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Non-Markovian quantum dynamics: Extended correlated projection superoperators
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The correlated projection superoperator techniques provide a better understanding about how correlations lead
to strong non-Markovian effects in open quantum systems. Their superoperators are independent of initial state,
which may not be suitable for some cases. To improve this, we develop another approach, that is extending the
composite system before use the correlated projection superoperator techniques. Such an approach allows the
choice of different superoperators for different initial states. We apply these techniques to a simple model to
illustrate the general approach. The numerical simulations of the full Schrödinger equation of the model reveal
the power and efficiency of the method.
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I. INTRODUCTION

In both experimental and theoretical research, people are
often interested in only parts of objects, but there are always
interactions between the parts of the whole. Hence, the open
system is common and important. A detailed review of open
quantum systems can be found in Refs. [1,2]. The dynamics
of system usually satisfy the Markov approximation, which
makes such processes history independent. In quantum dy-
namics, the evolution of such systems is described by the
well-known Lindblad equation. As our ability to observe and
control quantum system increases, non-Markovian behavior is
becoming increasingly important.

The Nakajima-Zwanzig (NZ) equation and time-
convolutionless (TCL) equation are powerful tools to analyze
the open quantum systems. With the Markov approximation,
they can provide a Lindblad master equation. Without
this approximation, the equations can be used to describe
non-Markovian behavior. Both of them are widely used
in the research of open systems. To solve the equations,
one often needs perturbation expansion with respect to the
system-environment coupling. Approximations of the same
order via these two methods can have very different physical
meanings and ranges of applicability. In general, the TCL
techniques are better [3].

The NZ and TCL equations often use the projection-
operator method to derive the dynamic equation of the system.
The original projection-operator method uses a projection su-
peroperator (PS). The superoperator maps the total density
matrix to a tensor product state, which is called the relevant
part. Total density matrix minus its relevant part represents the
irrelevant part. The tensor product state omits any correlations
between system and environment. However, the correlations
play a key role in non-Markovian behavior of open systems.
This makes the PS method not suitable for the research of
non-Markovian behavior.

*hzq@wipm.ac.cn

To study open quantum systems with highly non-
Markovian behavior, the correlated projection superoperator
(CPS) techniques were proposed [4,5]. The CPS techniques
map the total density matrix to a quantum-classical state.
This enables the relevant part to contain classical correla-
tions and some quantum correlations, which may lead highly
non-Markovian behavior. However, the quantum discord and
entanglement between system and environment is still lacking
in the relevant part. A detailed review of correlations can
be found in Refs. [6,7]. Compared with PS techniques, CPS
techniques generally provide a better understanding about the
influence of the correlations between system and environment.
It also yields accurate results already in the lowest order of the
perturbation expansion [5,8]. However, the accuracy of this
approach relies on the choice of projection superoperators. An
inappropriate superoperator can lead to disastrous results.

The CPS techniques are very general. To develop it, we
first extend the environment space with an ancillary system.
After that, we use CPS techniques in the enlarged space to
get the evolution of relevant part. Although the relevant part
here is still a quantum-classical state in the enlarged space, it
allows the quantum discord between system and environment.
Finally, the evolution of the system is obtained by tracing over
the environment and ancillary system. We call it extended
correlated projection superoperator (ECPS) techniques. Com-
pared with CPS, the ECPS provides more relevant variables.
Hence, the relevant part permits more correlations. Besides
that, the method may yield more accurate results.

The basic idea underlying ECPS method is that one can
separate the initial state into several pure states and use dif-
ferent CPS to each pure state. This allows using the best
CPS for each state; hence, it probably yields more accurate
results. If all the states share the same superoperator, the ECPS
techniques will go back to the CPS techniques, which means
the CPS techniques are good enough. The interaction of such
systems often satisfies some conservation law, such as con-
servation of energy [5] or conservation of angular momentum
[8]. The conservation law often leads to classical correlations
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in those conserved quantities. If such conservation law is
absent, as we will present in Sec. III, then only the ECPS
techniques can ensure the accuracy of the results. Moreover,
this approach allows the treatment of initial states with non-
vanished quantum discord by means of a homogeneous NZ or
TCL equation.

A homogeneous equation is easier. However, the form
of superoperator is mainly determined by interaction and
steady state. A homogeneous master equation given by the
PS method is only applicable for some special initial states.
For other states, even if the irrelevant part can be vanished
under some special superoperators, their solutions may di-
verge in the limit t → ∞. In such cases, the homogeneous
master equation given by the standard approach fails in any
finite order of the coupling strength. With the ECPS method,
the choice of projection superoperators is more flexible.
Therefore, it is easier to obtain a convergence results under
the homogeneous master equation.

We organize the paper as follows. In Sec. II, we briefly
review the standard projection-operator method and the CPS
techniques. We also review how to formulate the NZ equation
and the TCL equation. After that, we introduce the ECPS
techniques and provide a rough criterion to determine whether
they are needed. With the ECPS techniques, one can choose
different projection superoperators for different initial states,
which is totally different from the CPS method. We also
briefly discuss how to choose an appropriate projection su-
peroperator. In Sec. III, we apply the ECPS techniques to a
system-reservoir model. We discuss when the best projection
superoperator is dependent on initial state. Then, we show
that any single projection superoperator cannot ensure accu-
rate results for all initial states in some cases. This implies
that the ECPS techniques are necessary in these cases. After
that, we explore the origin of the failure of the homogeneous
master equation. We show the ECPS techniques can provide a
homogeneous master equation without divergence problems
for more initial states. In Sec. IV, we conclude the paper
and briefly discuss possible future developments of ECPS
techniques.

