows « as
a function of «. The exponent follows the conjecture x =
2/a — 2 with high accuracy, i.e., it takes the same values
as the exponent in the case of a semi-infinite interval. This
implies that the scaling function Y, in Eq. (15) behaves as
Yo(@) ~ (z+1/2) = (z+ 1/2)%72 for 7+ 1/2 < 1 (close
to the left interval boundary) and analogously for the right
boundary.

\

o (Lh.s. from top)
1.8
10°F 16
— 13
— 12
[[------ 1.0
— 038
0.5

107 107 107! 10°

(x-w)/L

FIG. 4. Scaled stationary probability density PL vs scaled dis-
tance (x —w)/L from the wall for several «. The system sizes
range from L = 200 for @ = 0.5 to L = 10 for the largest o. Each
distribution is based on 10* to 10° particles; P is averaged over a
large number (up to 2%°) of time steps after a stationary state has been
reached. Inset shows exponent x extracted from power-law fits of
P(x) close to the wall. The solid line is the conjecture x = 2/a — 2.

C. Influence of wall implementation

In this section, we carefully study how different implemen-
tations of the reflecting walls (see Sec. II B) affect the proba-
bility density of FBM on a finite interval. Figure 5 presents
example trajectories produced by the same noise sequence
using boundary conditions (8)—(11). The figure shows that
the differences between these trajectories are of the order of
the step size o while they become indistinguishable on length
scales large compared with o.

To analyze the effects of the wall implementation quan-
titatively, we compare in Fig. 6 the stationary probability

FBM, x,,,,= x, + §, + F(x,)
TFBM, x,.,= | x, + &, |

wot T FBM, x,,,,= max(x,+&,, 0)

FBM, x,,, = x, + &, (if x, +§&,>0)

X,11= X, (otherwise)

t
= 2500 2520 2540

free FBM
-100f

200t . . . .
0 1000 2000 3000 4000
t

FIG. 5. Example trajectories of FBM (o = 1.2) with a reflecting
wall at the origin (rFBM), implemented via the boundary conditions
(8)—(11). For the soft wall (11), the force parameters are Fy = 0.5
and A = 1. The free FBM trajectory is shown for comparison. Inset:
Zoomed-in view of the trajectories very close to the wall.
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107}
_
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X-w

FIG. 6. Stationary probability density P vs distance x — w from
the wall for @ = 1.6, L = 10° and several implementations of the
reflecting walls. Each distribution is based on 10° particles; P is
averaged over a large number of time steps in the stationary regime.
The dotted line is a power-law fit.

densities P(x) for “elastic” walls (8), “inelastic” walls (9), and
walls implemented via “soft” repulsive forces (12) with two
different amplitudes for a finite interval of length L = 10° and
o = 1.6. The data show that the wall implementation indeed
influences the probability density in the immediate vicinity of
wall. For example, a strong repulsive force pushes the peak
of P(x) away from the nominal wall position. However, the
figure also demonstrates that all four wall implementations
produce exactly the same probability density further away
from the wall.

To investigate in more detail the region in which the
wall implementation affects P(x), we compare the results
for different interval lengths. Figure 7 presents the stationary
probability density for ¢ = 1.6 for intervals having lengths
from L = 1600 to 10° employing “soft” walls defined by

(@) 102F (b)
10°F~~ L=
. — 1600
S 10*
10°F L.\ |-—-— 10
, \\\ —————— 10°
10%F
\\
10* It
Q, N\
10"k
10°F
0L
10°F 10
10° 10° 10* 102 10°
X-w (x-w)/L

FIG. 7. (a) Stationary probability density P vs distance x — w
from the wall for @ = 1.6, and several interval lengths. The walls
are implemented as repulsive forces (12) with Fy = 0.2 and 1 = 0.2.
The dashed line marks the widths of the wall region. (b) The same
data plotted in scaled variables PL vs (x — w)/L.

the repulsive force (12) with amplitude Fy = 0.2 and decay
constant A = 0.2. The left panel, Fig. 7(a), indicates that
the width of the wall region (marked by the dashed line) is
independent of the interval lengths. This implies that the wall
region becomes unimportant for L > o, L > A~ ! Indeed, the
right panel, Fig. 7(b), shows that the same data, plotted in
scaled variables PL vs (x — w)/L, collapse onto a common
master curve for x outside of each of the respective wall
regions.

