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We develop the framework of classical observational entropy, which is a mathematically rigorous and precise
framework for nonequilibrium thermodynamics, explicitly defined in terms of a set of observables. Observational
entropy can be seen as a generalization of Boltzmann entropy to systems with indeterminate initial conditions,
and it describes the knowledge achievable about the system by a macroscopic observer with limited measurement
capabilities; it becomes Gibbs entropy in the limit of perfectly fine-grained measurements. This quantity, while
previously mentioned in the literature, has been investigated in detail only in the quantum case. We describe
this framework reasonably pedagogically, then show that in this framework, certain choices of coarse-graining
lead to an entropy that is well-defined out of equilibrium, additive on independent systems, and that grows
toward thermodynamic entropy as the system reaches equilibrium, even for systems that are genuinely isolated.
Choosing certain macroscopic regions, this dynamical thermodynamic entropy measures how close these regions
are to thermal equilibrium. We also show that in the given formalism, the correspondence between classical
entropy (defined on classical phase space) and quantum entropy (defined on Hilbert space) becomes surprisingly
direct and transparent, while manifesting differences stemming from noncommutativity of coarse-grainings and
from nonexistence of a direct classical analog of quantum energy eigenstates.
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I. MOTIVATION

From the introductory pedagogical level to contemporary
fundamental research, and in both classical and quantum
contexts, the concept of entropy has caused a great deal of
confusion. Not only are there many definitions of different
types of entropies appropriate to different contexts [1–6], but,
we would contend, there are two distinct fundamental notions
as to what entropy is meant to signify.

On the one hand, per the definitions of Shannon, Gibbs,
or von Neumann, entropy is an information-theoretic quantity
associated with the probabilities attributed to states of a sys-
tem. This entropy is preserved in a closed system undergoing
evolution via the classical Liouville equation or a unitary
quantum operator, reflecting the preservation of information
in such systems, but the entropy may change (and will gener-
ally rise) if interactions with an external system are allowed.

On the other hand, entropy can measure how “generic” a
particular state-of-affairs is, as described at a coarse-grained
or macroscopic level. Thermodynamic entropy, and that de-
fined by Boltzmann as the number of microstates associated
with a given macrostate, share this character. This sort of en-
tropy can (and tends to) increase in a closed system, satisfying
some version of the Second Law of Thermodynamics.

These notions are often conflated because they tend to co-
incide in equilibrium systems, all converging to the logarithm
of the number of states compatible with some set of fixed
constraints—whether those states are cells in classical state
space, energy levels in quantum theory, or defined otherwise.
Yet if we wish to describe systems out of equilibrium, in
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which entropy can evolve, or to evaluate entropy for small
numbers of particles, more conceptual and mathematical pre-
cision is necessary.

In this paper, we argue that there is a natural and rigorous
definition of entropy at the classical level for which the
following holds true:

(i) It is well-defined in any classical system with a fixed
phase space and probability measure over that phase space; in
particular, it is well-defined out of equilibrium and for small
numbers of particles.

(ii) It constitutes a generalization of, and an interpolation
between, classical Gibbs and Boltzmann entropies.

(iii) It is defined in terms of a coarse-graining that corre-
sponds to a partitioning of phase space.

(iv) It evolves continuously over time, and generically
toward larger values, corresponding to a Second Law.

(v) It can be cleanly transcribed into the quantum context—
and in fact it is the classical version of the quantum “observa-
tional entropy” introduced by [7,8].

(vi) In addition, it can be used to describe the dynamics
of classical systems. Specifically, it can be used to define
“dynamical thermodynamic entropy” that changes with the
evolution of a system.

The idea of coarse-graining has a very long history, go-
ing back to Boltzmann [9], and coarse-grained entropies or
coarse-grained free energies have emerged in numerous ap-
plications, such as fluid dynamics and Navier-Stokes equa-
tions [10,11] (clearly present in the continuum hypothesis
[12]), statistical mechanics of fields and renormalization
group [13–16], in chemical engineering in computing the
entropy of mixing [17–19], and in field theory in the guise of
renormalization (leading to the 1982 Nobel Prize in Physics
for work on critical phenomena using the renormalization
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group [20]). And there are definitions of entropy using some
type of rigorously defined coarse-graining, such as entropy of
partition [21], Kolmogorov-Sinai entropy [21–24], or topo-
logical entropy [21,22]. (These mostly apply to dynamical
systems.)

Nonetheless, in many works coarse-graining is treated in a
rather ad hoc and nonrigorous manner, with many subtleties
ignored. The coarse-grained entropy that we are going to
argue for here has also appeared previously in the literature.
The quantum version of this entropy predates the classical; it
was first introduced by von Neumann [25,26] as a resolution
to the fact that the (von Neumann) entropy does not increase in
isolated systems, and then it was briefly mentioned by Wehrl
[2] as “coarse-grained entropy.” It was further developed
and generalized to include multiple coarse-grainings by the
present authors in [7,8], and it was termed “observational
entropy” because it can be interpreted as the amount of
knowledge an observer has about the system when they have
access only to a set of coarse-grained measurements (and
each measurement corresponds to an observable). Quantum
observational entropy has been found to dynamically describe
thermalization of isolated quantum systems [8,27], it has been
discussed in relationship with other types of entropies [6], it
has been found to increase under Markovian stochastic maps
[28], it has been argued for as a natural candidate for entropy
production [29,30] because its definition does not need an
explicit temperature dependence, it was found to follow an
integral fluctuation theorem and to provide an alternative per-
spective on the conventional definition of mechanical work in
quantum systems [30] (among other properties shown there),
and it has been shown to illustratively model isolated systems
out of equilibrium by studying its extreme fluctuations [31].

Classical observational entropy has appeared previously
[2,23,32–35], but generally just as a mention in passing,1 but
never with a clear or comprehensive discussion of it, nor with
any compelling treatment of applications to thermodynamics.

Thus the aim of this paper is to motivate and define a
rigorous mathematical framework of classical observational
entropy, which we believe gives an elegant unification of many
coarse-graining techniques, and then to derive its various
properties, interpret it both from an information-theoretic
perspective and from a physical perspective (by connecting it
to thermodynamic entropy), and finally spell out its relations
to the quantum version. In other words, we will both argue
that our definition of coarse-grained entropy satisfies the
desiderata in points (i)–(vi) above, and also provide the reader
with intuition about the behavior of this entropy by making
the connection between the classical and quantum versions
clear.

II. BOLTZMANN ENTROPY

Although there are variations, the type of “state counting”
entropy defined by Boltzmann [9,36,37] generally attributes a
number V of fundamental microstates to a given macrostate—

1Equation (1.26) in [2], Eq. (1) in [23] (up to a minus sign and an
additive constant), Eq. (A.1) in [32], Eq. (1.1) in [33], Def. 4.1 in
[34], and Eq. (11) in [35].

defined in some terms—attributing an entropy proportional to
ln V to the macrostate. To be more precise, we make use of
the following definitions.

The state space of a system can be partitioned into nonover-
lapping subspaces that sum up to the full state space. This
partition is called a “coarse-graining” and is denoted by C. An
element of this partition is a called a macrostate.

For a microstate m in a macrostate, we attach Boltzmann
entropy of SB(m) = ln(V ) to this microstate (as well as to the
macrostate of which it is an element), where V is the number
of microstates contained in the macrostate.

This entropy typically rises, at least on average, in any
classical dynamical system out of equilibrium. Consider, for
example, the prototypical system of a small box of gas that is
opened within a larger box, as depicted in Fig. 1, panel (a).
In the Boltzmann view, we consider the phase space of gas
particles in the full box, so that immediately postopening, the
gas is in a low-entropy macrostate that might be described as
“all particles in the small box.” Under natural evolution, the
microstate tends to wander out of this macrostate and into the
much larger macrostate “particles spread throughout a large
box.” This is depicted in Fig. 2(a).

This scheme has the advantage of being defined throughout
the process, not just in the equilibrium states. But it is prob-
lematic in that it changes discontinuously as the microstate
transitions from one macrostate to another, and in that it
requires perfect knowledge of the microstate, which is never
available in practice. What if one wanted to describe a more
realistic situation in which the observer has only a partial
knowledge about the state of the system? We will show that
in such situations, classical observational entropy extends
the definition of Boltzmann, and leads to the continuously
evolving quantity.

Another goal of this paper, as previously mentioned, is
to use this generalized and smoothly varying definition of
Boltzmann entropy to describe thermodynamic entropy as a
dynamical quantity, as opposed to the standard definition,
which yields a fixed value that is completely determined by
the external parameters of a system. To elaborate, in equi-
librium systems, thermodynamic entropy (or more precisely,
microcanonical entropy) is defined in terms of the density
of states near a given overall conserved energy. Illustrated
in our example, thermodynamic entropy defined this way
changes only during the sudden quench of the Hamiltonian,
which changes discontinuously due to the removal of the
barrier during stage 1 → 2 in Fig. 1(a). In other words, this
prescription ascribes exactly the same entropy to states 2 and
4, as illustrated in Fig. 1(b) (top). This conflicts with the fact
that the state 2 is a highly nonequilibrium state from which
it should be possible in principle to extract a larger amount of
work than from the equilibrium state 4. We will show that with
a suitable choice of coarse-graining, it is indeed possible to
define a thermodynamic entropy that does not depend on the
barrier removal, but rather on the underlying state of a system,
as shown in Fig. 1(b) (bottom). Moreover, this quantity will
correspond to the standard thermodynamic entropy in its
respective equilibrium states, increasing continuously from
one equilibrium configuration (closed box) to the next (open
box after a long time), making it a reasonable definition of a
dynamical thermodynamic entropy.
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FIG. 1. (a) Evolution of an expanding gas. (b) Thermodynamic
entropy Sth, calculated as a logarithm of energy density of states,
discontinuously increases from 1 → 2, because the Hamiltonian (or
equivalently, boundary conditions) discontinuously changes. Then it
stays constant. One goal of this paper is to find an entropy measure
that describes the dynamical process of equilibration, i.e., a measure
that depends on the state of the system rather than on the boundary
conditions. Such a measure is expected to stay constant as 1 → 2, to
increase during 2 → 4, and to be approximately equal to thermody-
namic entropy at points 1 and 4, when the system is in equilibrium.
We would call such a measure a dynamical thermodynamic entropy.

III. CLASSICAL OBSERVATIONAL ENTROPY

We desire a generalization of Boltzmann entropy that can
be applied to probability distributions given by phase-space
density,

ρ(x, p; t ), (1)

over microstates. This dynamical entropy should act as a
smoothing-out of the Boltzmann entropy, reducing to the
actual Boltzmann entropy for a fully determined system [see
Fig. 2(b)]. We also choose the phase-space density to be
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FIG. 2. Schematic picture of an evolution of a system through
phase space. (a) The point in phase space naturally evolves from a
small macrostate P1 to a large macrostate P4 and spends most of its
time there. Part (b) shows the same evolution, but with indeterminate
initial conditions signifying that the exact positions and momenta of
particles are not known. In such situation, the state of the system can
span over several macrostates at the same time.

normalized as ∫
�

ρ(x, p; t ) μ dx d p = 1, (2)

where μ is some normalization constant (measure) with units
inverse of those of dx d p so that ρ(x, p; t ) is dimensionless.
By phase-space density ρ(t ) : (x, p) → ρ(x, p; t ) we mean
a function parametrized by time t which attaches a non-
negative-valued probability density to each point in phase
space. Thus the probability that the state of the system is in
the infinitesimal phase-space volume dx d p at time t is given
by ρ(x, p; t )μ dx d p.