II. PROJECTION OPERATOR TECHNIQUES

We consider an open quantum system A is coupled with
an environment B. Their Hilbert space of states are HA and
HB respectively. The Hilbert space of states of the composite
system is HA ⊗ HB. The dynamics of the total density matrix
ρAB of the composite system is governed by some Hamiltonian
of the form H = H0 + αHI , where H0 = HA + HB generates
the free time evolution of the system and of the environment.
HI describes the system-environment coupling.

A. The projection-operator method

The PS techniques project the total density matrix of the
composite system onto a tensor product state

PρAB ≡ (TrBρAB) ⊗ ρ0
B, (1)

where environment reference state ρ0
B is fixed in time. Since

P2 = P , the superoperator P is called projection superoper-
ator. The irrelevant part is given by the complementary map

Q = I − P , where I denotes the identity map. Obviously, the
relevant part contains all the local information of the system
TrBPρAB = ρA. And being a tensor product state, the relevant
part cannot contain any system-environment correlation infor-
mation.

The CPS techniques project the total density matrix onto a
quantum-classical state

PρAB ≡
∑

α

TrB
(
�B

αρAB
) ⊗ ρB

α , (2)

where different α denotes different subspace Hα of envi-
ronment. They are orthogonal �α�β = δαβ�β and complete∑

α �α = IB. �B
α is the identity matrix of Hα . ρB

α is the
reference state of Hα . If we take all the subspace Hα as
one dimension, then all reference states must be a projection
operator ρB

α = �B
α . In such cases, the CPS becomes

PρAB ≡
∑

i

TrB(�B
i ρAB) ⊗ �B

i . (3)

The collection of projection operators {�B
j | j} determine the

projection superoperator, which directly affect the accuracy of
the lower order master equation. We shall discuss it in detail
in Sec. II F. The definitions of Eqs. (2) and (3) are equivalent
indeed: One can always diagonalize ρB

α and redefine the basis
of Hα to get (3) from (2).

From the definition, TrBPρAB = ρA is satisfied in CPS.
Hence, its relevant part also contains all the local infor-
mation of the system. Besides that, since its relevant part
is a quantum-classical state, it can contain some system-
environment correlation information.

The relevant part provided by the CPS techniques contains
more relevant variables, which make its dynamic equation
more complex. Besides that, to determine the initial relevant
part in CPS techniques, one may need more information about
the environment.

B. Nakajima-Zwanzig equation

In the interaction picture with respect to H0, the von Neu-
mann equation of the composite system can be written as

d

dt
ρAB(t ) = −i[αHI (t ), ρAB(t )] ≡ αL(t )ρAB(t ), (4)

where HI (t ) = eiH0t HI e−iH0t is the Hamiltonian in the inter-
action picture and L(t ) denotes the corresponding Liouville
superoperator. It is usually assumed that the relations

PL(t1)L(t2) . . .L(t2n+1)P = 0 (5)

hold for any natural number n. Based on the von Neumann
equation, one can derive an exact dynamical equation of rele-
vant part [2]

d

dt
PρAB(t ) =

∫ t

0
dt1K(t, t1)PρAB(t1)

+ αPL(t )G(t, 0)QρAB(0), (6)

where superoperator

K(t, t1) = α2PL(t )G(t, t1)QL(t1)P (7)

is called the memory kernel or the self-energy. G(t, t1) =
T exp[α

∫ t
0 dt2QL(t2)] is the propagator, where T denotes
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chronological time ordering. Equation (6) is called the NZ
equation. The inhomogeneous term PL(t )G(t, 0)QρAB(0) de-
pends on the initial conditions at time t = 0. It vanishes if the
irrelevant part vanishes at the initial time. In PS techniques,
if the initial state of the composite system is a tensor prod-
uct state, one can choose the reference state ρ0

B = ρB(0) to
make QρAB(0) = 0. In CPS techniques, if the initial state is
quantum-classical state, one can always let QρAB(0) = 0 by
choosing an appropriate projection superoperator. From this
perspective, a benefit of CPS method is that one can obtain
a homogeneous master equation for relevant part, even the
initial state contains some correlations between system and
environment.

Under the hypothesis (5), when the relevant part at initial
time vanishes, the lowest-order contribution is given by the
second order

d

dt
PρAB(t ) = α2

∫ t

0
dt1PL(t )L(t1)ρAB(t1). (8)

C. Time-convolutionless master equation

The TCL master equation is an alternative way to deriving
an exact master equation. It is a time-local equation of motion
and does not depend on the full history of the system. The
equation can be written as

d

dt
PρAB(t ) = K(t )PρAB(t ) + I (t )QρAB(0). (9)

K(t ) is called the TCL generator, which can be expanded in
terms of HI . The expansion can be obtained from ordered
cumulants [2]. By hypothesis (5), all odd-order contributions
vanish. The second-order contribution reads

K2(t ) = α2
∫ t

0
dt1PL(t )L(t1)P . (10)

Combining (9) and (10), if the inhomogeneous term vanishes,
one obtains

d

dt
PρAB(t ) = α2

∫ t

0
dt1PL(t )L(t1)PρAB(t ). (11)

This is a second-order TCL master equation for relevant part.
The equations of motion provided by NZ and TCL techniques
are different in any finite order, but their exact solution should
be the same. Hence, their accuracy is of the same order. In the
following section, we will use the TCL approach.