These results demonstrate that variations of the probability
density due to different implementations of the reflecting
walls can be considered finite-size effects that vanish in the
continuum limit L/o — 0o, LA — 0o. A rigorous proof that
the discretization error vanishes in the continuum limit was
given in Ref. [54] for the wall implementation (10).

Note that, inside the wall region (distances of order o
from the wall), some implementations of the reflecting bound-
ary are better behaved than others and converge faster to
the continuum limit, as was shown for normal diffusion in
Refs. [55,56]. For example, we observed in Ref. [40] that
the wall implementation (10) leads to stronger discretization
artifacts than rule (8). However, all of these artifacts vanish in
the continuum limit.

This differs from the behavior of the fractional Langevin
equation with reflecting walls where recent computer simu-
lations [57] have shown that the implementation of the wall
appears to affect the probability density in the entire interval,
perhaps due to a subtle interplay of the boundary conditions
and the fluctuation-dissipation theorem that establishes ther-
mal equilibrium.

D. Fractional Brownian motion in superharmonic potentials

In this section, we briefly address the behavior of FBM
that is confined to a finite interval not by reflecting walls but
by a smooth external potential. The goal is to further under-
line that the observed accumulation and depletion effects are
neither artifacts of the specific reflecting boundary conditions
considered in the remainder of this paper, nor due to the
implementation of the fractional Gaussian noise (the noise
sequence, once simulated, is used as input continuously, no
matter whether a reflection takes place or not). For a harmonic
potential U(x) o« x*>, FBM can be solved exactly and was
analyzed in detail in Refs. [45,53]. In particular, the proba-
bility density remains Gaussian in this case. However, if we
consider somewhat steeper potentials, for instance, the quartic
form U (x) o x*, distinct deviations from the naively expected
Boltzmann form P(x) o exp(—ax*) can be observed. In this
case, the time evolution of the process can be obtained from
the discrete Langevin equation (11) with F'(x) = —dU /dx.

To study FBM in a quartic potential, we perform simu-
lations of the recursion relation (11) using a force F(x,) =
—ekx? and a noise variance of 02 = €%, withk = 0.2 and € =
0.002. Figure 8 shows the resulting stationary probability den-
sity for different «. In the case of normal Brownian motion,
o = 1, the Boltzmann form is reproduced very well. How-
ever, relative to the Boltzmann law, the probability density
near the points of highest curvature of the external potential
is increased for superdiffusive FBM (o > 1) and decreased
for the subdiffusive case (o < 1). These observations are
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FIG. 8. Stationary probability density P of FBM in a quartic
potential U (x) ox x* for several values of «. Each distribution is based
on 5000 time steps, averaged over 500 000 trajectories. For normal
Brownian motion, « = 1, the Boltzmann distribution (heavy black
line) fits the simulation results very well, whereas in the sub- and
superdiffusive cases, respectively, depletion and accumulation with
respect to the Boltzmann law are observed close to the points of
highest curvature of U (x).

fully consistent with our results for the reflecting boundary
conditions.

IV. TWO SPACE DIMENSIONS

A. Overview

Let us now turn to reflected FBM in two dimensions.
We have performed simulations for a variety of geometries.
For a qualitative overview, we present in Fig. 9 heat maps
of the stationary probability density of FBM confined to a
square domain by reflecting walls. The figure compares three
different values of the anomalous diffusion exponent, viz.,
o = 1.6 (superdiffusive regime), « = 1 (normal Brownian
motion), and & = 0.6 (subdiffusive regime). The data indicate
the same qualitative behavior as observed in one dimension.
In the superdiffusive regime, particles accumulate close to
the reflecting boundaries, compared with the flat distribution
for normal diffusion. In the subdiffusive regime, in contrast,
particles are depleted close to the walls. The strongest accu-
mulation and depletion are seen in the corners of the square.

100

50 -9

-50 -11

-100 12
-100 -50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100 ©

a=1.6 a=1.0 a=0.6

FIG. 9. Stationary probability density P of FBM on a square
domain for several «. The heat maps of InP are based on 100
particles performing up to 2%* time steps each.
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FIG. 10. Heat maps of the stationary probability density P for
a = 1.6, computed from 100 particles performing up to 2% time
steps.