In the case of indistinguishable particles, the phase-space
density is additionally required to be fully symmetric under
the interchange of any two particles.

We assume that an observer—guided by some physical
motivation—chooses a certain partition of this space, � =⋃

i Pi. We collect these disjoint subsets—regions of phase-
space—into what we call a coarse-graining, and we denote
it as C = {Pi}i.
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Each region Pi, called a macrostate, is commonly defined
by some inequality conditions on points of phase space (x, p).
It usually represents a collection of points of phase space con-
sistent with some macroscopically observed value or property.

The number of states in each macrostate, which we simply
call its volume, is linearly proportional to its phase-space
volume. The volume of each macrostate is computed as an
integral over the macrostate with the constant2 measure μ,

Vi =
∫

Pi

μ dx d p. (3)

With this definition, the constant measure can be interpreted as
the inverse of the size of each microstate, and we will typically
choose a conventional

μ = 1

hNd
, (4)

where d is the number of degrees of freedom of each particle
(d = 1 for a particle moving on a line, and d = 3 for a particle
in three-dimensional space), N is the number of particles, and
h is Planck’s constant. The advantage of this specific choice
is that its dimensions render both ρ and Vi dimensionless
(as required to take a logarithm), and because Vi then mea-
sures the actual number of quantum microstates within each
macrostate, since each quantum microstate is considered to
take a phase-space volume of hNd ; see, e.g., [38,39].

In the case of indistinguishable particles, the microstate
where the kth particle is at position and momenta (x, p), and
the microstate where the lth particle is at the same point in
phase space, are considered to be the same microstate. As
a result, Eq. (3) is overcounting the number of microstates,
and it has to be modified by a standard factor [40] to Vi =
1

N!

∫
Pi

μ dx d p.
To calculate the probability of the state being in macrostate

Pi, we integrate the phase-space density over this region,

pi(t ) =
∫

Pi

ρ(x, p; t )μ dx d p. (5)

This gives a positive value, and all probabilities sum up to
1, since by definition the integral over the entire phase space
is equal to 1, as shown by Eq. (2).

Defining projectors as window functions,

P̂i(x, p) =
{

1, (x, p) ∈ Pi,

0, (x, p) �∈ Pi,
(6)

2We demand the constant measure for the following reason: Due
to Liouville’s evolution, the phase-space volume of any state de-
scribed by a phase-space density ρ is constant. If measure μ varied
depending on (x, p), then the volume Vρ = ∫

{(x,p)|ρ(x,p;t )�=0} μ dx d p
associated with phase-space density would change in time. Since this
volume is supposed to represent the number of microstates within
it, and since it is reasonable to demand that this number stay the
same during the evolution, we must demand a constant measure
μ. More generally, Liouville’s equation and the property of time-
independent phase-space volume is one of the primary reasons for
using phase space to describe thermodynamics, as opposed to, for
example, configuration space, where the volume of states does not
stay constant during time evolution.

we can write

Vi =
∫

�

P̂i(x, p)μ dx d p, (7a)

pi(t ) =
∫

�

ρ(x, p; t )P̂i(x, p)μ dx d p, (7b)

where the integral now goes over the entire phase space.
This can be further compacted using the L2 inner product on
real-valued functions,

( f , g) ≡
∫

�

f (x, p)g(x, p)μ dx d p, (8)

so that

Vi = (P̂i, 1), (9a)

pi(t ) = (P̂i, ρ(t )). (9b)

[Vi = 1
N! (P̂i, 1) for indistinguishable particles.]

Since Vi denotes the number of microstates in macrostate
i, and pi denotes the probability of being in that macrostate,
then assuming an observer cannot distinguish between any
two microstates within the same macrostate, they associate
equal probability p(k)

i := pi/Vi to each microstate k within that
macrostate. The Shannon entropy that this observer assigns
to a system, given their inability to distinguish microstates
within the same macrostate, is therefore −∑

i,k p(k)
i ln p(k)

i =
−∑

i Vi
pi

Vi
ln pi

Vi
. This motivates the definition of classical ob-

servational entropy with coarse-graining C as3

SO(C)(t ) = −
∑

i

pi(t ) ln
pi(t )

Vi
. (10)

Since the coarse-graining C can be uniquely defined either by
a set of macrostates Pi, or by a set of corresponding projec-
tors P̂i, we can identify these two otherwise mathematically
distinct objects and write

C = {Pi}i ≡ {P̂i}i. (11)

So far, our definition of coarse-grained entropy is mathe-
matically identical to those used by Refs. [2,32–35]; the next
section introduces an important generalization to multiple
coarse-grainings.

IV. MULTIPLE COARSE-GRAININGS

The above definition applies for any coarse-graining, but
some coarse-grainings are more relevant than others. To define
a thermodynamically relevant specification of observational
entropy, and for other purposes, it is necessary to generalize
this entropy to include multiple coarse-grainings. This is done
as follows.

Suppose we have several coarse-grainings of the phase-
space, (C1, . . . , Cn). We define a joint coarse-graining,

C1,...,n = {Pi1,...,in}i1,...,in , (12)

3This construction uses coarse-graining of Shannon entropy of
measurement. We could define a slightly more general quantity by
coarse-graining the Tsallis entropy of parameter q, which would
lead to Tsallis observational entropy Sq

O(C) = 1
q−1 (1 − ∑

i pq
i V

1−q
i ).

Observational entropy is then recovered by the limit q → 1.
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where the corresponding multi-macrostates are given by over-
lap of the previous macrostates, and the projectors are given
as a multiple of projectors,

Pi ≡ Pi1,...,in ≡ Pi1 ∩ · · · ∩ Pin , (13)

P̂i ≡ P̂i1,...,in ≡ P̂i1 · · · P̂in . (14)

In the above, we have also employed multi-index
i = (i1, . . . , in).

Inserting the joint coarse-graining into the definition,
Eq. (10), motivates the definition of the observational entropy
with multiple coarse-grainings as

SO(C1,...,Cn )(t ) ≡ −
∑

i

pi(t ) ln
pi(t )

Vi
, (15)

where

Vi = (P̂i, 1), (16)

pi(t ) = (P̂i, ρ(t )). (17)

[Vi = 1
N! (P̂i, 1) for indistinguishable particles.] Indeed, from

the definition it follows that SO(C1,...,Cn ) = SO(C1,...,n ). (Note the
subtle notational difference.) That is, a set of coarse-grainings
can also be considered as a single-composite coarse-graining.4

V. PROPERTIES

We briefly mention some properties of classical observa-
tional entropy. These are classical equivalents of theorems
proved for the quantum observational entropy [8]. The proofs
are mostly analogous to those quantum mechanics (with some
important subtleties), although we were able to slightly sim-
plify some of them due to a simpler structure of the phase
space as compared to the Hilbert space (see Appendix A).

Theorem 1. Observational entropy is a generalization of the
Boltzmann entropy. For a single point in phase space (x, p) ∈
Pi, equivalent to a delta function ρ(x̃, p̃) = δ(x̃ − x, p̃ − p),
we have

SO(C)(ρ) = SB(ρ) = ln Vi. (18)

Definition 1. Finer coarse-graining. We say that coarse-
graining C2 is finer than coarse-graining C1 (and we denote
C1 ↪→ C2) when for every Pi1 ∈ C1 there exists an index set I (i1 )

such that Pi1 = ⋃
i2∈I (i1 ) Pi2 , Pi2 ∈ C2. (That is, each element of

C1 can be partitioned using elements of C2.)
When C1 ↪→ C2, we can also write P̂i1 = ∑

i2∈I (i1 ) P̂i2 .
Theorem 2. Observational entropy is a monotonic function

of the coarse-graining. If C1 ↪→ C2, then

SO(C1 )(ρ) � SO(C2 )(ρ). (19)

Definition 2. Coarse-graining given by an observable. Let
A : (x, p) → a be a classical observable that assigns value a
(property) to each point in phase space. We define macrostates
associated with value a as Pa = {(x, p)|A(x, p) = a} in
the case of an observable with discrete values, or as

4As discussed below, this statement does not transfer to quantum
mechanics unless the coarse-grainings commute.

Pa = {(x, p)|a � A(x, p) < a + da} in the case of a contin-
uous observable.5 We define coarse-graining given by the
observable6 A as CA = {Pa}a.

Theorem 3. Observational entropy with multiple coarse-
grainings is bounded,

SG(ρ) � SO(C1,...,Cn )(ρ) � ln V, (20)

where SG(ρ) ≡ − ∫
�

ρ(x, p) ln ρ(x, p)μ dx d p, and V ≡∫
�

μ dx d p is the total volume of the phase space (the total
number of microstates). SG(ρ) = SO(C1,...,Cn )(ρ) if and only if
Cρ ↪→ C1,...,n, i.e., if the joint coarse-graining is fine enough to
distinguish between points in phase space that have different
assigned probabilities.

SG(ρ) represents Gibbs entropy.7 Gibbs entropy is invariant
under Liouville’s evolution. It is zero for a single point in
phase space, and it is a property of a state, and not of a
coarse-graining. This quantity also appears as the functional
H in the classical H-theorem, as interpreted by Tolman [42].
Since μ is the inverse of the phase-space volume of a sin-
gle microstate, pi = ρ(x, p) is the probability of being in a
microstate (of phase-space volume μ−1, or equivalently of
volume Vi = 1), so we can also write SG(ρ) ≡ −∑

i pi ln pi,
i.e., the Shannon entropy of these probabilities. The quantum-
mechanical equivalent of Gibbs entropy is the von Neumann
entropy, which is invariant under unitary evolution, is zero for
pure states, and which is also a property of a state and not of
a coarse-graining.

Theorem 4. Observational entropy is nonincreasing with
each added coarse-graining,

SO(C1,...,Cn )(ρ) � SO(C1,...,Cn−1 )(ρ) (21)

for any set of coarse-grainings (C1, . . . , Cn) and any phase-
space density ρ.

These theorems show that observational entropy can be
elegantly interpreted as the amount of knowledge an observer
would obtain if he or she were to measure the macroscopic
observables that define the coarse-grainings. While Theorem
2 says that an observer with better resolution will get to know
more about the system, Theorem 3 says that no matter what
coarse-grained measurements they choose to perform, their
knowledge will still be limited by an inherent uncertainty in
the system given by the Gibbs entropy. On the other hand,
regardless of the coarse-graining, their knowledge cannot be

5The infinitesimal increment da plays the role of the resolution in
measuring the observable A.

6Note 1: Although ρ is not usually considered an observable, it
fulfills our definition and we will treat it as such in the theorem that
follows. Note 2: we can also define the spectral decomposition of
an observable as A = ∑

a aP̂a, or A = ∫ ∞
−∞ aP̂ada, where eigenvalues

a are considered to be different from each other. This spectral
decomposition is unique, and it plays an identical role in phase space
with inner product (8) to the role of the spectral decomposition of a
quantum observable in Hilbert space.

7The definition of Gibbs entropy is not consistent in the literature.
Our definition seems to be the most common, and it is used, for
example, in [1]. Sometimes, Gibbs entropy is defined as Shannon
entropy of probabilities of energy distribution (which has a quantum
equivalent called diagonal entropy [41]), and what is called Gibbs
entropy in [35] is actually our observational entropy.
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worse than that measured by the maximal entropy, which
signifies complete uncertainty about the system’s state. The-
orem 4 then shows an intuitive statement that each additional
macroscopic measurement will provide better knowledge of
the system, at least on average.