D. Extended correlated projection superoperators

The CPS techniques use the most general linear projec-
tion superoperators that keep all the local information of the
system. However, since it uses a single superoperator for all
the initial states, one cannot select the projection superopera-
tors according to the initial state. Moreover, its relevant part
must lose some correlation, for instance, quantum discord and
entanglement. Here we propose a method that allows choice
of superoperators for different initial states. One incidental
benefit is that the relevant part can contain quantum discord
between system and environment now. The basic idea under-
lying our approach is the following. The initial state of the
composite system can always be separated into several states
ρ i

AB. Its evolution comes directly from the evolution of these

separated states ρAB(t ) = ∑
i Piρ i

AB(t ). If we use CPS sepa-
rately, then choosing superoperators for different initial states
is applicable. Moreover, since using different superoperators
are permitted, the sum of those relevant part allows quantum
discord, even the relevant part for each of them P iρ i

AB does
not contain quantum discord.

The steps of the ECPS methods are as follows:
(1) Extend the environment with an ancillary system and

map the initial state ρAB = ∑
i Piρ i

AB to a quantum-classical
state ρABC = ∑

i Piρ i
AB ⊗ �i

C .
(2) Use CPS techniques in the extended space as PρABC =∑
i, j TrBC (�B

i, j ⊗ �C
i ρABC ) ⊗ �B

i, j ⊗ �C
i , where the collec-

tion of projection operators {�B
i, j | j} with different index

i provides a complete set
∑

j �
B
i, j = IB.

(3) Solve the master equation to get the evolution of rele-
vant part PρABC (t ).

(4) The evolution of the system ρA(t ) can be obtained from
the relevant part PρABC (t ) by partial tracing in the environ-
ment and ancillary system.

In this procedure, the relevant part of each state is P iρ i
AB =

TrC (�C
i PρABC ). The ancillary space denotes that different

states can use different CPS, i.e., {�B
i, j | j} can be different

for different i. Therefore, though PρABC (t ) is still a quantum-
classical sate, TrCPρABC (t ) allows quantum discord between
system and environment.

One advantage of ECPS method is that its homogeneous
master equation has a wider range of applications, such as
cases that the initial state contains quantum discord between
system and environment. A pure state is quantum correlated
if and only if the state is entangled [7]. If the system is not
entangled with environment initially, i.e., the initial state is
separable, one can separate it into several pure states. Since
the composite system is isolated, those states remain pure
during the evolution. Hence, the pure state ρ i

AB will not con-
tain quantum discord. Correspondingly, the master equation
of each pure state ρ i

AB can be homogeneous, and the master
equation of relevant part PρABC can still be homogeneous,
even the initial state ρAB(0) does contain quantum discord.

Besides that, for pure state ρ i
AB, its distance from sep-

arable states is the same as its distance from classical
correlated states

‖ρ i
AB − S i

A:B‖ ≡ min
σ∈SA:B

‖ρ i
AB − σ‖ = min

σ∈CA:B

‖ρ i
AB − σ‖, (12)

where CA:B is the set of classical correlated states and SA:B is
the set of separable states. According to Eq. (12), the irrel-
evant part in the ECPS techniques can be directly related to
entanglement. This means that even though the irrelevant part
is nontrivial, the inhomogeneous term can always be upper
bounded by the entanglement. An intriguing fact is that a
general monogamy correlation measure beyond entanglement
does not exist [9]. Hence, it is impossible to find a similar
result in the CPS techniques.

The shortage of ECPS method is that the dynamical equa-
tion is more complicated, and the entanglement between the
system and the environment is still lacking in its relevant part.
As we will explain below, include entanglement in relevant
part may be unnecessary:
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(1) If the relevant part contains all the local information of
the system and all the system-environment correlation infor-
mation, then it already contains all system-related information
in the composite system. Such relevant part is equivalent to the
total density matrix of the composite system. It can be treated
as a closed system and its evolution is unitary.

(2) The entanglement is monogamy. In many cases, the
system-environment state is almost indistinguishable from the
separable state due to quantum de Finetti’s theorem [10].

(3) Though the relevant part of ECPS cannot contain en-
tanglement, one can still take it into account with the irrelevant
part. The monogamy properties of entanglement may be help-
ful to simplify the inhomogeneous term.

The PS techniques, CPS techniques, and ECPS techniques
project the total density matrix onto tensor product states,
quantum-classical states, and separable states respectively.
These approaches together with unitary evolution of closed
systems compose a complete picture about the dynamics
of the system, from the perspective of correlation. Each of
them has its applications. The ECPS techniques can improve
the accuracy of the lower order equation, but also increase
the complexity of equation. It needs more information about
the environment.

The dynamics of the open system is uniquely determined
by the dynamical variables

ρi, j (t ) ≡ TrBC (�B
i, j ⊗ �C

i ρABC (t )), (13)

from which the density matrix of the system reads

ρs(t ) =
∑
i, j

ρi, j (t ). (14)

The normalization condition is obviously satisfied

Trsρs(t ) =
∑
i, j

TrABC
(
�B

i, j ⊗ �C
i ρABC (t )

) = 1. (15)

Suppose initial relevant part is vanished; from NZ equa-
tion (6), the evolution equation of the dynamical variables
becomes

d

dt
ρi, j (t ) =

∑
k

∫ t

0
dt1Ki

jk (t, t1)ρi,k (t1), (16)

where the superoperator

Ki
jk (t, t1)OA ≡ TrBC

{
�B

i, j ⊗ �C
i K(t, t1)

(
OA ⊗ �B

i,k ⊗ �C
i

)}
.

(17)

From TCL equation (11), we have

d

dt
ρi, j (t ) =

∑
k

Ki
jk (t )ρi,k (t ), (18)

where the TCL generator is defined as

Ki
jk (t )OA ≡ TrBC

{
�B

i, j ⊗ �C
i K(t )

(
OA ⊗ �B

i,k ⊗ �C
i

)}
.