Analogous accumulation and depletion effects are also
observed in other geometries. Figure 10 shows heat maps of
the stationary probability density of FBM on a ring-shaped
domain and a star-shaped domain for & = 1.6 in the superdif-
fusive regime. These shapes allow us to analyze the differ-
ences between concave and convex boundaries. As above, the
data indicate that particles accumulate close to all reflecting
walls. The accumulation is stronger for concave boundaries
such as the outer boundary of the ring and weaker for convex
boundaries such as its inner boundary.

B. Rectangular domains

We now analyze the probability density of reflected FBM
in two-dimensional geometries quantitatively. Square and
rectangular domains are particularly simple cases because
the motions parallel and perpendicular to the walls, i.e.,
the x and y components of the two-dimensional FBM for
appropriately chosen coordinate axes, completely decouple.’
The two-dimensional probability density is therefore simply a
product of two one-dimensional probability density functions.
Specifically, for a rectangle of sides L, and L,, the stationary
probability density takes the form

Poy(x, Ly y, Ly) = Pra(x, Ly)Pra(y, Ly) (16)

in the continuum (scaling) limit L,, L, > o. Here, Pi4(x, Ly)
and Pyy(y,L,) are the stationary distributions of one-
dimensional FBM on finite intervals of length L, and L,,
respectively.

This has the following implications for behavior of the sta-
tionary probability density at the boundaries of the rectangular
domain. When the edge of the rectangle is approached away
from a corner, the probability density features a power-law
singularity with the same exponent value, k = 2/a — 2, as
in one dimension. In contrast, if the corner of the rectangle
is approached along the diagonal (or any other straight line),
the probability density follows a power-law with the doubled
exponent k = 4/« — 4. Consistently, relatively higher densi-
ties are observed close to the corners. We have confirmed
this explicitly by computer simulations on square domains for
anomalous diffusion exponents & = 0.8, 1.2, 1.4, and 1.6.

2x and y may be coupled during the reflection process for some
choices of the reflection condition. Based on the results of Sec. III C,
this is not expected to influence the probability density outside the
narrow “wall region.”
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FIG. 11. Stationary probability density P(r) of FBM on circular
domains (disks) of radius R for several «. The data are plotted as
PR? vs scaled distance (R — r)/R from the wall. System sizes range
from R = 10° for @ = 1.8 to R = 1000 for & = 0.6; the simulations
use 10* to 10° particles and up to 2?° time steps. Inset shows the
exponent « extracted from power-law fits of P(r) close to the wall.
The solid line is the one-dimensional conjecture k = 2/« — 2.

C. Disks and rings

For FBM on domains with curved boundaries, such as a
circular domain (disk) of radius R, the situation is more com-
plicated. For uncorrelated or short-range correlated random
walks, one would expect the curvature of the boundary to
become unimportant if the radius R of the curvature is large
compared with the step size o (or the finite correlation length
of the steps). However, FBM has long-range correlations and
thus effectively sees (remembers) the entire domain. It is
therefore not clear a priori whether the curvature affects the
behavior of the probability density near the boundary.

To resolve this question, we perform extensive simulations
of FBM on large circular domains with radii up to R = 10°
for anomalous diffusion exponents « between 0.6 and 1.8.
We find that the stationary probability density is, of course,
rotationally invariant, i.e., independent of the polar angle. Its
radial dependence fulfills the scaling form

1
Paa(r.R) = 25 Ya(r/R) a7

for R > o. Here, r is the distance from the center of the
disk. Figure 11 summarizes the results of these simulations,
focusing on the behavior of the probability density P close to
the reflecting boundary at r = R. It shows that P behaves as
a power of the distance from the wall for all «. We determine
the exponent from fits of the power law P(r) ~ (R — r)* to the
probability density close to the wall but outside of the region
influenced by finite-size effects, i.e., forc << R — r < R. The
inset of Fig. 11 shows the resulting values of the exponent « as
a function of «. They follow the same conjecture k = 2/ — 2
as in the one-dimensional case, suggesting that the curvature
of the reflecting wall does not affect the functional form of the
probability density near the wall.