In addition, rewriting Eq. (15) as

SO(C1,...,Cn )(t ) ≡ −
∑

i

pi(t ) ln pi(t ) +
∑

i

pi(t ) ln Vi (22)

provides an intuitive information-theoretic interpretation. The
first term denotes an uncertainty as measured by the Shannon
entropy regarding to which macrostate the microstate of the
system belongs. In other words, if one were to make a coarse-
grained measurement at time t given by the coarse-graining
(for example, a measurement determining the system’s en-
ergy), the first term measures the uncertainty in the mea-
surement outcomes in such a coarse-grained measurement.
The second term measures the average remaining uncertainty
about the microstate after this coarse-grained measurement
was done. Put together, observational entropy measures the
average amount of uncertainty about a microstate of a system,
from the point of view of an observer that can track only
certain macroscopic properties by his/her ability to perform
coarse-grained measurement.

VI. THERMODYNAMICALLY RELEVANT
NONEQUILIBRIUM ENTROPIES: INTRODUCTION

The treatment thus far has pertained to any possible coarse-
graining. However, even if entropy increase is generic, there
is no reason to expect that an arbitrary coarse-graining will be
closely connected with thermodynamics, which in particular
concerns temperature, energy, and entropy.

In the following sections, we introduce two types of (com-
posite) coarse-grainings that each lead to an entropy that
is relevant for describing the dynamics of isolated quan-
tum systems: SxE (observational entropy with local particle
coarse-graining and global energy coarse-grainings) and SF

(observational entropy with local particle and local energy
coarse-grainings).8 Both will be perfectly defined for systems
outside of equilibrium, both will grow to the equilibrium
thermodynamic value when the system thermalizes, and both
will describe physical regions coming into equilibrium with
each other.

However, there are some important distinctions in their
properties closely related to distinctions in their meanings: as
explained in the following sections, SxE can be interpreted as
the value of entropy the system would attain in the long-time
limit if the regions were allowed to exchange energy, but
not particles. SF , on the other hand, represents the value of
entropy associated with the system if regions equilibrate but
cannot exchange either energy or particles.

This interpretation of SxE shows that it is not in general
additive on subsystems. For example, given two equally sized
regions consisting of the same number of particles but with

8In the quantum context [8], SF is also named “factorized observa-
tional entropy,” or FOE for short, due to the tensor-product form of
its local energy coarse-graining.

very different temperature, SxE assigns an entropy value ap-
propriate to the two systems’ temperatures having already
equalized through interaction between the regions. SF , on
the other hand, is additive and equal to the sum of the ther-
modynamic entropies of the two regions. Additionally, since
measuring local energies also determines the global value of
energy, in classical physics SF � SxE always.

Since in real systems both particles and energy are ex-
changed between the regions, both SxE and SF are inherently
time-dependent quantities outside of equilibrium.

In the following sections, we focus on SxE (Secs. VII and
VIII), not because it is of more interest but because its defi-
nition requires only the global Hamiltonian, making it more
transparent. We will derive its dynamical properties and show
a simulation illustrating its behavior. Defining SF requires a
notion of local Hamiltonians. Despite this, its properties are
derived in close analogy to those of SxE (Sec. IX).9

Both of these entropies, SxE and SF , originated as fully
quantum-mechanical versions published in [7,8]. However,
there are some important differences. For example, unlike
classical SxE , the quantum SxE is (quite surprisingly) an ad-
ditive quantity. These will be discussed in detail in Sec. X.

VII. SxE: ENTROPY OF MEASURING LOCAL PARTICLE
NUMBERS AND GLOBAL ENERGY

In this section, we introduce a (composite) coarse-
graining that defines one of the thermodynamically relevant
entropies, SxE .

Let us consider a system of N particles contained in a
one-dimensional box from position L1 to L2, so of size L =
L2 − L1. We coarse-grain this box into m physical regions
(bins) of size �x = L

m . Considering the vector of positions as
x = (x1, . . . , xN ), and the vector of the number of particles in
each part of the box as n = (n1, . . . , nm) (where n1 + · · · +
nm = N), we define local particle number (configuration)
macrostates as10

Pn ≡ {(x, p)|n1 particles with position x ∈ [L1, L1+�x),

. . . , nm particles with position x ∈ [L1+(m−1)�x, L2)}.
(23)

Clearly, we can easily generalize this to any number d of
spatial dimensions. This coarse-graining corresponds to mea-

9While both definitions can be written in the standard Hamiltonian
formalism, which assumes there is a fixed number of particles in
the entire system, the description is much more elegant when one
develops a formalism of the classical analog of Fock space—the Fock
phase space—which allows for describing classical systems with
a variable number of particles. After all, each subsystem (both for
SxE and SF ) has a variable number of particles in it, and therefore
it should be possible to describe each subsystem independently.
Observables of local particle number and local energies will then be
seen as observables on the Fock phase space of a subsystem. The
coarse-graining defining SF is then created as a Cartesian product of
local coarse-grainings. This will be done elsewhere [43].

10A more mathematical description of this definition uses permuta-
tions and can be inferred from Eq. (D3) by ignoring the local energy
part.
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suring the number of particles in each one of the m bins, i.e.,
to a coarse-grained measurement of local particle numbers,
and we denote it as CX = {Pn}n.11 For example, P(3,0,1) corre-
sponds to a macrostate with three particles in the first bin, zero
in the second, and one in the third.

We also define energy macrostates with width �E as

PE ,�E ≡ {(x, p)|E � H (x, p) < E + �E}, (24)

where H denotes the Hamiltonian. When �E ≡ dE is an
infinitesimal increment, we simply denote PE ≡ PE ,dE , its
corresponding projector as P̂E ≡ P̂E ,dE , and volume as VE ≡
VE ,dE . We call the coarse-graining with such an infinitesimal
energy increment a “fine-graining” in energy, and we denote it
CE = {PE }E (considering definition 2, CE ≡ CH ). It is impor-
tant to emphasize here that dE is fixed to be the same for all
energies E .12

The local particle number-energy macrostates are then
defined as PnE ≡ Pn ∩ PE , and the respective projectors are
P̂nE = P̂nP̂E . With macrostate volumes VnE = (P̂nE , 1), and
probabilities pnE = (P̂nE , ρt ), we define observational entropy
corresponding to measuring local particle numbers and the
global energy as

SxE (t ) ≡ SO(CX ,CH )(t ) = −
∑
n,E

pnE (t ) ln
pnE (t )

VnE
. (25)

Figure 3 gives an example of these quantities for a single
particle in a harmonic potential.

VIII. THERMODYNAMIC BEHAVIOR OF SxE

We now take a closer look at the thermodynamic behavior
of SxE using the prototypical example of a gas at first con-
tained in half of a box, then expanding into its full volume,

11We denote coarse-graining CX , with a subscript X signifying
position mostly for historical reasons, because in the case of indis-
tinguishable particles focused on in the quantum version of observa-
tional entropy [7,8], measuring coarse-grained positions of particles
is the same as measuring the local number of particles. Thus an
equivalent name for CX is positional coarse-graining.

12For example, one could also think of an energy coarse-graining
C (eigen)

E = {P(eigen)
E }E , consisting of projectors onto “eigenstates” of

the classical Hamiltonian, where we fit the width of each energy shell
dE so that V (eigen)

E = 1, meaning that each macrostate corresponds
to a single microstate. In that case, dE = dE (E ) will generally
depend on the energy. Projectors (window functions) P̂(eigen)

E are then
a classical equivalent of projectors onto quantum energy eigenstates
|E〉〈E |. However, this would not give a desirable long-time behavior
for SxE ; in particular, the entropy assigned to a microstate in a
given energy macrostate PE would not be the correct microcanonical
entropy, which is defined as a logarithm of the number of microstates
in energy shell [E , E + dE ). Projectors P̂E ∈ CE with fixed dE cor-
respond to the sum

∑
E�Ẽ<E+dE |Ẽ〉〈Ẽ | in quantum mechanics. We

also note that correspondence between projectors onto eigenstates
of the Hamiltonian |E〉〈E | (called stationary Liouville eigenstates)
and P̂(eigen)

E have been explored in [44] and references therein. It was
shown that the Wigner function of |E〉〈E | converges to a distribution
that can be viewed as a highly peaked P̂(eigen)

E in the h → 0 limit [see
Eq. (24) in [44]].

FIG. 3. Phase space of a single particle in a harmonic potential,
with a local particle number (configuration) coarse-graining, and
energy coarse-graining. The blue local particle number macrostate
P(1,0) corresponds to the statement, “the particle is on the left side
of the box,” while the red energy macrostate PE corresponds to
“the particle has energy between E and E + dE .” Overlap of these
two macrostates P(1,0)E (purple) is a local particle number-energy
macrostate that corresponds to “the particle is on the left side of the
box and has energy between E and E + dE .” Energy macrostates—
shells of constant energy of width dE—form ellipses in this example
because they are given by equations E = 1

2m p2 + 1
2 kx2 = const. The

volume of the energy macrostate VE is proportional to the red area
(including purple) in the picture, and it defines the microcanonical
entropy Smicro(E ) ≡ ln VE . In an isolated system, a particle will never
jump out of its energy shell, it will only rotate through it (blue arrow).
In the situation depicted, where the volume of the macrostate with
particles on the left is the same as the volume of the macrostate
with particles on the right, V(1,0)E = V(0,1)E = 1

2VE , the dynamical
thermodynamic entropy has a constant value SxE (t ) = ln( 1

2VE ) =
Smicro(E ) − ln 2, which is the same as the microcanonical entropy of
a particle in half of the box.

as shown in Fig. 1. We will show that for the cases in which
all particles are only in one of the regions, SxE is equal to
the thermodynamic entropy of that region, and that as the
system thermalizes by letting the particles spread, SxE grows
to the thermodynamic entropy of the full system. This entropy
is therefore enough to effectively model, for example, the
expansion of an ideal gas.

We model our system by a Hamiltonian undergoing quench
(a sudden discontinuous change) at time t = 0,

H (x, p, t ) =
{

H1(x, p) = H0(x, p) + U1(x), t < 0,

H2(x, p) = H0(x, p) + U2(x), t � 0,
(26)

where H0 denotes the Hamiltonian of the particles themselves
(which may or may not contain interaction between the parti-
cles), and

U1(x) =
{

0, ∀i, 0 < xi < L
2 ,

+∞, otherwise,
(27)

U2(x) =
{

0, ∀i, 0 < xi < L,

+∞, otherwise (28)

denote two infinite potential wells.
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For Hamiltonian H , the microcanonical entropy is defined
as the logarithm of the number of microstates in each energy
shell [45], which we can write in several ways as

S(H )
micro(E ) = ln V (H )

E ,�E = ln (ρ(E )�E ) = Smicro(E ,V, N ).
(29)

V (H )
E ,�E is the volume of an energy macrostate, and ρ(E )

denotes the density of energy states. �E is the width of the
energy macrostate, which can be fixed to some small but
nonzero value13 that is considered to be independent of E . V
is the physical volume occupied by N particles of total energy
E . More generally, we can define thermodynamic entropy as

S(H )
th ≡ SO(CH ), (30)

which coincides with the definition of microcanonical entropy
for a single point in phase space, and with canonical entropy
for a canonical distribution ρ(x, p) = 1

Z e−βH (x,p), where β

denotes inverse temperature, and Z = ∫
�

e−βH (x,p)μ dx d p is
the partition function.

In the following, we consider SxE ≡ SO(CX ,CH2 ) with a local
particle number coarse-graining CX that halves the box (n =
(n1, n2), L1 = 0, L2 = L, �x = L

2 ), and with energy coarse-
graining CH2 given by the Hamiltonian after the quench.