(19)
Equation (16) can be written as

d

dt
P iρi(t ) = Ki(t )P iρi(t ), (20)

where P iρAB = ∑
j TrBC (�B

i, jρAB) ⊗ �B
i, j and

ρi(t ) = TrC
(
�C

i ρABC (t )
) = Piρ i

AB. (21)

Comparing Eq. 9 with (20), it is easy to find that the ECPS
method is just applying different CPS P i to each pure state
ρi. Similar to (11), the second-order TCL equation in ECPS
techniques can be written as

d

dt
P iρi(t ) = α2

∫ t

0
dt1P iL(t )L(t1)P iρi(t ). (22)

E. Whether the ECPS techniques are necessary

A collection of projection operators can be
parameterized as

�B
i, j = U (θi )| j〉〈 j|U †(θi ). (23)

The TCL equation (9) is exact and its solution should
be independent of the parameters θ. However, whether the
second-order TCL generator Ki

2(θi, t ) is true depends on
θ, and so does its approximate solution. In principle, the
difference Ki(t ) − Ki

2(θi, t ) can tell whether a projection su-
peroperator is appropriate. However, it is hard to obtain Ki(t ),
which needs infinity order of expansion.

An alternative way to judge a projection superoperator is
from the unitary evolution of the composite system

ρ(t ) = T exp[α
∫ t

0
dsL(s)]ρ(0) =

[
1 + α

∫ t

0
dt1L(t1)

+ α2
∫ t

0
dt1

∫ t1

0
dt2L(t1)L(t2) + . . .

]
ρ(0). (24)

Differentiating this equation with respect to time, we obtain

∂tρ(t ) =
[
αL(t ) + α2

∫ t

0
dt2L(t )L(t2) + . . .

]
ρ(0). (25)

The initial state of the composite system can be expressed
as ρ(0) = T→ exp[−α

∫ t
0 dsL(s)]ρ(t ), where T→ denotes the

antichronological time-ordering operator. Substituting it into
(25), we obtain a time-local equation

d

dt
ρ(t ) = Ktot(t )ρ(t ), (26)

where superoperator Ktot is independent of projection su-
peroperator. The error produced by expansion should be
determined by the expansion order ‖K2

tot(t ) − Ktot(t )‖ ∼
O(α3). Results from the second order K2

tot(t ) should be pretty
accurate if the perturbation theory is applicable in the compos-
ite system. Hence, it may be appropriate to use the difference
of superoperators

PθK2
tot(t ) − K2(θ, t ) (27)

to determine whether a projection superoperator is suitable.
The distinguishability of superoperator can be characterized
by norm [11]

‖
0 − 
1‖1 ≡ max{‖
0(|ψ〉〈ψ |) − 
1(|ψ〉〈ψ |)‖1}, (28)

where ‖|ψ〉‖ = 1. A more precise norm [11] is

‖
0 − 
1‖♦ ≡ ‖(
0 − 
1) ⊗ I‖1. (29)

If the norm ‖PθK2
tot(t ) − K2(θ, t )Pθ‖♦ can be zero with pa-

rameters θ, then the collection of projection operators {�B(θ)}
is sufficiently accurate for all initial states. In such cases,
the CPS techniques are good enough. Otherwise, the best
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projection superoperator may depend on the initial state, and
one may need ECPS techniques to improve the accuracy.

The norm in (29) is based on the maximum distance of all
states. It determines whether the ECPS techniques are neces-
sary, but cannot tell which projection superoperator is the best
for a specific state. The norm ‖(PθK2

tot(t ) − K2(θ, t )Pθ )ρ‖1

can reflect the accuracy for a specific state. Since the state of
the composite system can change during the evolution, such
norm cannot figure out which projection superoperator is bet-
ter for the whole process of evolution. The exact relationship
between the best projection superoperator and the initial states
is beyond the scope of this paper. We leave this as an open
question.

Finding an exact relationship is difficult, but seeking can-
didates for some special cases is easy. We will discuss this in
the following section.

F. The appropriate projection superoperator

In the CPS techniques, one can construct the projection
superoperators with the help of the conserved quantity of in-
teraction HI [8]. Suppose that C is a such conserved quantity;
one can choose a collection of projection operators by the
eigenstates of C {

�B
i : C|i〉 = λi|i〉

}
. (30)

Choosing an appropriate projection superoperator for each
state ρ i

AB is also critical in ECPS techniques. Within the scope
of ECPS method, the best projection superoperator should
depend on initial state. And there should be no conserved
quantity as that used in the CPS techniques. If the interaction
HI can be separated into several terms HI = ∑

i αiH i
I , and

each term Hi
I has a conserved quantity Ci, then one can con-

struct the best projection superoperator with the eigenstates of
one of the conserved quantities Ck{

�B
i, j : Ck|i, j〉 = λk

j |i, j〉}. (31)

Which Ck to use, from the interaction and initial state of the
model, is still a problem. In the next section, we will briefly
discuss this issue with a system-reservoir model. A systematic
analysis is beyond the scope of this paper.