In addition to disks, we also consider ring-shape domains.
As was already shown in the heat map in Fig. 10, particles
accumulate at both the inner and the outer boundary of the

—&— outer boundary
— ¥ inner boundary|

10° 10° 10" 10°
(Rmax_r)/ Rmax ’ (r _Rmin)/ Rmax

FIG. 12. Scaled stationary probability density on a ring with
outer radius Ry, = 10 and inner radius Ry, = 0.3Rn. Vs scaled
distance from both boundaries for @ = 1.6. The simulations use 10°
particles performing 2%’ time steps. The dashed lines are fits to power
laws with the conjectured exponent x = 2/o — 2 = —0.75.

ring for superdiffusive FBM. However, the accumulation is
stronger at the concave outer boundary than at the convex
inner boundary. Figure 12 presents a quantitative analysis of
the probability density close to both walls for « = 1.6. Close
to the outer boundary, the probability density clearly follows
the conjectured power law P ~ (Rpax — r)2/*=2_ At the inner
boundary we observe a much slower crossover, but the data
are compatible with an asymptotic power-law singularity with
the same exponent, P ~ (r — Rpin)>/* 2.

D. Circular sectors

The results of the last section show that the curvature of
a reflecting wall does not influence the qualitative behavior
of the probability density close to the wall. However, the
example of a square domain in Sec. IV A indicates that sharp
corners lead to stronger singularities of the probability density
at the boundary.

In the present section, we study this effect systematically
by performing simulations of FBM on circular sectors of
radius R and varying opening angle ® for anomalous diffusion
exponents « = 1.6 (superdiffusive regime) and 0.8 (subdif-
fusive regime). Two examples that illustrate the geometry of
these sectors are presented in Fig. 13. For o = 1.6, the heat
map of the probability density of the 60° sector in Fig. 13
shows a particularly strong accumulation in the tip (center of
curvature) of the sector.

To understand quantitatively the behavior in the tip, we
analyze the stationary probability density along the symmetry
line (dashed line in Fig. 13) of the sector. Figure 14 shows
a double-logarithmic plot of the (scaled) probability density
as a function of the distance from the tip. All curves feature
power-law behavior for r < R but the exponent changes con-
tinuously with the opening angle ® of the sector. The inset of
Fig. 14 presents the values of the exponent, determined from
fits of the probability density by P(r) ~ r* for 0 < r < R.
We observe that the divergence of P(r) becomes stronger
(k becomes more negative) as the opening of the sector
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FIG. 13. Heat maps of the stationary probability density of FBM
(o = 1.6) on circular sectors with opening angles ® = 60° and 240°.
The simulations use 100 particles performing 2'3 time steps. The
dotted line marks the cut used to analyze the singularity of the PDF
in the tip (corner) at the center of the curvature.

gets narrower. For ® = 180°, « takes the value 2/«a — 2 as
on a one-dimensional interval. This is expected because the
left boundary of the sector is a straight line for ® = 180°.
Similarly, we find « = 4/a — 4 for ® = 90°, as in the corner
of a square. For ® — 360°, the exponent « approaches a value
close to —0.5. At first glance, one might have expected « to
approach zero in this limit because the probability density of
a disk does not have a singularity in the center. Note, however,
that a reflecting line along the negative x axis remains in the
® — 360° limit of the sector.

We also carry out analogous simulations for subdiffusive
FBM using o = 0.8. The results are presented in Fig. 15. As
above, the deviations from a flat distribution become stronger
as the opening angle of the sector decreases. For ® = 180°
and ® = 90°, we recover the expected exponent values k =
2/a — 2 and 4/a — 4, respectively.

The results in this section are obtained by using the “in-
elastic” boundary conditions (13). To confirm that the details

O (top to bottom)
30°

10* 10° 102 10" 10°
r/R

FIG. 14. Scaled stationary probability density PR?> of FBM with
a = 1.6 on circular sectors with outer radius R = 10° and various
opening angles ©. The graph shows PR? on the symmetry line of the
sector as a function of the scaled distance /R from the center of cur-
vature. (103 to 10 particles performing 2% time steps.) Inset shows
the exponent « extracted from power-law fits, P(r) ~ r*, of the data
close to the center (/R < 1) vs opening angle ®. The dashed lines
mark the values 2/ —2 = —0.75 and 4/a — 4 = —1.5.

