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Optimal finite-time bit erasure under full control
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We study the finite-time erasure of a one-bit memory consisting of a one-dimensional double-well potential,
with each well encoding a memory macrostate. We focus on setups that provide full control over the form of the
potential-energy landscape and derive protocols that minimize the average work needed to erase the bit over a
fixed amount of time. We allow for cases where only some of the information encoded in the bit is erased. For
systems required to end up in a local-equilibrium state, we calculate the minimum amount of work needed to
erase a bit explicitly, in terms of the equilibrium Boltzmann distribution corresponding to the system’s initial
potential. The minimum work is inversely proportional to the duration of the protocol. The erasure cost may
be further reduced by relaxing the requirement for a local-equilibrium final state and allowing for any final
distribution compatible with constraints on the probability to be in each memory macrostate. We also derive
upper and lower bounds on the erasure cost.
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I. INTRODUCTION

In his seminal 1961 paper, Landauer showed that a finite
amount of work, known as the Landauer bound, is needed to
erase a bit of information [1,2]. This bound has been verified
in several theoretical models [3–5] and experimental tests
[6–11]. However, the Landauer bound can be saturated only
in the quasistatic limit, an assumption that is never valid for
practical systems.

How much extra work, then, is needed to erase a bit in
a finite amount of time? Several theoretical studies have ad-
dressed this question using assumptions such as slow driving
[12,13], a final distribution that is locally in equilibrium [14],
or counterdiabatic driving [15].

In an accompanying paper [16], we have derived a general
theory to optimize the work needed to erase a bit over a
finite amount of time, provided that one has full control over
the external potential. Often, however, one is interested in
situations where only part of the information encoded in the
bit is erased (partial erasure) [5,12,13,15,17]. In this paper,
we generalize the results from Ref. [16] to partial erasure,
provide full details of the calculations, and derive a new set of
upper and lower bounds associated with the finite-time erasure
of a bit, while still allowing full control over the potential
energy.

In Sec. II, we introduce the physical model of a bit and
review the existing literature on optimal transport theory.
These results are used in Sec. III to calculate the amount of
work needed to erase a bit, provided that the final state is
in local equilibrium. Subsequently, in Sec. IV, we relax the
assumption on the final distribution. Our results are tested on
two simple toy models in Sec. V. Finally, we give a thorough
discussion and outlook in Sec. VI.

*karel_proesmans@sfu.ca

II. SETUP: OPTIMAL FINITE-TIME BIT ERASURE

Let us consider the work required to transform a system
whose state x is described by a probability density function
p0(x) at an initial time 0 to a density pτ (x) at a final time τ .
At the initial and final times, the potential-energy landscape
is V0(x). Under this assumption, the required work comes
purely from the changes in the occupation probabilities of
the macrostates. At intermediate times t , the potential may
be altered arbitrarily, as specified by the function V (x, t ).
Discontinuities in V (x, t ) are allowed as they correspond to
changing the applied force suddenly at the position of the
particle, which is an allowable operation.

Throughout this paper, we will assume that the dynamics of
the system can be described by an overdamped Fokker-Planck
equation,

∂ p(x, t )

∂t
= ∂

∂x

(
p(x, t )

∂

∂x
V (x, t )

)
+ ∂2

∂x2
p(x, t ) , (1)

where we have scaled entropy by the Boltzmann constant,
kB, energies by the thermal energy of the environment, kBT ,
lengths (squared) by Var(x), the variance of p0(x) ≡ p(x, 0),
and time by Var(x)/D. We denote the cumulative distributions
associated with p0(x) and pτ (x) ≡ p(x, τ ) by

f0/τ (x) =
∫ x

−∞
dx′ p0/τ (x′) . (2)

Our goal is to find a protocol V (x, t ) that minimizes the
average work done on the system as it is transformed from
p0(x) to pτ (x). In this work, we assume that the system is
in global thermodynamic equilibrium initially (t = 0). Thus,
p0(x) ∼ exp(−βV0(x)), where β = (kBT )−1 is the inverse
temperature.