III. APPLICATION

A. The model

To illustrate the general considerations of the previous sec-
tions, we apply the ECPS techniques to a two-state system
S. The model was adapted from Ref. [5]. The two states
of the system are degenerate. The system is coupled to an
environment E , which consists of N equidistant energy levels
in an energy bands of width δε, and each energy level is
doubly degenerate. The total Hamiltonian of the model in the
Schrödinger picture is H = H0 + α(V1 + V2), where

H0 =
N∑

n=1

∑
i=1,2

δε

N
n|n, i〉〈n, i| (32)

and

V1 = (1 − ξ )
∑
n1,n2

c(n1, n2)σ+|n1, 1〉〈n2, 2| + H.c.,

V2 = ξ
∑
n1,n2

c′(n1, n2)σ→|n1,+〉〈n2,−| + H.c. (33)

Here σ+ = (σx − iσy)/2 and σ→ = (σy − iσz )/2. {σi|i =
x, y, z} is the standard Pauli matrices. The environment
state |n1,±〉 ≡ (|n1, 1〉 ± |n1, 2〉)/

√
2. The coupling constant

c(n1, n2) and c′(n1, n2) are independent and identically dis-
tributed complex Gaussian random variables satisfying

〈c(n1, n2)〉 = 〈c′(n1, n2)〉 = 0,

〈c(n1, n2)c(n3, n4)〉 = 〈c′(n1, n2)c′(n3, n4)〉 = 0,

〈c(n1, n2)c∗(n3, n4)〉 = 〈c′(n1, n2)c′∗(n3, n4)〉
= δn1,n3δn2,n4 ,

〈c(n1, n2)c′(n3, n4)〉 = 〈c(n1, n2)c′∗(n3, n4)〉 = 0. (34)

It is easy to check that interaction operator V1 and V2 do
not commute with each other [V1,V2] �= 0. But their com-
mutator is vanished in average of those random variable, i.e.,
〈[V1,V2]〉 = 0.

In the interaction picture, the Hamiltonian of von Neumann
equation (4) is HI (t ) = V1(t ) + V2(t ), where

V1(t ) = (1 − ξ )[σ+B(t ) + σ−B†(t )];

V2(t ) = ξ [σ→B′(t ) + σ←B′†(t )], (35)

and

B(t ) =
∑
n1,n2

c(n1, n2)e−iω(n1,n2 )t |n1, 1〉〈n2, 2|,

B′(t ) =
∑
n1,n2

c′(n1, n2)e−iω(n1,n2 )t |n1,+〉〈n2,−|. (36)

The energy difference ω(n1, n2) = δε(n2 − n1)/N .
When ξ = 0, the CPS techniques is enough, just as its

predecessor. Suppose an environment operator O satisfies

O|n1, 1〉 = −|n1, 1〉;O|n1, 2〉 = |n1, 2〉. (37)

Then O + σz is a conserved quantity of Hamiltonian H . Fol-
lowing the principle mentioned in Sec. II F, the best projection
superoperator can be constructed with �1,2, where �i =∑

n |n, i〉〈n, i|. Such a superoperator is the same as that used
in Ref. [5]. Similarly, when ξ = 1, the best projection super-
operator should be constructed with �+,−. When 0 < ξ < 1,
there is no such conserved quantity anymore. As explained in
Sec. II F, we need ECPS techniques in such cases. The best
projection superoperator should be constructed with �1,2 or
�+,−. It depends on the specific initial state to decide which
one is better.

B. TCL master equation from ECPS techniques

Suppose the projection superoperator in (20) is

PθρAB =
∑

i=1,2‘

TrB(�i
θρAB) ⊗ �i

θ /N, (38)

where �i
θ = ∑

n |n, i, θ〉〈n, i, θ | and
(|n, 1, θ〉

|n, 2, θ〉
)

=
(

cos θ sin θ

sin θ cos θ

)(|n, 1〉
|n, 2〉

)
. (39)

With θ = 0, �i
θ reads �1,2. With θ = π/4, it gives �+,−.

According to (22), the second-order TCL generator can be
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expressed as

Ki(t ) = α2
∫ t

0
dt1Pθ 〈L(t )L(t1)〉Pθ . (40)

According to (34), the random variables are independent of
each other, so the total generator can be obtained by just
adding two generators of corresponding interaction

Ki(t ) = Ki
1(t ) + Ki

2(t ), (41)

where Ki
1,2(t ) are the second-order TCL generator of V1,2 re-

spectively. Based on calculations in Appendix A, all terms in
the generator Ki

1,2(t ) share the same time-dependent part h(τ ),
which may be approximated by a δ function when δετ � 1.
In this way, we obtain the following second-order TCL master
equation:

d

dt
Pθρi(t ) = α2γPθ (〈L1L1〉 + 〈L2L2〉)Pθρi(t ), (42)

where L1,2 are Liouville superoperators of V1,2 respectively.
In the following, we write the elements of ρi(t ) as

ρ
jl,km
i (t ) = Tr(ρi(t )|km〉〈 jl|), l, m = 0, 1; j, k = 1, 2,

(43)
where |km〉〈 jl| = |m〉A〈l| ⊗ (

∑
n |n, k〉B〈n, j|). By taking the

partial trace over the environment, we obtain ρ lm
i (t ) =∑

j ρ
jl, jm
i (t ). From the definition (21), the elements of the

reduced density matrix satisfies ρ lm
S (t ) = ∑

i ρ
lm
i (t ).

If use Pθ=0, then according to Eqs. (B2), the coherences
ρ01

i (t ) of the solution should decay exponentially over time.
If set ξ = 0 further, then populations ρ11

i (t ) of the solution
will depend on initial state. This indicates the strongly non-
Markovian effect in this model. Moreover, the populations of
steady state limt→∞ ρ11

i (t ) also depend on initial state.
If use Pθ=π/4, then according to Eqs. (B2), the populations

of the solution should decay exponentially to I/2 over time. If
set ξ = 1 further, then the coherences of steady state can be
nontrivial and depend on initial state.