O (bottom to top)
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/R

FIG. 15. Scaled stationary probability density PR?> of FBM with
a = 0.8 on a circular sector with outer radius R = 10* for various
opening angles ®. The graphs show PR? on the symmetry line of
the sector as a function of the scaled distance r/R from the center
of curvature (10° particles performing 2%° time steps). Inset shows
the exponent « extracted from power-law fits, P(r) ~ r*, of the PDF
close to the center (/R < 1) vs opening angle ®. The dashed lines
mark the values 2/a¢ —2 =0.5and 4/a — 4 = 1.0.

of the wall implementation do not affect the results, we also
perform simulations using soft walls, defined by appropriate
generalizations of Eqgs. (11) and (12) to the circular sector
geometry. Specifically, we have analyzed sectors with open-
ings of 15° and 90° for o« = 1.6 in this way. As in one
dimension (Sec. I[IIC), we find that the wall implementation
only influences a narrow “interaction region” close to the wall
that becomes unimportant in the continuum (scaling) limit
R/o — oo.

V. THREE SPACE DIMENSIONS

In this section, we briefly discuss reflected FBM in
three-dimensional geometries. Domains shaped as rectangular
prisms (cuboids) can be analyzed analogously to Sec. IV B.
Because the x, y, and z components of a three-dimensional
FBM are independent of each other, the stationary probability
density of FBM in a rectangular prism of sides Ly, Ly, and L,
factorizes and takes the form

Pq(x, Leiy, Ly:z, L;) = Pra(x, Lo))Pia(y, Ly) Pra(z, L;) (18)

in an appropriate coordinate system having axes parallel to the
edges of the prism. This implies that the probability density
features a power-law singularity with exponent 2/« — 2 when
a face of the prism is approached. If an edge is approached
the exponent is given by 4/o —4, and when a corner is
approached (along a straight line) the exponent is expected
tobe 6/a — 6.

Turning to spherical domains, we simulate superdiffusive
FBM with o = 1.6 in a sphere of radius R = 10° and sub-
diffusive FBM with o = 0.8 in a sphere of radius R = 10°.
We observe that the behavior of the stationary probability
density is completely analogous to the case of a circular (disk)
domain discussed in Sec. IV C. Specifically, the probability
density features a power-law singularity at the surface of the
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FIG. 16. Geometry of the spherical cone.

sphere that is controlled by the one-dimensional exponent
k=2/a—2.

To determine how the “sharpness” of a corner affects the
probability density in three dimensions, we simulate FBM in
spherical sectors (spherical cones) of variable opening angles
for « = 1.6 and 0.8. A spherical cone contains all points
whose distance from the origin is less than R and whose polar
angle is less than ©, see Fig. 16. We then analyze the proba-
bility density on the symmetry axis of the cone. The results for
superdiffusive motion with o = 1.6 are presented in Fig. 17
for several opening angles ® of the cone. As in the case
of circular sectors, all curves feature power-law singularities
close to the tip (center of curvature) of the cone. We determine
the exponents from fits of the probability density to P(r) ~ r*.
The resulting values are presented in the inset of Fig. 17 as a
function of the opening angle ®. For ® = 90°, « takes the
one-dimensional value 2« — 2 because the reflecting wall at
the bottom of the cone is completely flat. For ® — 180°, the
exponent « approaches zero (corresponding to a nonsingular
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FIG. 17. Scaled stationary probability density PR* of FBM with
« = 1.6 in a spherical cone with outer radius R = 10° for various
opening angles ©. The graphs show PR® on the symmetry line of
the cone vs the scaled distance r/R from the center of curvature
(107 particles performing 223 time steps). Inset shows the exponent
k determined from power-law fits, P(r) ~ r*, of the data close to
the center (r/R < 1) vs opening angle ®. The dashed line marks the
value 2/a — 2 = —0.75.
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FIG. 18. Scaled stationary probability density PR® of FBM with
a = 0.8 in a spherical cone with outer radius R = 103 for various
opening angles ©. The graphs show PR? on the symmetry line of the
cone as functions of r/R (10° particles performing 2%° time steps).
Inset shows the exponent « determined from power-law fits, P(r) ~
r*, of the data close to the center (/R < 1) vs opening angle ®. The
dashed line marks the value 2/a0 —2 = 0.5.

P) because particles can easily go around the repulsive line
along the negative z axis remaining in this limit (in contrast
with the two-dimensional case).