From Theorem 4, we can immediately see that thermody-
namic entropy of the entire box bounds the SxE ,14

SxE = SO(CX ,CH2 ) = SO(CH2 ,CX ) � SO(CH2 ) = S(H2 )
th . (31)

Now we move to studying the actual dynamics of SxE .

A. Dynamics of SxE for determinate initial conditions

First we assume a fully determined state of N particles
contained in the left part of the box, described by a state
(x0, p0) ∈ P(N,0)E . We have

SxE (x0, p0) = ln V(N,0)E = ln V (H1 )
E = S(H1 )

micro(E ) = S. (32)

The first equality comes from Theorem 1, and the second
comes from the fact that the macrostate of N particles in
the left side of the box with energy E is identical to the
energy macrostate of the initial Hamiltonian, P(N,0)E = P(H1 )

E .
Therefore, for initial particles contained in the left side of the
box, SxE gives the microcanonical entropy of this side of the
box.

As the particles evolve, some of them will go to the right
side of the box and some will remain. After some time, the
state of the system can be described as, “about half of the
particles are on the left, and about half of the particles are
on the right side of the box.”

We can say the same by saying that the point in phase space
will wander around, and it will most likely end up in one of

13Since ρ(E ) rises exponentially with E and ln (ρ(E )�E ) =
ln ρ(E ) + ln �E , the choice of �E ultimately does not matter, be-
cause ln �E acts only as an additive constant that is small compared
to the first term. Moreover, since we are usually interested in the
changes in entropy, rather than in absolute values, in such situations
the value of this additive term becomes completely irrelevant.

14Symmetry SO(CX ,CH2 ) = SO(CH2 ,CX ) holds for classical observa-
tional entropy, but not for quantum observational entropy [8].

the largest macrostates. In the current situation, the largest
macrostate corresponds to the statement, “half of the particles
are on the left side of the box, half are on the right, and the
total energy is E .” This is schematically depicted as stages
1 → 2 in Fig. 4.

Due to the slow growth of the logarithm, the entropy
associated with either of those large macrostates will not differ
much: there will be some corrections, but they will become
irrelevant in the thermodynamic limit. So in order to find the
long-time behavior of SxE , it is therefore enough to calculate
the entropy for the largest of the macrostates, which is what
we do in Appendix C. Assuming indistinguishable particles,
we find that for m bins,15

lim
t→+∞ SxE (t ) = Smicro(E , L, N ) + 1

2
ln(2πN ) − m

2
ln

2πN

m
,

(33)

where Smicro(E , L, N ) = S(H2 )
micro(E ) denotes the total micro-

canonical entropy of the full system. This means that in
the case of perfect knowledge of the system, SxE matches
microcanonical entropy of the full system, up to some small
corrections. The second term becomes negligible compared
to the first in the thermodynamic limit of particle number
N → ∞. The last term represents a finite-size effect, which
for a small number of bins m (or equivalently, large bin sizes)
is also small in comparison with the first term. We will see in
the next section that these corrections are an artifact of taking
the determinate initial conditions: they disappear in the case
of indeterminate initial conditions.

B. Dynamics of SxE for indeterminate initial conditions

Let us define the phase-space density of a microcanonical
ensemble as

ρ
(micro)
E ,�E (x, p) ≡

{ 1
VE ,�E

, (x, p) ∈ PE ,�E ,

0, (x, p) �∈ PE ,�E .
(34)

Equivalently, we can write

ρ
(micro)
E ,�E = P̂E ,�E

VE ,�E
. (35)

It is easy to see that for this microcanonical ensemble, as
long as dE � �E (i.e., the energy coarse-graining is fine
enough to determine the width of the ensemble), SxE gives
the microcanonical entropy:

SxE
(
ρ

(micro)
E ,�E

) = ln VE ,�E = Smicro(E ), (36)

where ρ(E ) denotes the energy density of states.

15The proof of an equivalent long-time limit behavior for quantum
SxE is very different from the present classical case. Instead of
computing the entropy of the largest macrostate, it uses an ansatz
of a random Hamiltonian, and the assumption that in the long-time
limit the phases in an energy basis can be considered to be drawn
randomly from a uniform ensemble (which is equivalent to saying
that the differences of any two energy eigenvalues are irrational) [8].
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FIG. 4. Evolution of N = 4 indistinguishable particles in phase space, with local particle number-energy coarse-graining taken from Fig. 3.
We plot the 16-dimensional phase space as four single-particle phase-spaces stacked onto each other. (1) Particles start in the left side of the
box, which corresponds to macrostate P(4,0)E (“four particles on the left, zero on the right”), where E denotes the total energy of the system.
This configuration gives microcanonical entropy of the left half of the box, SxE = ln V(4,0)E = S(H1 )

micro(E ). (2) As particles evolve, they wander
into the largest macrostate P(2,2)E (“two particles on the left, two on the right”) allowed by the given energy, which is six times bigger than the
initial macrostate, and they spend most of their time there. The entropy of this largest macrostate is equal to the microcanonical entropy of the
entire box up to some correction, SxE = ln V(2,2)E = S(H2 )

micro(E ) − 1
2 ln(2π ), m = 2 in Eq. (33). (3) If the initial state was not fully determined,

then after some time the particle positions become uncertain, and the phase-space density becomes quite uniformly smeared over the entire
energy shell PE = ⋃

n,n1+n2=4 PnE , which is the effect known as mixing. This erases corrections to the entropy, which then exactly equals the

microcanonical entropy of the entire box: SxE = ln VE = S(H2 )
micro(E ).

More generally, in Appendix A we prove a theorem that
gives meaning to all stationary states: For phase-space den-
sities that are mixtures of energy macrostates (such as the
microcanonical and canonical ensembles), SxE gives the ther-
modynamic entropy:

Theorem 5. For phase-space density of the form ρ =∑
E f (E )P̂E , where f (E ) is any function of energy E normal-

ized as
∑

E f (E )VE = 1,

SxE (ρ) = SO(CH ) = Sth(ρ). (37)

Now we address the dynamics. We consider an initial state
at some time t < 0 that is a microcanonical state of N particles
contained in the left part of the box, and none in the other
half, which we can denote as a microcanonical ensemble of
the initial Hamiltonian,

ρ0 ≡ ρ
(micro;H1 )
E ,�E . (38)

Since this is a stationary state of H1, ρ(t ) = ρ0 for t < 0.
Similar to Eq. (32), we find that for t < 0,

SxE (ρt ) = ln V (H1 )
E ,�E ≡ S(H1 )

micro(E ) = Smicro

(
E ,

L

2
, N

)
. (39)

(See Appendix B for details.) In other words, SxE of the initial
state is equal to the microcanonical entropy of the first half of
the box.

At time t = 0, the available phase space suddenly expands,
and phase-space density ρ(t ) starts to explore the full extent
of it. That first leads to a quick increase of entropy for
the same reasons as for the case of determinate conditions,
i.e., because the phase-space density will wander into the
largest macrostate. However, due to mixing [46], with time the
positions of the particles become increasingly uncertain, and
the phase-space density becomes uniformly smeared over all

points in each energy shell. This is depicted as stages 2 → 3
in Fig. 4.

Mathematically, this means that the phase-space density
converges to the microcanonical state of the second Hamil-
tonian,

lim
t→+∞ ρ(t ) = ρ

(micro;H2 )
E ,�E . (40)

According to Theorem 5, SxE of this state must be equal to
the microcanonical entropy of the entire box,16

lim
t→+∞ SxE (t ) = ln V (H2 )

E ,�E ≡ S(H2 )
micro(E ) = Smicro(E , L, N ).

(41)

Clearly, one can generalize this to any initial ensembles,
since due to mixing, any initial phase-space density will
become a stationary state of Hamiltonian H2, in a sense of
Theorem 5.

16For this convergence to hold, we must take the width of energy
coarse-graining to be small, but nonzero, 0 < dE � �E . 0 < dE
comes from the fact that Eq. (40) does not hold in a strict mathemati-
cal sense (there is, however, a way to write an exact mathematical
statement, but we will not elaborate on this here [46,47]). This
is because the phase-space density behaves like an incompressible
fluid, and as such it never uniformly fills up the energy shells of phase
space. However, it becomes dense in each shell, meaning that after
waiting a long time, from the coarse-grained description given by
nonzero dE there will be no observable difference between the real
microcanonical state and a state that is dense in an energy shell. And
this is enough for the entropy SxE not to register a difference between
such states. We are taking dE � �E because we want Eq. (36) to
hold.
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FIG. 5. Simulation of the evolution of SxE of a system of N = 64 particles in a two-dimensional box coarse-grained into m = 4 physical
regions, evolving through a Hamiltonian including weak interparticle interactions, and taking periodic boundary conditions. The green and red
dashed lines represent thermodynamic entropy of the bottom left quarter and the full system, respectively. As the system evolves, the particles
spread throughout the regions, and the SxE grows to the thermodynamic entropy of the full system, up to some finite-size corrections, as
expected from Eq. (33). Illustrations of the particle spread are the real snapshots of the system at different times of evolution in our simulation.

Having indeterminate initial conditions therefore results in
SxE converging to thermodynamic entropy exactly, without the
corrections of Eq. (33).

C. Simulations

To support our analytical arguments, we have performed a
simulation of a thermodynamic system of gas in d = 2 spatial
dimension, and for 4 and 16 partitions. The case of 4 partitions
is depicted in Fig. 5.

We take N = 64 particles of identical mass m = 1, and we
initialize them in the lower left corner of size 8 × 8, within the
full box of size 16 × 16 with periodic boundary conditions.
The velocity of each particle has been randomly drawn from
the normal distribution. Particles interact via a Lennard-Jones
potential

u(r) = ε

[( rm

r

)12
− 2

( rm

r

)6
]
, (42)

where we took ε = 1/120 and rm = 1 as parameters of the
model, and r denotes the distance between each particle.
Particles are then evolved via a velocity Verlet algorithm with
time step 10−4.

As particles and heat spread from one region to the other,
entropy SxE grows from the thermodynamic entropy of the
first bin to the thermodynamic entropy of the full system,
up to some finite-size corrections as expected from Eq. (33),
effectively modeling thermalization of an expanding gas.

D. Interpretation

We have shown that SxE , which is well-defined out of
equilibrium, corresponds to the thermodynamic entropy of
the initial region if all the particles are contained within this
region, and it grows to thermodynamic entropy of the full
system for cases of both determinate and indeterminate initial
conditions.

Physically, we can interpret SxE as a measure of equilib-
rium between the different regions defined by the coarse-
graining in local particle numbers, but not necessarily as a
measure of thermal equilibrium. If particles are uniformly
distributed between the regions (the number of particles in
each region being proportional to the size of the region),
SxE is equal to thermodynamic entropy. When SxE is low, it
means that many particles are contained in one or a few small
regions, and the system is therefore in a highly nonequilibrium
state. SxE is therefore a measure of uniformity of particle
density.

To illustrate this mathematically, for a single point in phase
space, (x, p)(t ) ∈ P(n1,...,nm )E , SxE gives the value

SxE (t ) = ln V(n1,...,nm )E , (43)

which is exactly the thermodynamic entropy that one would
assign to a system of N particles distributed into m bins, in
the situation in which the energy is allowed to be exchanged
between the bins, but the particle number in each bin is fixed.

To imagine this quantity operationally, imagine a situation
in which an observer/experimenter inserts elastic membranes
in between the bins at time t (infinitely quickly), which allow
for energy transfer but not for particle transfer, and then waits
until the system relaxes. The value of thermodynamic entropy
he or she would assign to that system after it relaxes to thermal
equilibrium is SxE (t ).