When ξ �= 0, the populations and coherences of the solu-
tion are both dependent on the initial state, it not matter which
superoperator one uses. In such cases, the dynamics of the
system does not even represent a semigroup.

C. The best projection superoperator may be
depend on initial state

As discussed in Sec. II E, one can use a generator Ktot to
judge whether the ECPS techniques improve. In the following
text, we will illustrate this with the model in Sec. III A.

According to (34), mean value of Liouville superoperator
vanishes: 〈L(t )〉 = 0. Hence, (25) becomes

∂tρ(t ) =
[
α2

∫ t

0
dt2〈L(t )L(t2)〉 + O(α3)

]
ρ(0). (44)

The lowest order of the generator Ktot is

K2
tot(t ) = α2

∫ t

0
dt1〈L(t )L(t1)〉. (45)

FIG. 1. The singular values of Choi matrix of (48) under dif-
ferent projection superoperators and different interactions. For each
ξ , there are at most three nontrivial singular values. Parameters:
λ = α2γ N = 1.

Similar to (41), we have

K2
tot(t )ρ = α2

∫ t

0
dt2(〈L1(t )L1(t2)〉 + 〈L2(t )L2(t2)〉)ρ.

(46)
When δετ � 1, according to the calculations in Appendix A,
we have PθK2

tot(t ) ∼ PθK2
tot and

K2
totρ = α2γ (〈L1L1〉 + 〈L2L2〉)ρ. (47)

With (42) and (47), the difference (27) is independent
of time

� = PθK2
tot − K2(θ ). (48)

The singular values of the Choi matrix of � are shown in
Fig. 1. The norm (29) vanishes if all the singular values
vanish. When ξ = 0 or ξ = 1, there always exists a θ to make
all the singular values zero. This means that the projection
superoperator Pθ is suitable for all states. In such cases, the
interaction contains a conserved quantity, and the CPS tech-
niques are good enough. If there is no such quantity, such as
cases in which ξ = 1/2, then whatever θ one chooses, the
singular values cannot all be zero. Under the circumstances,
in any fixed projection superoperators, the master equation
is inaccurate for some initial states. The best projection su-
peroperator will depend on the initial state and the ECPS
techniques can yield better results. As presented in Fig. 1,
the projection superoperator with θ = 0 or θ = π/4 leads
to fewer and smaller nontrivial singular values. Hence, the
best projection superoperator should be selected from Pθ=0

or Pθ=π/4, which accords with the discussion in Sec. III A.

D. Comparing the results

In this section, we compare the results obtained from dif-
ferent projection superoperators (see Appendix B for details)
and the numerical solution of the Schrödinger equation.

As shown in Fig. 2, when ξ = 0, two superoperators give
the same coherences, which are consistent with the numerical
solution. Their populations are totally different. The popula-
tions provided by �1,2 are pretty accurate through the whole
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(b)

(a)

FIG. 2. Comparison of the second-order TCL approximation us-
ing different projection superoperators and of the numerical solution
of the Schrödinger equation. Panels (a) and (b) show the evolution of
population ρ00 and coherence ρ01, respectively. Here ξ = 0 and the
initial state is |0〉A〈0| ⊗ �1

θ /N , where sin(θ ) = 3/5. Other parame-
ters: N = 60, δε = 0.5, and α = 5 × 10−3.

process. In contrast, the projection superoperator Pθ=π/4 can-
not even provide an accurate steady state. These results are
consistent with Fig. 1 and the discussions in Sec. III A: When
ξ = 0, the projection superoperator Pθ=0 is the best for all
initial states.

As shown in Fig. 3, when ξ = 0, the populations are the
same and consistent with the numerical solution, but the co-
herences are totally different. The coherences provided by
Pθ=π/4 are pretty accurate. The projection superoperator Pθ=0

cannot give an accurate steady state. These results are also
consistent with Fig. 1 and the discussions in Sec. III A: When
ξ = 1, the projection superoperator Pθ=π/4 is the best for all
initial states.

As shown in Fig. 4, the populations provided by two
projection superoperators are very close. Both give a good
approximation. Their coherences are totally different. The
coherences given by �+,− are pretty accurate. In contrast,
the projection superoperator with �1,2 provide a worse ap-
proximation. In Fig. 5, the populations provided by two
projection superoperators are very close. Both give a good
approximation. Their coherences are totally different. The

(b)

(a)

FIG. 3. The same as Fig. 2 but ξ = 1 and the initial state is
|ψ〉A〈ψ | ⊗ �1, where |ψ〉 = 0.6|0〉 + 0.8|1〉.

populations provided by �1,2 are pretty accurate, which can-
not be achieved by the superoperator Pθ=π/4. These results
are consistent with Fig. 1 and the discussions in Sec. III A
also: When ξ = 0.5, the best projection superoperator should
depend on initial state and can be selected from Pθ=0 or
Pθ=π/4.

Comparing Fig. 2 with Fig. 4 or Fig. 3 with Fig. 5, one may
conclude that a different interaction can completely change
the best projection superoperator.

E. The failure of homogeneous master equation

The Born-Markov approximation may fail even when the
standard Markov condition is fulfilled [5]. In their model, the
homogeneous master equation obtained by the PS techniques
is inaccurate in the low-order expansion. The populations
obtained in the high-order expansion may diverge in the limit
t → ∞. In this procedure, a higher order expansion can only
improve the approximation for short term but leads to non-
physical results for longer term. It was proven that the CPS
techniques can perfectly solve the problem.