Figure 18 presents the same analysis for subdiffusive mo-
tion with ¢ = 0.8. We again observe power-law singularities
in the probability density close to the tip of the cone, with an
exponent that increases continuously as the cone narrows. The
values of the scaling exponent, determined from power-law
fits, are shown in the inset of the figure. As expected, for
® = 90°, we recover the one-dimensional exponent 2/« — 2.

VI. APPLICATION TO BRAIN SEROTONERGIC FIBERS

As was pointed out in the introductory section of this
paper, FBM has found a broad variety of applications in
physics, chemistry, biology, and beyond. Recently, it has been
proposed that FBM may be a good model for the geometry
of serotonergic fiber paths in vertebrate brains, including the
human brain.

The entire central nervous system of vertebrates is per-
meated by a dense network of serotonergic fibers, very long
axons of neurons that are located in the brainstem [58,59].
These fibers release the neurotransmitter serotonin as well
as other neurotransmitters. The densities of this serotoner-
gic matrix vary significantly across brain regions, and their
perturbations can severely affect the function of neural cir-
cuits. Traditionally, the emergence of these densities has been
treated as a tightly controlled sequence of developmental
events that reflects the functional requirements of individual
brain regions (neuroanatomical nuclei and laminae). Based on
high-resolution imaging techniques (see Fig. 19), it has been
suggested, however, that individual fibers behave as three-
dimensional stochastic processes, with the varying fiber densi-
ties emerging from the interaction of the randomness with the
complex brain geometry [41,60]. Specifically, superdiffusive
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FIG. 19. (a) A confocal microscopy image of serotonergic fibers
visualized with an anti-GFP antibody in the cingulate cortex (area 30)
of the transgenic mouse model developed by Migliarini et al. [61].
The fibers are shown as green (bright) lines; cell nuclei are labeled
blue (dark gray). Scale bar = 20 um (the thickness of the z stack
is 19 um). (b) A dark-field microscopy image of serotonergic fibers
visualized with an anti-serotonin-transporter antibody in the caudate-
putamen of a wild-type mouse. The fibers are shown as golden brown
(light gray) lines. Scale bar = 100 pum.

FBM has emerged as a promising theoretical framework for
the description of brain serotonergic fibers [41,42].

Within this model, each individual serotonergic fiber is
represented as a path of a discrete FBM with a step size related
to the thickness of the fibers (which determines how fast the
fibers can bend). A comparison of FBM sample paths with
actual fiber trajectories suggests that appropriate values of the
anomalous diffusion exponent lie in the superdiffusive range.
Figure 20 presents an example of a computer simulation of
this model applied to a section of a mouse brain. The figure
clearly shows that the simulations reproduce the increased
fiber densities observed at the boundaries of the real brain
section as well as in the concave parts of its geometry.

A systematic study of this model and a detailed comparison
with the fiber densities in real mouse brains was carried out
in Ref. [42]. The agreement of the simulated densities and
the densities determined from the mouse brain sections was
found to be quite remarkable, especially in view of how little
neurobiological input the model requires. Moreover, the study
demonstrated that soft fiber-wall interactions can be partic-
ularly appropriate for modeling the behavior of serotonergic
fibers in brain tissue.

VII. CONCLUSIONS

In summary, we have performed large-scale computer sim-
ulations of FBM in one, two, and three dimensions in the pres-
ence of reflecting boundaries that confine the motion to finite
regions in space. In all studied geometries, we have found
that the stationary probability density deviates strongly from
the flat distribution observed for normal Brownian motion.
Specifically, we have found particles to accumulate close to
the reflecting walls for superdiffusive FBM whereas they are
depleted near the walls for subdiffusive FBM.

(b)

FIG. 20. Serotonergic fibers in a cross section through the mouse
midbrain. (a) Fiber densities visualized with an anti-serotonin-
transporter antibody. Higher densities are darker in the image;
individual fibers are not visible at this magnification. Aq, cere-
bral aqueduct; cp, cerebral peduncle; IPN, interpeduncular nucleus;
MGN, medial geniculate nucleus; ml, medial lemniscus; SC, superior
colliculus; SN, substantia nigra; vtgx, ventral tegmental decussation.
Scale bar = 1 mm. (b) Single fiber modeled as superdiffusive FBM
trajectory of 2!7 steps with o = 1.6. (c) Heat map of the simulated
fiber density determined from 192 fibers of 223 steps each, plotted
as “optical” density exp(—pgP) with 8 = 38000. [The value of the
attenuation parameter 8 was chosen such that the mean pixel value
in the simulated section approximately matched the mean pixel value
of the actual section in panel (a)].