This brings out a problematic feature of this entropy,
which is that the coarse-graining in global energy does not
distinguish any microstates that differ in energy locally. This
means that the same entropy will be associated with any
microstate that has E1 + E2 = E , with E1 and E2 being the
energy of the left region and of the right region, respectively.
As an example, imagine a situation with 10 particles in the left
region and 10 particles in the right region. Situations when the
left part is really hot and the right part is really cold, and when
both parts have equal temperatures, will both have the same
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associated SxE = ln V(10,10)E as long as the total energy E is
the same. This also means that SxE is not in general additive.17

As we will see, factorized observational entropy SF solves
this problem by building on the definition of SxE but using
the local energy coarse-grainings instead of the global energy
coarse-graining.

IX. SF : ENTROPY OF MEASURING LOCAL PARTICLE
NUMBERS AND LOCAL ENERGIES

In the same 1D system introduced in the preceding section,
we define local particle number-local energy macrostates as

PnE ≡ {(x, p)|n1 particles with position x ∈ [L1, L1+�x),

. . . , nm particles with position x ∈ [L1+(m−1)�x, L2),

energy of the bin [L1, L1+�x) is between [E1, E1 + dE ),

. . . , energy of the bin [L1+(m−1)�x, L2) is between

[Em, Em + dE )},
(44)

where n = (n1, . . . , nm) and E = (E1, . . . , Em) are vectors
representing the local particle numbers and local ener-
gies. N = n1 + · · · + nm, E = E1 + · · · + Em, and L = L2 −
L1 are the total particle number, the total energy, and the total
spatial volume (length of the box). This can be generalized
to any spatial dimension d and spatial volume V , with the
number of bins defined as m = V

�xd .
Observational entropy with coarse-graining CXE =

{PnE}nE corresponding to measuring local particle numbers
and local energies

SF (t ) ≡ SO(CXE )(t ) = −
∑
n,E

pnE (t ) ln
pnE (t )

VnE
(45)

satisfies all properties required of dynamical thermodynamic
entropy.

Assuming indistinguishable particles of a sufficiently di-
lute and weakly interacting gas, the volume of macrostate PnE

is equal to the product of local volumes, VnE = Vn1E1 · · ·VnmEm

(see Appendix D). As a result, for a single point in phase
space, (x, p)(t ) ∈ PnE ,

SF (t ) = ln VnE =
m∑

k=1

Smicro(Ek,�xd , nk ), (46)

where Smicro(Ek,�xd , nk ) = ln VnkEk is the microcanonical
entropy of the kth bin. In other words, unlike SxE , for a
single point in phase space, SF is equal to the sum of local
microcanonical entropies, and it is therefore also additive on
independent systems.

17The studied example of an expanding gas was a special case
because there were no particles in the right part of the box, therefore
this part did not contribute to the total entropy (explained in our
operational view: no energy could be transferred if there were no
particles on the right when the elastic membrane was inserted).

In the long-time limit, this entropy converges to the total
microcanonical entropy,

lim
t→+∞ SF (t ) = Smicro(E ,V, N ) + ln(2πN ) − m ln

2πN

m

− m − 1

2
ln

d

2
, (47)

up to some corrections that are about a factor of 2 larger than
those for SxE . (For d = 1, V = L.) These corrections are due
to determinate initial conditions (starting as a single point
in phase space), and they disappear in the long-time limit
when starting with indeterminate conditions due to mixing.
The proof is very similar to the proof of the same property
for SxE , Eqs. (33) and (41), and it can also be found in
Appendix D.

Similar to SxE , SF is always defined even for systems out
of equilibrium, and for systems with indeterminate initial
conditions, given by a phase-space density ρ.

Since the coarse-graining used by SF is finer than that of
SxE , from Theorem 2 it follows that

SF (t ) � SxE (t ). (48)

This holds up to some finite-size corrections, which comes
from the fact that SF uses local Hamiltonians18 that ignore
interaction between the bins.

SF is a measure of thermal equilibrium between the re-
gions. If the value of SF is high, it means that both particles
and energy are uniformly distributed across the entire system.
If the value of SF is low, it means that there are regions with
a much higher density of particles and energy compared to
other regions, which corresponds to a highly nonequilibrium
state. SF is therefore a measure of uniformity of both particle
and energy density.

Operationally, SF (t ) corresponds to a situation when an
observer/experimenter inserts walls in between the bins at
time t (infinitely quickly), which do not allow for either
energy or particle transfer between the bins. Waiting until
the system relaxes means that each region is in a thermal
equilibrium with itself, but not with other regions. The ther-
modynamic entropy that the experimenter would assign to that
system after this type of relaxation is SF (t ).

X. COMPARISON OF CLASSICAL AND QUANTUM
OBSERVATIONAL ENTROPY

Having investigated in detail particular coarse-grainings
that connect classical observational entropy to thermodynam-
ics, we compare observational entropy, and these particular
coarse-grainings, across the classical and quantum case.

In the same way that a point in phase space describes
a classical system, a vector in a Hilbert space describes a
quantum system. This state vector (or wave function) encodes
every property of a quantum system and is evolved using the
Schrödinger equation. More generally, a quantum system with
an indeterminate initial condition is described by a density
matrix ρ̂, which is a positive-semidefinite operator acting on

18For the definition of local Hamiltonians, see Appendix D.
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the Hilbert space. The density matrix is a quantum equivalent
of phase-space density, and it is evolved through the von
Neumann equation, as compared to Liouville’s equation in a
classical system.

In classical systems, the coarse-graining is defined as a par-
titioning of phase space. These partitions/regions—subsets
of phase space—are called macrostates. To define coarse-
graining in quantum physics, we have to partition a Hilbert
space. However, partitions of Hilbert space are not composed
of subsets but of subspaces combined in a direct sum: H =
H1 ⊕ H2 ⊕ · · · . We can form these subspaces, for example,
by choosing a basis of the Hilbert space and putting every
basis vector into a group. A subspace is then created by taking
all the linear combinations of vectors in the group. For exam-
ple, real three-dimensional space could be partitioned as R3 =
R2 ⊕ R, where subspace R2 = span{(1, 0, 0), (0, 1, 0)} de-
scribes the x-y plane, and R = span{(0, 0, 1)} describes the z-
axis. We call these subspaces macrostates, and their collection
is called a coarse-graining, C = {Hi}i.

As we did with the classical system in Eq. (6), here we can
also switch from describing the coarse-graining as a collection
of subspaces, and we describe it as a collection of projectors
that project onto these subspaces instead. In other words,
for each subspace Hi there exists a unique projector P̂i that
projects onto this subspace, and the coarse-graining C = {P̂i}i

is then defined as a complete set of orthogonal projectors
(P̂2

i = P̂i, P̂† = P̂, P̂iP̂j = δi j P̂i,
∑

i P̂i = Î).
With an ordered set of coarse-grainings (C1, . . . , Cn), we

define the volume of a multi-macrostate i = (i1, . . . , in) as

Vi = tr
[
P̂in · · · P̂i1 · · · P̂in

]
, (49)

and the probability of being in a macrostate is defined as

pi(ρ̂) = tr
[
P̂in · · · P̂i1 ρ̂P̂i1 · · · P̂in

]
. (50)

This probability can also be interpreted as a probability of
obtaining the sequence of outcomes i when performing a
sequence of measurements in measurement bases (C1, . . . , Cn)
on the system.

The (quantum) observational entropy is defined identically
to the classical case, Eq. (15), but with use of the above
definitions for Vi and pi(ρ̂):

SO(C1,...,Cn )(ρ̂) = −
∑

i

pi(ρ̂) ln
pi(ρ̂)

Vi
. (51)

We compare descriptions of classical and quantum systems
in Table I. Notably, coarse-grainings in the classical scenario
always commute, while in the quantum scenario they need
not. As a consequence, a joint coarse-graining may not exist in
the quantum case, and switching the order of noncommuting
coarse-grainings leads to different observational entropies.
Surprisingly, this does not affect many other properties, as
theorems equivalent to 1–5 still hold.

More stark differences appear when defining thermody-
namically relevant coarse-grainings. Due to the noncommu-
tativity of coarse-grainings, there are two quantum versions
of SxE , one that corresponds to first measuring the local
particle numbers, and then energy (denoted SxE ), and one
that corresponds to first measuring energy and then local
particle numbers (denoted SEx). The behavior of quantum

SxE or SEx further depends heavily on whether the energy
resolution is finite or infinite, i.e., whether it is assumed
that the experimenter cannot distinguish between two energy
eigenstates with energies |E1 − E2| < �E . Since classical
energy eigenstates do not exist, the classical SxE inherently
entails such finite resolution in its definition.

This leads to a complex and rather subtle set of corre-
spondences. When �E is non-negligible (relative, say, to the
temperature of the system) and the temperature is high, these
differences are negligible, and classical and quantum SxE and
SEx all behave in the same way. (However, it should be noted
that in this case—as touched upon in Sec. VIII D and detailed
in Appendix E—SxE is not always additive.) For �E > 0 at
low temperatures and/or small bin sizes �x, SxE and SEx can
differ appreciably due to the large effects of noncommutativ-
ity. Finally, for �E = 0 (requiring the quantum case), SxE and
SEx are quite distinct: SxE behaves much like quantum SF (and
it is additive; see Appendix E) while SEx is constant in time,
equal to thermodynamic entropy SE , and zero on any global
energy eigenstate.

Turning to SF , there is no issue of commutation, but the
quantum case again gives an option of �E = 0 or finite �E .

The �E = 0 case defined SF in [7,8], and was shown to be
very similar to quantum SxE . One could also define a quantum
SF with �E > 0 to closely correspond to the classical case.19

In all cases, SF is additive.
Generally, one could expect differences between classical

and quantum definitions of entropies for systems in which the
value of Planck’s constant is comparable to quantities with the
same dimensions that appear in the problem [48].

XI. CONCLUSION AND OUTLOOK

This paper has discussed in detail the framework of clas-
sical “observational entropy,” an idea previously defined in
the quantum context [7,8]. This quantity is defined precisely
in or out of equilibrium, is generically nondecreasing, and
corresponds to thermodynamic entropy in equilibrium. Our
treatment has aimed to define this quantity clearly and rig-
orously, while also exhibiting in detail three core sets of
relations.

First, the treatment shows how observation entropy gener-
alizes and interpolates between classical “Gibbs” and “Boltz-
mann” entropies. The latter is often thought of as Gibbs
entropy, where equal probability is attributed to all microstates
compatible with a given set of macroscopic constraints. Here,
we see Boltzmann entropy as a limit of observational entropy
in which all probability is attributed to a single microstate,
while Gibbs entropy appears in the limit in which the coarse-
graining is as fine as possible so that each microstate consti-
tutes a macrostate.

19For �E > 0 it is necessary to include also coarse-graining
in local particle numbers in order for this entropy to give the
correct thermodynamic values. The definition then reads SF ≡
SO(CN̂1

⊗···⊗CN̂m
,C

Ĥ (�E )
1

⊗···⊗C
Ĥ (�E )

m
) = −∑

n,E pnE ln pnE
VnE

. For �E = 0

this was not necessary, because measuring local energy eigen-
states uniquely determined the local particle numbers for particle-
conserving Hamiltonians.

032106-12



CLASSICAL DYNAMICAL COARSE-GRAINED ENTROPY … PHYSICAL REVIEW E 102, 032106 (2020)

TABLE I. Classical and quantum descriptions of an isolated physical system.

Classical Quantum

Phase-space � Hilbert space H
defines a classical system, defines a quantum system,
is a space of all possible classical states, is a space of all possible quantum states,
all states are orthogonal, employs Hilbert space inner product,
employs L2-inner product for observables. employs Hilbert-Schmidt inner product for observables.