We believe that the root of the problem is that the steady
state given by lowest order master equation is totally wrong.
If the Markov condition is fulfilled and there is always a steady
state, the populations obtained in the lowest order master
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(b)

(a)

FIG. 4. The same as Fig. 2 but ξ = 0.5 and α = 10−2.

equation can be generally written as

ρi(t ) ≡ 〈i|ρ(t )|i〉 = Aie
−γ i

1t + ρs
i , (49)

where ρs
i is the populations of steady state and all the γ i

1 is
positive. In the high-order expansion, the evolution of popula-
tions becomes

ρi(t ) = Aie
−γ i

1t−γ i
2t2+O(t3 ) + ρs

i . (50)

Since the master equation of higher order should yield a better
approximation for the short term, some of γ i

2 must be negative
if ρs

i is wrong. However, the negative γ i
2 can lead to divergence

for longer term. Hence, a wrong steady state may be the root
of the problem. In Ref. [5], the homogeneous master equation
obtained by the CPS techniques can yield an accurate steady
state, which solves the divergence problem in higher order
expansion.

Similar, the homogeneous master equation obtained by the
CPS techniques may also fail in some cases. Some of them
can be solved by ECPS techniques. For instance, the model of
Sec. III A with ξ = 0. Suppose the initial state is

ρ0 = P1ρ
1
A ⊗ 1

2N
I + (1 − P1)ρ2

A ⊗ 1

N
�+. (51)

Since I = �1 + �2 = �+ + �−, in CPS techniques, one
needs projection superoperator Pθ=π/4 to obtain a homoge-
neous master equation. In this approach, the populations of the

(b)

(a)

FIG. 5. The same as Fig. 3 but ξ = 0.5 and α = 10−2.

steady state should be I/2 according to (B2). While in ECPS
techniques, one can choose Pθ=0 for the term P1ρ

1
A ⊗ 1

2N I
and Pθ=π/4 for the term (1 − P1)ρ2

A ⊗ 1
N �+, to get a homo-

geneous master equation. Suppose

ρ1
A =

(
P 0
0 1 − P

)
. (52)

According to (B1), the steady state of the term P1ρ
1
A ⊗ 1

2N I
should be

ρ1
A,s = 1

4

(
1 + 2P 0

0 3 − 2P

)
. (53)

According to the analysis of Sec. III C, when ξ = 0, only the
projection superoperator Pθ=0 can always give a good ap-
proximation. Hence, the steady state given by CPS techniques
would be wrong whenever P �= 1/2. Since the steady state
is wrong, the homogeneous master equation provided by the
CPS techniques should fail.

The projection superoperator Pθ=π/4 can provide a good
approximation for some states, such as [12]

ρ2
A = 1

2

(
1 A

A† 1

)
. (54)

In these cases, since the ECPS techniques enable us to choose
different projection superoperators for the separated states, it
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solves the divergence problem in the CPS techniques. But,
if Pθ=π/4 provides a false steady state to term (1 − P1)ρ2

A ⊗
1
N �+, then the ECPS techniques can also fail.

In general, the homogeneous master equation from the
ECPS techniques is applicable to a more general initial state.
The results are likely to be convergence. Moreover, it yields
more accurate results in lower order equations.

IV. CONCLUSION AND OUTLOOK

We find that the best projection superoperator can be de-
pendent on the initial state. In such circumstances, the ECPS
techniques yield a better approximation. Besides that, the
relevant part in the ECPS techniques allows for quantum
discord between system and environment. Hence, even if an
initial state contains quantum discord, one can still obtain a
homogeneous master equation in ECPS techniques. Finally,
in the framework of homogeneous master equation, we show
that the ECPS techniques can yield convergence results for
more general initial states.

Since the relevant part in the new approach allows for
quantum discord between system and environment, it may

be helpful to consider the impact of quantum discord. In
fact, the new relevant part can contain all the correlations
except for entanglement. Since entanglement is monogamy
and the separable state is typical. The ECPS techniques should
have wide range of application due to quantum de Finetti’s
theorem. Moreover, even for the initial states that contain non-
trivial entanglement between system and environment, one
may still be able to restrict the inhomogeneous term with
monogamy properties of entanglement. The inhomogeneous
terms of ECPS techniques deserve further study.

In this paper, we only show that the best projection su-
peroperator can be dependent on the initial state, but the
exact relationship is still absent. This issue needs further
research. One may solve it by exploring the null space of
PθK2

tot − K2(θ ).
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APPENDIX A: SIMPLIFICATION OF THE GENERATOR

The term 〈PθL1(t )L1(t1)Pθ 〉 in Ki
1(t ) gives

〈PθL1(t )L1(t1)PθO〉 = (1 − ξ )2〈−Pθσ+[B(t )(PθO)B†(t1)]σ− + Pθσ+[B(t )B†(t1)(PθO)]σ−

−Pθσ−[B†(t )(PθO)B(t1)]σ+ + Pθσ−[B†(t )B(t1)(PθO)]σ+ + H.c.〉. (A1)

It is easy to verify that

PθB(t )(PθO)B†(t1) = 1

N
PθTr(�1B(t )(PθO)B†(t1)) ⊗ �1

= 1

N2
Tr(�1B(t )�2B†(t1))PθTr(�2PθO) ⊗ �1 = 1

N2
Tr(�1B(t )�2B†(t1))〈PθB(0)(PθO)B†(0)〉 (A2)

and

PθB(t )B†(t1)(PθO) = 1

N
Tr(�1B(t )B†(t1))Pθ�

1(PθO) = 1

N2
Tr(�1B(t )B†(t1))〈PθB(0)B†(0)(PθO)〉. (A3)