This phenomenon is easy to understand qualitatively. If
the correlations are persistent (superdiffusive FBM), particles
will attempt to continue in the same direction upon reaching
the wall and thus get trapped for a long time,® increasing
the probability density near the wall. If the correlations are
antipersistent (subdiffusive FBM), particles will preferably
move away from the wall right after hitting it, reducing the
probability density at the wall. (We emphasize that the noise
correlations extend beyond the reflection events because the
noise is externally given).

We note that these accretion and depletion effects arise
from the nonequilibrium nature of FBM. The fractional
Langevin equation, which contains the same fractional noise
as FBM but fulfills the fluctuation-dissipation theorem [63],
reaches a thermal equilibrium stationary state that is gov-
erned by the Boltzmann distribution. On a finite interval
with reflecting walls, this leads to a flat probability density,
as was recently confirmed by large-scale simulations [57].%
The key role played by the fluctuation-dissipation theorem

3The probability of finding long periods of motion in predomi-
nantly one direction is discussed in Ref. [62] for power-law corre-
lated disorder.

“The fractional Langevin equation does show accretion and deple-
tion effects, albeit weaker ones, in nonstationary situations [57].
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becomes clear if one considers a generalized Langevin equa-
tion with long-time correlated fractional Gaussian noise but
instantaneous damping. For this equation, which violates the
fluctuation-dissipation theorem, simulations [57] have shown
that the stationary probability density on a finite interval is not
uniform but resembles the corresponding result for FBM.

Our simulations have demonstrated that the stationary
probability density of FBM on a finite one-dimensional inter-
val features a power-law singularity, P(x) ~ |x — w|*, close
to a reflecting wall at position w. The exponent « follows the
conjecture k = 2/a — 2 [38] with high accuracy. In higher di-
mensions, the stationary probability density close to a smooth
boundary (be it straight or curved) features a power singularity
governed by the same exponent, k = 2/o — 2, as in one
dimension. Close to sharp (concave) corners, the singularities
are enhanced. When approaching the corner of a rectangle
(along a straight line), the probability density features a power
law with exponent 4/« — 4, and for a general d-dimensional
orthotope (hyperrectangle), the corresponding exponent is
expected to read 2d /o — 2d.

We emphasize that all our results are robust against
changes in how the reflecting walls are defined and imple-
mented. In Sec. III C, we systematically compare simulations
with four different types of reflecting boundary conditions.
These simulations demonstrate that details of the wall imple-
mentation influence the probability density only in a narrow
“wall region” whose size is determined by the step size o and
becomes unimportant in the continuum limit L 3> o. For soft
walls, the size of the wall region is governed by the decay
length of the wall force.

The nonuniform and singular probability density of re-
flected FBM can have important consequences for applica-
tions. One such application is the modeling of serotonergic
fibers in the brain, as was discussed in Sec. VI. Here, the
accretion and depletion of particles close to reflecting walls
and in concave parts of the geometry is crucial for correctly
describing variations of the experimentally observed fiber
densities in various brain regions. Note that active growth of
these fibers in the brain is clearly not an equilibrium process,

supporting the use of FBM rather than a fractional Langevin
equation.

Recently, the logistic equation with temporal disorder,
which describes the evolution of a biological population
density p under environmental fluctuation, was mapped onto
FBM with a reflecting wall at the origin [64,65]. This mapping
relates the density of individuals and the position of the walker
through p = e™*. Consequently, the power-law singularity in
the probability density of FBM is intimately tied to the critical
behavior of the nonequilibrium phase transition between ex-
tinction and survival of the population and the dependence of
its universality class on the correlations in the environmental
fluctuations [65].

In many realistic systems, the power-law correlations are
regularized beyond some time or length scale. To account for
such regularization effects on the properties of confined FBM,
one can employ tempered fractional Gaussian noise [66].

Finally, we emphasize that the combination of geometric
confinement and long-time correlations provides a general
route to a singular probability density. We therefore expect
analogous results for many long-range-correlated stochastic
processes in nontrivial geometries.
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