Point in phase-space (x, p) Vector in Hilbert space |ψ〉 – wave-function
describes a state of a classical system, describes a state of a quantum system,
is evolved through Hamilton’s equations of motion, is evolved through Schrödinger equation,
is also called a microstate. is also called a microstate.

Phase-space density ρ Density matrix ρ̂

describes a classical system of indeterminate state, describes a quantum system of indeterminate state,
is evolved through Liouville’s equation. is evolved through von Neumann equation.
Point in phase-space is described by a δ-function, Vector in Hilbert space is described by a rank-1
ρ(x̃, p̃) = δ(x̃ − x, p̃ − p). density matrix, ρ̂2 = ρ̂.

Coarse-graining C = {Pi}i Coarse-graining C = {Hi}i

is a partition of phase-space, � = ⋃
i Pi. is a partition of Hilbert space, H = ⊕

i Hi.
Equivalently, C = {P̂i}i Equivalently, C = {P̂i}i

is a complete set of orthogonal window functions,
∑

i P̂i = 1. is a complete set of orthogonal projectors,
∑

i P̂i = Î .
Pi or equivalently P̂i is called a macrostate. Hi or equivalently P̂i is called a macrostate.
A joint coarse-graining of multiple coarse-grainings always A joint coarse-graining exists only if the coarse-grainings
exists. commute.

Observable A Observable Â
is a real-valued function A : (x, p) → a acting on is a Hermitian operator acting on a Hilbert space,
a phase space,
admitting spectral decomposition A = ∑

a aP̂a, admitting spectral decomposition Â = ∑
a aP̂a,

with expectation value 〈A〉 = (A, ρ ), with expectation value 〈Â〉 = tr[Âρ̂],
where the probability of observing a is pa = (P̂a, ρ ), where the probability of observing a is pa = tr[P̂aρ̂],
and coarse-graining given by an observable is CA = {P̂a}a. and coarse-graining given by an observable is CÂ = {P̂a}a.

Observational entropy SO(C1,...,Cn )(ρ ) = −∑
i pi ln pi

Vi
, Observational entropy SO(C1,...,Cn )(ρ̂ ) = −∑

i pi ln pi
Vi

,

where pi = ∫
�

ρP̂i1 · · · P̂inμ dx d p is a probability of belonging where pi = tr[P̂in · · · P̂i1 ρ̂P̂i1 · · · P̂in ] is a probability
to multi-macrostate i = (i1, . . . , in), of belonging to multi-macrostate i = (i1, . . . , in),
and Vi = ∫

�
P̂i1 · · · P̂inμ dx d p is volume of multi-macrostate i. and Vi = tr[P̂in · · · P̂i1 · · · P̂in ] is volume of multi-macrostate i.

A point in phase-space belongs only into a single A wave function can span over several macrostates.
macrostate.
SO(C1,C2 ) = SO(C2,C1 ) always holds. SO(C1,C2 ) = SO(C2,C1 ) holds for commuting coarse-grainings,

but does not hold for noncommuting coarse-grainings.
SG(ρ ) � SO(C1,...,Cn )(ρ ) � ln V SVN (ρ̂ ) � SO(C1,...,Cn )(ρ̂ ) � ln dim H
SO(C1,...,Cn )(ρ ) � SO(C1,...,Cn−1 )(ρ ) SO(C1,...,Cn )(ρ̂) � SO(C1,...,Cn−1 )(ρ̂ )

Dynamical thermodynamic entropy Dynamical thermodynamic entropy
SxE ≡ SO(CX ,CH ) = − ∑

n,E pnE ln pnE
VnE

, SxE ≡ SO(CX̂ ,CĤ ) = −∑
n,E pnE ln pnE

VnE
,

where CX = {Pn}n is a set of a local particle number where CX̂ = {P̂n}n is a set of a local particle number
macrostates, and CH = {PE }E is a set of energy macrostates, macrostates, and CĤ = {P̂E }E is a set of energy macrostates,
which are defined as energy shells of the Hamiltonian, which are defined as projectors onto energy eigenstates,
PE = {(x, p)|E �H (x, p)<E + dE} (dE independent of E ). P̂E = |E〉〈E |, Ĥ |E〉 = E |E〉.
Converges to thermodynamic entropy. Is not additive. Converges to thermodynamic entropy. Is additive.

Is not additive if a finite resolution in energy �E is used.
SEx ≡ SO(CĤ (�E ) ,CX̂ ) = −∑

n,E pEn ln pEn
VEn

,
where CĤ (�E ) = {P̂E ,�E }E is a set of energy macrostates,
which are defined as projectors onto coarse-grained energy
macrostates, P̂E ,�E = ∑

E�Ẽ<E+�E |Ẽ〉〈Ẽ |.
Dynamical thermodynamic entropy Dynamical thermodynamic entropy

SF ≡ SO(CXE ) = − ∑
n,E pnE ln pnE

VnE
, SF ≡ SO(CĤ1

⊗···⊗CĤm
) = −∑

E pE ln pE
VE

,

where CX E = {PnE}nE is a set of a local particle number where CĤ1
⊗ · · · ⊗ CĤm

is a set of local energy
and local energy macrostates. macrostates.
Converges to thermodynamic entropy. Is additive. Converges to thermodynamic entropy. Is additive.

Is modified to include coarse-graining in local particle
numbers if a finite resolution in energy �E is used.19
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Second, observational entropy has both an information-
theoretic and a thermodynamic interpretation. Every addi-
tional measurement on a system—corresponding to an ad-
ditional coarse-graining—that better pins down a particular
subset of phase space yields more information in a clear
and quantifiable way. At the same time, here [Eq. (33)] and
in previous work [7,8] we have shown that with an appro-
priate choice of coarse-graining, observational entropy de-
scribes dynamically the thermalization of a gas, converging to
thermodynamic entropy when the system equilibrates. These
coarse-grainings also have an elegant interpretation out of
equilibrium, corresponding to the thermodynamic entropy the
system would attain in equilibrium if particular constraints
were imposed on the sharing of particles and energy across
spatial regions.

Third, this work demonstrates a clear and well-defined
correspondence between the quantum and classical cases. By
defining projection operators that on Hilbert space and classi-
cal phase space, respectively, carefully defining volume units
for classical phase space, and suitably defining quantum and
classical density operators, we show that formulas and most
theorems concerning observational entropy carry over directly
between the classical and quantum case. The only key fun-
damental differences arise in the noncommutation of coarse-
grainings in the quantum case, and from the nonexistence
of a direct classical analog of quantum energy eigenstates.
In contrast, quantum entanglement has no direct classical
analog, so entanglement entropy lacks—to our knowledge—a
clear correspondence with a classical quantity that behaves
similarly.

Thus we view observational entropy as a framework that
relates and unifies a number of disparate views and definitions
of entropy, as well as providing useful new perspectives on
the connection between quantum and classical treatments of
phenomena. We hope that this treatment proves both illumi-
nating and useful in understanding how entropy manifests and
operates in a wide range of physical systems.
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APPENDIX A: PROOFS

We are going to use Jensen’s inequality: Let f be a strictly
concave function, 0 � ai � 1,

∑
i ai = 1. Then for any

bi ∈ R,

f

( ∑
i

aibi

)
�

∑
i

ai f (bi ). (A1)

f (
∑

i aibi ) = ∑
i ai f (bi ) if and only if (∀i, j|ai �= 0, a j �=

0)(bi = b j ).
Now we proceed with proofs of the paper’s theorems.
Proof (Theorem 1: Observational entropy is a generaliza-

tion of the Boltzmann entropy). Clearly, for a single point in
phase space, (x, p) ∈ Pi, we have pi = 1 and p j = 0 for j �= i.

Therefore,

SO(C)(ρ) = ln Vi = SB(ρ). (A2)

Proof (Theorem 2: Observational entropy is a monotonic
function of the coarse-graining). C1 ↪→ C2 means that Pi1 =⋃

i2∈I (i1 ) Pi2 for each i1, therefore pi1 = ∑
i2∈I (i1 ) pi2 and Vi1 =∑

i2∈I (i1 ) Vi2 . Then from Jensen’s inequality applied on the

concave function f (x) = −x ln x, taking ai2 = Vi2
Vi1

and bi2 =
pi2
Vi2

, we have

SO(C1 )(ρ) = −
∑

i1

pi1 ln
pi1

Vi1

= −
∑

i1

∑
i2∈I (i1 )

pi2 ln

∑
i2∈I (i1 ) pi2

Vi1

=
∑

i1

Vi1

(
−

∑
i2∈I (i1 )

Vi2

Vi1

pi2

Vi2

ln
∑

i2∈I (i1 )

Vi2

Vi1

pi2

Vi2

)

�
∑

i1

Vi1

(
−

∑
i2∈I (i1 )

Vi2

Vi1

pi2

Vi2

ln
pi2

Vi2

)

= −
∑

i1

∑
i2∈I (i1 )

pi2 ln
pi2

Vi2

= SO(C2 )(ρ). (A3)

The equality conditions from Jensen’s inequality show that
SO(C1 )(ρ̂) = SO(C2 )(ρ̂) if and only if(∀i1|Vi1 �= 0

)(∀i2, ĩ2 ∈ I (i1 )|Vi2 �= 0,Vĩ2 �= 0
)

×
(

pi2

Vi2

= pĩ2

Vĩ2

= c(i1 )

)
. (A4)

To determine the constant c(i1 ), we multiply the equation by
Vi2 and sum over all ∀i2 ∈ I (i1 ), which gives

c(i1 ) = pi1

Vi1

. (A5)

And considering that for all Vi2 = 0 also pi2 = 0, we can
simplify Eq. (A4), and we obtain that SO(C1 )(ρ̂ ) = SO(C2 )(ρ̂)
if and only if

(∀i1|Vi1 �= 0
)(∀i2 ∈ I (i1 )

)(
pi2 = Vi2

Vi1

pi1

)
. (A6)

Proof (Theorem 3: Observational entropy with multiple
coarse-grainings is bounded). Since observational entropy
with multiple coarse-grainings can be rewritten as observa-
tional entropy with a joint coarse-graining,

SO(C1,...,Cn )(ρ) = SO(C1,...,n )(ρ), (A7)

it is enough to prove the inequalities just for a single coarse-
graining C,

SG(ρ) � SO(C)(ρ) � ln V. (A8)

For the second inequality, we define coarse-graining with
a single element—the entire phase-space—C� = {�}. Clearly,
this coarse-graining is coarser than any other coarse-graining,
therefore from Theorem 2 we have

SO(C)(ρ) � SO(C� )(ρ) = −p� ln
p�

V�

= − ln
1

V
= ln V. (A9)
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The first inequality comes from the fact that one can choose
a coarse-graining where macrostates are single points in phase
space. This coarse-graining is finer than any other coarse-
graining, and one can easily derive that the observational
entropy is then equal to the Gibbs entropy. By the same ar-
gument, we can therefore obtain the first inequality. However,
this argument does not give us the equality conditions, for
which we will have to make a more elaborate derivation as
follows.

To prove the first inequality and the equality conditions,
we define the spectral decomposition of the phase-space
density in its eigenvector projectors ρ = ∑

(x,p) ρ(x, p)P̂(x,p)

[meaning ρ(x̃, p̃) = ∑
(x,p) ρ(x, p)P̂(x,p)(x̃, p̃), where eigen-

values ρ(x, p) do not have to be different for different (x, p)].
The eigenvector projectors projected onto infinitesimal re-
gions surrounding (x, p) are defined as

P̂(x,p)(x̃, p̃) =
{

1, (x̃, p̃) ∈ [x, x + dx) × [p, p + d p),
0 otherwise.