Similarly, it is easy to find that

PθB′(t )(PθO)B′†(t1) = 1

N2
Tr(�+B′(t )�−B′†(t1))〈PθB′(0)(PθO)B′†(0)〉,

PθB′(t )B′†(t1)(PθO) = 1

N2
Tr(�+B′(t )B′†(t1))〈PθB′(0)B′†(0)(PθO)〉. (A4)

Those two-point environmental correlation function satisfy

〈Tr(�1B(t )�2B†(t1))〉 = 〈Tr(�+B′(t )�−B′†(t1))〉 = 〈Tr(�1B(t )B†(t1))〉
= 〈Tr(�+B′(t )B′†(t1))〉 =

∑
n1,n2

exp(−iω(n1, n2)τ ) = γ N2h(τ ), (A5)

where τ = t − t1, γ = 2π/δε, and h(τ ) = sin2(δετ/2)/(πδετ 2). Combining Eqs. (41) and (A1)–(A5), we obtain

d

dt
Pθρi(t ) = K2(θ )ρi(t ) = α2γ 〈PθLLPθ 〉Pθρi(t ) = α2γPθ (〈L1L1〉 + 〈L2L2〉)Pθρi(t ). (A6)

The term Pθ 〈L1(t )L1(t1)〉 in PθK2
tot gives

Pθ 〈L1(t )L1(t1)〉O = (1 − ξ )2〈−Pθσ+[B(t )OB†(t1)]σ− + Pθσ+[B(t )B†(t1)O]σ−

−Pθσ−[B†(t )OB(t1)]σ+ + Pθσ−[B†(t )B(t1)O]σ+ + H.c.〉. (A7)
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It is easy to verify that

Pθ

∫ t

0
dt2B(t )ρB†(t2) = 1

N
Pθ

∫ t

0
dt2Tr(�1B(t )ρB†(t2)) ⊗ �1,

Pθ

∫ t

0
dt2B′(t )ρB′†(t2) = 1

N
Pθ

∫ t

0
dt2Tr(�+B′(t )ρB′†(t2)) ⊗ �+, (A8)

and

Tr(�1B(t )ρB†(t2)) =
∑
n1,n2

exp(−iω(n1, n2)τ )〈n2, 2|ρ|n2, 2〉,

Tr(�+B′(t )ρB′†(t2)) =
∑
n1,n2

exp(−iω(n1, n2)τ )〈n2,−|ρ|n2,−〉. (A9)

When τδε � 1, the time-dependent part may be approximated as

∑
n1

exp(−iω(n1, n2)τ ) ∼ N
2 sin(τδε/2)e−iτδε(1/2−n2/N )

τδε
∼ γ Nδ(τ ). (A10)

Using this approximation, we have

B(t )B†(t2) =
∑
n1,n2

exp(−iω(n1, n2)τ )|n1, 1〉〈n1, 1| ∼ γ Nδ(τ )�1,

B′(t )B′†(t2) =
∑
n1,n2

exp(−iω(n1, n2)τ )|n1,+〉〈n1,+| ∼ γ Nδ(τ )�+.
(A11)

Combining (46), (A7), and (A11), we obtain

PθK2
tot(t )ρi(t ) = α2γPθ 〈LL〉ρi(t ) = α2γPθ (〈L1L1〉 + 〈L2L2〉)ρi(t ). (A12)

APPENDIX B: THE DYNAMIC EQUATION

If set θ = 0, (6) gives

d

dt

(
ρ10,10

i + ρ20,20
i + ρ11,11

i + ρ21,21
i

) = 0,

d

dt

(
ρ21,21

i + ρ10,10
i

) = 0,
d

dt
(ρ21,21

i − ρ10,10
i ) = −λ

ξ 2

2

(
ρ21,21

i − ρ10,10
i

)
,

d

dt

(
ρ20,20

i − ρ11,11
i

) = λ

(
−2 + 4ξ − 5ξ 2

2

)(
ρ20,20

i − ρ11,11
i

)
,

d

dt

(
ρ20,21

i − ρ10,11
i

) = λ

(
−1

2
+ ξ − ξ 2

)(
ρ20,21

i − ρ10,11
i

)
,

d

dt

(
ρ20,21

i + ρ10,11
i

) = λ

(
−1

2
+ ξ − 3ξ 2

2

)(
ρ20,21

i + ρ10,11
i

)
, (B1)

where λ = α2γ N .
If set θ = π/4, (A6) gives

d

dt
(ρ10,10

i + ρ20,20
i + ρ11,11

i + ρ21,21
i ) = 0,

d

dt
ρ10,21

i = 0,

d

dt

(
ρ10,20

i + ρ10,11
i + ρ20,21

i + ρ11,21
i

) = −λ
1

2
(ξ − 1)2

(
ρ10,20

i + ρ10,11
i + ρ20,21

i + ρ11,21
i

)
,

d

dt

(
ρ10,20

i − ρ10,11
i − ρ20,21

i + ρ11,21
i

) = λ

(
−5ξ 2

2
+ ξ − 1

2

)(
ρ10,20

i − ρ10,11
i − ρ20,21

i + ρ11,21
i

)
,

d

dt
(ρ10,10

i + ρ20,20
i − ρ11,11

i − ρ21,21
i ) = λ

(
−3ξ 2

2
+ 2ξ − 1

)(
ρ10,10

i + ρ20,20
i − ρ11,11

i − ρ21,21
i

)
,

d

dt

(
ρ10,20

i − ρ11,21
i

) = λ

(
−ξ 2 + ξ − 1

2

)(
ρ10,20

i − ρ11,21
i

)
. (B2)
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