(A10)

We also define spectral decomposition of the density matrix
in a form where the eigenvector projectors associated with the
same eigenvalue are now grouped together,

ρ =
∑

λ

λP̂λ, (A11)

where eigenvalues λ are now different from each other. This
decomposition is unique. It follows that for each (x, p) there
exists λ such that ρ(x, p) = λ.

Now recall Eq. (9): the probability of a state being in a
macrostate i of volume Vi = (P̂i, 1) is pi = (P̂i, ρ).

Defining

a(i)
(x,p) ≡ (P̂i, P̂(x,p) )

Vi
(A12)

for Vi �= 0 and a(i)
(x,p) ≡ 0 for Vi = 0, and then using the

spectral decomposition of ρ, we have

pi

Vi
=

(
P̂i,

∑
(x,p) ρ(x, p)P̂(x,p)

)
Vi

=
∑
(x,p)

ρ(x, p)a(i)
(x,p). (A13)

Since
∑

(x,p) P̂(x,p) = 1,∑
(x,p)

a(i)
(x,p) = 1, (A14)

and since
∑

i P̂i = 1, also∑
i

Via
(i)
(x,p) = (1, P̂(x,p) ) = μ dx d p. (A15)

A series of equalities and inequalities follow:

SO(C1,...,Cn )(ρ̂) = −
∑

i

pi ln
pi

Vi
= −

∑
i

Vi
pi

Vi
ln

pi

Vi

=
∑

i

Vi

⎛
⎝−

∑
(x,p)

ρ(x, p)a(i)
(x,p) ln

×
∑
(x,p)

ρ(x, p)a(i)
(x,p)

⎞
⎠

�
∑

i

Vi

⎛
⎝−

∑
(x,p)

ρ(x, p)a(i)
(x,p) ln ρ(x, p)

⎞
⎠

= −
∑
(x,p)

(∑
i

Via
(i)
(x,p)

)
ρ(x, p) ln ρ(x, p)

= −
∫

�

ρ(x, p) ln ρ(x, p)μ dx d p ≡ SG(ρ).

(A16)

We have used Eqs. (A13) and (A15) for the equalities, and
we applied Jensen’s theorem to the function f (x) = −x ln x
to derive the inequality. We have chosen a(x,p) ≡ a(i)

(x,p) and
b(x,p) ≡ ρ(x, p) for the theorem.

According to Jensen’s theorem, inequality becomes equal-
ity if and only if

(∀i|Vi �=0)(∀(x, p), (x̃, p̃)|(P̂i, P̂(x,p) ) �=0, (P̂i, P̂(x̃,p̃) ) �=0)

× (ρ(x, p) = ρ(x̃, p̃)). (A17)

That is, the inequality becomes equality when for a given
index i, all eigenvector projectors P̂(x̃,p̃) of the phase-space
density such that (P̂i, P̂(x,p) ) �= 0 have the same associated
eigenvalue ρ(x, p) with them. In other words, we can as-
sociate this unique eigenvalue to the index i itself, ρi ≡
ρ(x, p), where ρ(x, p) is given by any representative (x, p)
such that (P̂i, P̂(x,p) ) �= 0. Realizing that (P̂i, P̂(x,p) ) �= 0 is the
same as saying Pi ∩ P(x,p) �= �, or P̂(x,p)P̂i �= 0, we can rewrite
Eq. (A17) as

(∀i|Vi �=0)(∀(x, p), (x̃, p̃)|P̂(x,p)P̂i �= 0, P̂(x̃,p̃)P̂i �= 0)

× (ρ(x, p) = ρ(x̃, p̃) = ρi ). (A18)

Assuming that this holds, we can write

ρP̂i =
∑
(x,p)

ρ(x, p)P̂(x,p)P̂i = ρi

∑
(x,p)

P̂(x,p)P̂i = ρiP̂i, (A19)

where we have used
∑

(x,p) P̂(x,p) = 1. Summing the above
equation over i, and using

∑
i P̂i = 1, we obtain

ρ =
∑

i

ρiP̂i, (A20)

i.e., ρ can be decomposed using coarse-graining C = {P̂i}.
Defining sets I (λ) = {i|ρi = λ}, we can rewrite this equation
as

ρ =
∑

λ

λ
∑
i∈I (λ)

P̂i, (A21)

and since decomposition Eq. (A11) is unique, it must be that

P̂λ =
∑
i∈I (λ)

P̂i, (A22)

which by definition means Cρ ↪→ C. For multiple coarse-
graining, this then means that Cρ ↪→ C1,...,n.

Conversely, we assume that Eq. (A22) holds. Points
(x, p), (x̃, p̃) such that P̂(x,p)P̂i �= 0, P̂(x̃,p̃)P̂i �= 0 belong in the
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same macrostate P̂i, and therefore by Eq. (A22) they must
have the same associated eigenvalue,

ρ(x, p) = ρi = ρ(x̃, p̃), (A23)

which means that Eq. (A18) holds, thus inequality in (A16)
becomes equality.

Proof (Theorem 4: Observational entropy is nonincreasing
with each added coarse-graining). Since joint coarse-graining
C1,...,n is finer than joint coarse-graining C1,...,n−1, from Theo-
rem 2 we have

SO(C1,...,n )(ρ) � SO(C1,...,n−1 )(ρ). (A24)

Statement of the theorem then follows from Eq. (A7).
Proof (Theorem 5). Using P̂E P̂nẼ = δE ,Ẽ P̂nẼ , we have

pnẼ (ρ) =
∫

(x,p)

∑
E

f (E )P̂E (x, p)P̂nẼ (x, p)μ dx d p

=
∫

(x,p)

( ∑
E

f (E )δE ,Ẽ

)
P̂nẼ (x, p)μ dx d p

= f (Ẽ )
∫

(x,p)
P̂nẼ (x, p)μ dx d p

= f (Ẽ )VnẼ , (A25)

from which

SxE (t ) = −
∑
n,E

f (E )VnE ln
f (E )VnE

VnE

= −
∑

E

( ∑
n

VnE

)
f (E ) ln f (E )

= −
∑

E

VE f (E ) ln f (E ). (A26)

APPENDIX B: DETAILS FOR THE DYNAMICS OF SxE FOR
A MICROCANONICAL ENSEMBLE

Here we provide details for the calculation done in
Sec. VIII B, showing that SxE = SO(Cx,CH2 ) for a microcanoni-
cal state of particles confined in the left part of the box is equal
to the microcanonical entropy of this left part.

The initial state is a microcanonical state of N particles
contained in the left part of the box. It can be written in two
ways as

ρ0 ≡ ρ
(micro;H1 )
E ,�E = P̂(H1 )

E ,�E

V (H1 )
E ,�E

= P̂(N,0)P̂
(H2 )
E ,�E

V (H1 )
E ,�E

. (B1)

P̂(H1 )
E ,�E and P̂(H2 )

E ,�E denote projectors onto energy macrostates
given by the first and the second Hamiltonian, and P̂(N,0) is
the projector onto a local particle number macrostate, corre-
sponding to a statement that N particles are on the left side of
the box, and zero particles are on the right.

We take SxE = SO(Cx,CH2 ) with local particle number coarse-
graining that halves the box [n = (n1, n2), L1 = 0, �x = L

2 ],
and that has energy macrostates given by the second Hamilto-
nian, H2. Using

P̂nP̂(N,0) = δn1,N P̂(N,0), (B2)

P̂(H2 )
Ẽ

P̂(H2 )
E ,�E =

{
P̂(N,0)P̂

(H2 )
Ẽ

, Ẽ ∈ [E , E + �E )
0 otherwise,

(B3)

where δn1,N denotes Kronecker’s delta, we have

pnẼ (ρ0) =
⎧⎨
⎩

V
(H1 )

Ẽ

V
(H1 )

E ,�E

, n1 = N ∧ Ẽ ∈ [E , E + �E )

0 otherwise
(B4)

from which we obtain

SxE (ρ0) = ln V (H1 )
E ,�E ≡ S(H1 )

micro(E ). (B5)

In other words, SxE of the initial state is equal to the micro-
canonical entropy of the first half of the box.

APPENDIX C: DYNAMICS OF SxE FOR A SINGLE POINT
IN PHASE SPACE

Here we provide calculations on the long-time limit of SxE

in the case of an initial single point in phase space. We note
that the derivation of SxE of an initial state follows exactly the
same pattern as in Appendix B, with the only difference being
that we have dE instead of �E .

We now focus on calculating microcanonical entropy of the
largest macrostate of phase space jointly coarse-grained by CX

and CH2 (we will further denote H ≡ H2).
Consider N identical classical particles in d dimensions

evolving through a Hamiltonian H . Their positions and
momenta are described by a point in phase space, � ≡
(x1, . . . , xN , p1, . . . , pN ). They are confined to a box of spatial
volume V = Ld , where L is a linear dimension. We subdivide
the box into smaller ones of linear dimensions �x, so that
there are m ≡ ( L

�x )d boxes. An arbitrary � will be in some
coarse-grained region PnE , and this will have n1 particles in
the first box, n2 in the second, and in general ni in the ith
box. We would like to know how many distinct ways, N ,
there are of arranging the N particles having precisely these
n = (n1, . . . , nm). The answer is the multinomial distribution

N (n1, . . . , nm) = N!∏m
i=1 ni!

, (C1)

where
∑m

i=1 ni = N .
N is maximized when the ni’s are uniformly distributed,

that is, for large N
m , ni = N

m .
The spatial volume of a coarse-grained region is

�xNdN ({n1, . . . , nm}). If we fine-grain in energy, we can
write the (phase-space) volume of the ith region that � may
be in,

VnE = μ

∫
d pNd

∫
x∈PnE

dxNdδ(E − H ({xi}i, {pi}i)), (C2)

where P̂E ({xi}i, {pi}i ) = δ(E − H ({xi}i, {pi}i )) is the projec-
tor onto an energy shell. PnE contains all permutations of
particles. This means that if we consider a single � in this
region, PnE will also contain other �’s with all of particle
permutations consistent with the same particle numbers, n =
(n1, . . . , nm), and the same energy E .
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1. Case of dilute gas

Consider the case in which the interaction between the
particles is small. We will also take the particles to be indis-
tinguishable, meaning all phase-space volumes are divided by
N!. In the limit of small interactions, the Hamiltonian only
depends on the p’s, and we can integrate over x and write

VnE = 1

N!

N!∏m
i=1 ni!

�xNd μ

∫
d pNdδ(E − H ({pi}i )). (C3)

Defining the number of microstates of N indistinguishable
particles in energy shell E occupying spatial volume V as

�(E ,V, N ) = VN μ

∫
d pNd 1

N!
δ(E − H ({pi}i)), (C4)

we can write

VnE = N!∏m
i=1 ni!

�(E ,�xd , N ). (C5)

�(E ,V, N ) defines the microcanonical entropy,20

Smicro(E ,V, N ) = ln[�(E ,V, N )] (taking kB = 1). For small
interactions considered here, we can approximate [Eq. (2.40)
in [49]]21

�(E ,V, N ) = 1

N!

VN (2πME )
Nd
2(

Nd
2

)
!

, (C6)

where M is the mass of a gas particle.22

N is maximized with ni = N
m . In this case, using Stirling’s

approximation,

ln(Nmax) = ln
N!(
N
m !

)m

≈ N ln(m) + 1

2
ln(2πN ) − m

2
ln

(
2π

N

m

)
. (C7)

Combining Eqs. (C5), (C6), and (C7), and realizing that
�xd = V

m (where V denotes the full spatial volume), we obtain
SxE for the point in phase space � that wandered into the

20We remind the reader that the microcanonical entropy is defined
by the right-hand side of Eq. (36), in which VE ≡ �(E ,V, N ) ≡
ρ(E )�E . Here we use �(E ,V, N ) instead of the other two to spell
out its dependence on the three variables.

21One can still include μ if needed, however, because due to the
logarithm, this constant does not have much of a role apart from
giving the correct units, and it appears below just as an additive
constant. It disappears from the discussion entirely when studying
only differences in entropies, which seems to be the only relevant
physical quantity in physical scenarios being directly connected to
heat. (The third thermodynamic law defining zero entropy at absolute
zero appears to be a conceptual choice rather than having any
physical relevance.)

22This expression leads to the famous Sackur-Tetrode equation

[50], Smicro(E ,V, N ) = N{ ln [VN ( 4πME
Nd )

d
2

] + 1 + d
2 }, but we will not

use it here directly.

largest macrostate,

SxE = ln
(
V (max)

nE

) = ln(Nmax) + ln �(E ,�xd , N )

= ln(Nmax) + ln (m−N�(E ,V, N ))

≈ N ln(m) + 1

2
ln(2πN ) − m

2
ln

(
2π

N

m

)

− N ln(m) + ln �(E ,V, N )

= Smicro(E ,V, N ) + 1

2
ln(2πN ) − m

2
ln

(
2π

N

m

)
(C8)

If the point in phase space did not wander into the largest
macrostate, but rather, let us say, the second largest (given
by n1 = N+1

m − 1, ni = N+1
m for i > 1), there would be minor

modifications to the above formula, which would be negligi-
ble compared to the first term—the microcanonical entropy. In
the end, it does not matter into which of the large macrostates
the particle wanders—the leading term will always be the
microcanonical entropy.

To understand to correction term in more detail, we can
look at the entropy per particle. Then the relevant quantity to
consider here is ln(Nmax)/N ,

SxE

N
= Smicro(E ,V, N )

N
+ 1

2N
ln(2πN ) − m

2N
ln

(
2π

N

m

)
.

(C9)

We take a limiting process in which we fix the particle density
and send N to infinity while keeping the particle density
constant. For large N we can ignore the second term on the
right-hand side. Nm ≡ N

m is the average number of particles per
box. In the limit where we fix the density average number of
particles and increase the box length so that Nm becomes large,
the last term on the right-hand side, −(1/2Nm) ln(2πNm),
becomes small, and it vanishes as Nm → ∞. This correction
term, therefore, represents a finite-size effect.

2. General classical systems

The case of a dilute gas can be extended to a general
homogeneous classical system that is extensive. The system
with maximum entropy will be the one where the number
in each box is the same. This follows from the fact that all
boxes must have the same chemical potential in equilibrium.
The system will most likely find itself in this coarse-grained
region. The logarithm of Eq. (C2) represents the entropy of a
system that has been partitioned. As compared to the entropy
of the entire system, each particle is confined to a box of width
�x. It is as if barriers had been added to prevent the exchange
of particles between regions. However, energy can still be
exchanged, therefore the temperature of each subsystem is
the same. If the system has a density ρ and temperature T ,
corresponding to its total energy, then the entropy per particles
s(E , T ) will not depend on system size in the thermodynamic
limit. There are corrections to this due to finite-size effects,
and they are particularly pronounced at critical points [51].
They have the general behavior as above, becoming negligible
in the limit of large box size. The actual error will depend on
the universality class of the system being studied.
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APPENDIX D: PROPERTIES OF SF

First we rephrase the coarse-graining CXE = {PnE}n,E ,
Eq. (44), in mathematically precise terms. For simplicity, we
set L1 = 0 and L2 = L.

The local particle number–local energy macrostates are
then

PnE ≡ {(x, p)|n1 particles with position x ∈ [0,�x),

. . . , nm particles with position x ∈ [(m−1)�x, L),

energy of the bin [0,�x) is between [E1, E1 + dE ),

. . . , energy of the bin [(m−1)�x, L) is between

[Em, Em + dE )}. (D1)

To define this in mathematical terms, we need to define the
notion of a local Hamiltonian. While the general theory that
applies also to a phase-space density will be done elsewhere
[43], here we can still treat the case of a single point of phase
space. At every time t , there is some number of particles in
each of the m bins. Let us say we have n1 particles between
[0,�x). For this particular time, the local Hamiltonian H1 will
be a function of phase-space points of n1 particles,23 which
maps a point in phase space to the energy

H1 :
(
x1, . . . , xn1 , p1, . . . , pn1

) → E1, (D2)

where xi ∈ [0,�x), i = 1, . . . , n1 (note that the lower index
here is just a label denoting variables—we are not saying that
exactly the first n1 particles are in the first bin; in the case of
indistinguishable particles, this label does not even matter).
For instance, in the case of noninteracting particles, we have

H1 = ∑n1
i=1

p2
i

2M . If there is some interaction, the interaction
between particles within the bin is accounted for in the local
Hamiltonian, while the interaction between different bins is
ignored.

We denote SN as the set of permutations on the set
{1, 2, . . . , N}. With these tools, we can write

PnE ≡ {(x, p)|(∃π ∈ SN ) such that

(∀xπ (i)|i = 1, . . . , n1)(xπ (i) ∈ [0,�x)), . . . ,

(∀xπ (i)|i = N − nm + 1, . . . , N )(xπ (i) ∈ [(m−1)�x, L)),

E1 � H1(xπ (i), pπ (i) ) < E1 + dE , . . . ,

Em � Hm(xπ (i), pπ (i) ) < Em + dE}. (D3)

Clearly, independently of the permutation, the phase-space
volume will always be the same for a specific permutation
π . The question, then, is how many permutations lead to
a specific distribution of particles n between the bins. The
answer is again

N (n1, . . . , nm) = N!∏m
i=1 ni!

, (D4)

which is the total number of permutations divided by the
possible number of permutations within the first bin, within

23For a different time, it can be a function of a different number of
particles—this hints at the construction for the general case, which
requires the construction of a Fock phase space [43].

the second bin, and so on. We can therefore write the volume
of macrostate PnE as

VnE =N (n1, . . . , nm)
μ

N!



n1
i=1

∫
xi∈[0,�x)

dxi

∫
pi

d pi

× · · · × 
N
i=N−nm+1

∫
xi∈[(m−1)�x,L)

dxi

∫
pi

d pi

× δ
(
E1 − H1

(
x1, . . . , xn1 , p1, . . . , pn1

)) × · · ·
× δ

(
Em − Hm

(
xN−nm+1, . . . , xN , pN−nm+1, . . . , pN

))
= 
m

k=1�(Ek,�x, nk ). (D5)

Assuming generalization to spatial dimension d , we similarly
derive VnE = 
m

k=1�(Ek,�xd , nk ). This means that for a sin-
gle point in phase space, γ ∈ PnE ,

SF = ln VnE =
m∑

k=1

Smicro(Ek,�xd , nk ), (D6)

and therefore SF is additive.
Now, let us study the long-time limit. After a long time,

assuming identical particles of a dilute and weakly interact-
ing gas, the largest macrostate is given by Ek = E

m , nk = N
m

(where m = V
�xd ), giving

SF = ln
(
V (max)

nε

) = mSmicro

(
E

m
,�xd ,

N

m

)

= m ln
1

N
m !

(V
m

) N
m
(
2πM E

m

) Nd
2m(

Nd
2m

)
!

= Smicro(E ,V, N ) + ln

(
m−N− Nd

2 N! Nd
2 !(

N
m !

)m(
Nd
2m !

)m

)

= Smicro(E ,V, N ) + ln(2πN ) − m ln

(
2π

N

m

)

− m − 1

2
ln

d

2
. (D7)

Here we have used Eq. (C6) and Stirling’s approximation
for the factorials. The correction term m−1

2 ln d
2 represents a

finite-size effect, which result in an order-1 correction in the
thermodynamic limit.

APPENDIX E: ADDITIVITY OF QUANTUM SxE AND
NONADDITIVITY OF CLASSICAL SxE

As explained in Sec. VIII D, the classical SxE is not addi-
tive. This is because the classical global energy macrostate is
defined as

PE ≡ {(x, p)|E � H (x, p) < E + �E}. (E1)

This means that any microstate (x, p) that has energy E1 in
the left region and energy E2 in the right region, E1 + E2 =
E , will fall into the same macrostate PE with any other states
given by Ẽ1 + Ẽ2 = E .

Quantum mechanically, for infinite resolution in energy
(�E = 0), this is not true. This is because in a generic system,
even states with a very similar sum of energies E ≈ E1 +
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FIG. 6. Simulation showing additivity of quantum SxE with infinite resolution in energy (S1 + S2 = 0). The system studied is of spinless
fermions on a one-dimensional lattice evolved by a nonintegrable Hamiltonian used in [7,8]. The parameters are a lattice of L = 16 sites with
hard-wall boundary conditions, with coarse-graining size �x = 4 sites and the total number of particles N = 6. The state is initialized as a
product state of random pure thermal states [7,8]), |ψ〉 = |ψE1 〉 ⊗ |ψE2 〉, where |ψE1 〉 is a state of three particles occupying the eight sites on
the left of the lattice with mean energy E1, and |ψE2 〉 is a state of three particles occupying the eight sites on the right with mean energy E2.
The left figure represents a comparison of the SxE of the initial state, SxE (|ψ〉), with the SxE in the long-time limit, SxE (e−iĤt |ψ〉) (with a large
t). Classically, these two values would be the same and the curves would overlap, because both would correspond to SxE = ln V(3,3)E (where
E = E1 + E2). As we can see, they do not overlap in a quantum-mechanical system when �E = 0. The right figure shows the additivity of
SxE directly by comparing SxE and the sum of thermodynamic entropies of the left eight sites (S1) and of the right eight sites (S2), for various
product states |ψ〉 = |ψE1 〉 ⊗ |ψE2 〉 such that E = E1 + E2.

E2 ≈ Ẽ1 + Ẽ2 are not exactly the same, so energy eigenstates
of the global Hamiltonian |E1 + E2〉 and |Ẽ1 + Ẽ2〉 consti-
tute their own macrostates, P̂E1+E2 = |E1 + E2〉〈E1 + E2| and
P̂Ẽ1+Ẽ2

= |Ẽ1 + Ẽ2〉〈Ẽ1 + Ẽ2|. (We ignored corrections com-
ing from the interaction terms between the two regions that
also contribute to the total Hamiltonian and therefore also to
local energy eigenstates.)

If a finite resolution in energy is used (�E > 0), then the
situation for quantum SxE is very similar to the classical case,
because then the quantum macrostates are constituted by

P̂E ,�E ≈
∑

E�E1+E2�E+�E

P̂E1+E2 . (E2)

Put simply, classical energy macrostates correspond to quan-
tum macrostates with �E > 0, but for �E = 0 the quantum

macrostates are much smaller—actually consisting of a single
microstate. This means that for �E = 0, the global energy
macrostates are actually small enough to distinguish between
different local energies, which is why the quantum SxE is ad-
ditive. We have confirmed this numerically in some particular
cases, as exhibited in Fig. 6.

Making the analytical argument for additivity precise
would require similar arguments to those employed in the
Appendixes of Ref. [8]. That is, we would need to identify
the interaction part of the Hamiltonian with a random matrix,
and then study the overlaps between energy eigenstates, the
full Hamiltonian of the system, and those of the Hamiltonian
system without the interaction, which gives the probability
pE = |〈E1, E2|E〉|2 that goes into SxE . We leave this for future
work.
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