The analysis of Refs. [14,18–20] shows that the optimal
control protocol leads to the following intermediate
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cumulative distribution (using notation that follows
Refs. [19,20]):

f (x, t ) = f0
(
�−1

t (x)
)
, (3)

where

�t (x) ≡ x + t

τ

[
f −1
τ ( f0(x)) − x

]
. (4)

Applying the coordinate transformation in Eq. (4) leads to the
intermediate probability distribution

p(x, t ) = p0
(
�−1

t (x)
)

�′
t

(
�−1

t (x)
) . (5)

The potential, or protocol, V (x, t ) that achieves this in-
termediate distribution p(x, t ) is determined by inverting the
Fokker-Plank equation (1):

V (x, t ) = − ln p(x, t ) +
∫ x

−∞
dx′

∫ x′

−∞ dx′′ ∂
∂t p(x′′, t )

p(x′, t )
. (6)

When this optimal control potential is chosen, the mini-
mum average work is [14,18–20]

Wmin | pτ
= �F + �iS

=
∫ ∞

−∞
dx pτ (x) ln

pτ (x)

p0(x)

+ 1

τ

∫ 1

0
dy

[
f −1
0 (y) − f −1

τ (y)
]2

, (7)

where the first term, �F , is the change in nonequilibrium free
energy [21] and the second term, �iS, the average entropy
production [22,23]. Note that the cumulative probability y =
f0(x) is dimensionless. We also stress that the work needed to
erase the bit will be dissipated as heat into the environment.
Therefore, our bound on the work needed to erase a bit could
alternatively be written as a bound on the heat produced
while erasing a bit, in agreement with Landauer’s original
formulation.

In Eq. (7), we denote the average work by Wmin | pτ
to

emphasize that the choice is conditioned on pτ (x). It also de-
pends on p0(x), but we always fix p0(x) to be the equilibrium
distribution for the given potential, V0(x).

We now apply this general framework to the problem of
bit erasure by focusing on a bit described by a microscopic
variable x, where the bit is in macrostate 1 if x > 0 and
macrostate 0 if x < 0. We assume that the bit is initially in
equilibrium with a symmetric potential V0(−x) = V0(x), with
an equilibrium distribution p0(x). The bit thus has probability
1/2 to be either in macrostate 0 or 1.

We allow for the possibility of partial erasure, where a
fraction ε � 1/2 of probability, the erasure error, remains in
the right well at the end of the protocol. Thus, at t = τ , the
system is in macrostate 0 with probability pτ (x < 0) = 1 − ε

and in macrostate 1 with probability pτ (x > 0) = ε.

III. ERASURE TO LOCAL EQUILIBRIUM

Previous studies of the erasure of a one-bit memory have
focused on cases where, at the end of the protocol, the

distribution is locally in equilibrium. In experimental real-
izations, this condition arises because the manipulations are
slow [6–9,11]. The assumed form of the final distribution also
simplifies theoretical calculations [12,14,15].

In this section, we generalize such calculations to the case
of partial erasure, for which

pleq(x) =
{

2(1 − ε) p0(x) x < 0
2ε p0(x) x � 0 . (8)

From Eq. (7), the minimum work needed to erase a sym-
metric potential in finite time with a final distribution equal to
the local-equilibrium distribution is

Wmin,leq = Wmin|pτ =pleq

= �Fleq + �iSmin,leq, (9)

where �Fleq can be evaluated using Eq. (8). Taking into
account the requirements that p(x, 0) = p0(x) be the equilib-
rium Boltzmann distribution and that the potential at the end
has the same form as at the beginning, V (x, 0) = V (x, τ ) =
V0(x), we have

�Fleq =
∫ ∞

−∞
dx pleq(x) ln

pleq(x)

p0(x)

= ln 2 + ε ln ε + (1 − ε) ln(1 − ε) . (10)

Similarly, the entropy production is

�iSmin,leq = 1

τ

∫ 1

0
dy

[
f −1
0 (y) − f −1

leq (y)
]2

, (11)

where f −1
leq (y) is the inverse of the cumulative local-

equilibrium distribution fleq(x).
As we show in Appendix A, a local-equilibrium final dis-

tribution [Eq. (8)] implies that the entropy production can be
rewritten purely in terms of the initial equilibrium distribution:

�iSmin,leq = 2

τ

{
1 −

∫ 1−ε

0
dy f −1

0 (y) f −1
0

[
y

2(1 − ε)

]

−
∫ 1

1−ε

dy f −1
0 (y) f −1

0

(
1 + y − 1

2ε

)}
. (12)

In the full-erasure limit (ε → 0), we obtain the compact
expression

�iSmin,leq = 2

τ

[
1 −

∫ 1

0
dy f −1

0 (y) f −1
0

( y

2

)]
. (13)

A. Bounds on optimal local-equilibrium erasure cost

In Appendix B, we show that the remaining integrals in
Eq. (12) can be further evaluated, yielding an upper bound on
the optimal erasure cost that depends only on the variance of
the initial distribution:

�iSmin,leq � 2(1 − 2ε)
Var(x)

τ
. (14)

Moreover, Dechant and Sakurai [24] recently showed that
the entropy production incurred when transforming a system
from an initial state p0(x) to a final state pτ (x) over a period
τ is bounded by a quantity that only depends on the first two

032105-2



OPTIMAL FINITE-TIME BIT ERASURE UNDER FULL CONTROL PHYSICAL REVIEW E 102, 032105 (2020)

moments of the initial and final probability distributions:

τ �iSmin,leq � 〈x2〉0 + 〈x2〉τ − 2〈x〉0〈x〉τ
− 2

√(〈x2〉0 − 〈x〉2
0

)(〈x2〉τ − 〈x〉2
τ

)
. (15)

Here the subscripts 0 and τ indicate averages over p0(x)
and pτ (x), respectively. In the context of bit erasure, we
can simplify this expression. First, because of the symmetry
of V0(x), 〈x〉0 = 0. Second, local equilibrium implies that
〈x2〉τ = 〈x2〉0 = Var(x) [cf. Eq. (A6)]. Finally, from Eq. (8),
〈x〉τ = (2ε − 1)〈|x|〉0. Equation (15) then simplifies to

�iSmin,leq � 2Var(x)

τ

⎡
⎣1 −

√
1 − (1 − 2ε)2〈|x|〉2

0

Var(x)

⎤
⎦, (16)

which leads to a lower bound for Wmin,leq, again in terms of the
initial microscopic distribution. Below, we derive a different
lower bound that is valid for the work needed in optimal
erasure when the final state is not constrained to be in local
equilibrium.

IV. OPTIMAL ERASURE BEYOND LOCAL EQUILIBRIUM

We now relax the assumption of a local-equilibrium final
state and minimize over all final densities pτ (x) compat-
ible with the desired macrostate. In contrast to the local-
equilibrium protocols from Sec. III, the optimal protocols in
this section cannot easily be written in terms of the cumulative
distribution functions. Therefore, following Refs. [14,18–20],
we transform the integrals in Eq. (7), which contain quantities
evaluated at both the beginning and end of the protocol (t = 0
and τ ) into quantities evaluated solely at time 0. To change
variables carefully, we first refine our notation so that x0 is the
x coordinate used to describe quantities at time t = 0, while xτ

is used for quantities at time τ . Further, we define a mapping
between them [see Eq. (4)],

xτ = �τ (x0) ≡ �(x0), (17)

so that the cumulative distributions obey fτ (xτ ) = f0(x0).
Differentiation gives

pτ (xτ )dxτ = p0(x0)dx0 ,

pτ (xτ ) = p0(x0)∣∣ dxτ

dx0

∣∣ = p0(x0)

�′(x0)
. (18)

Evaluating the ratio pτ (xτ )/p0(xτ ) that appears in Eq. (7) in
terms of x0 gives

pτ (xτ )

p0(xτ )
= p0(x0)

�′(x0)p0(�(x0))
, (19)

so that ∫ ∞

−∞
dxτ pτ (xτ ) ln

pτ (xτ )

p0(xτ )

=
∫ ∞

−∞
dx0 p0(x0) ln

[
p0(x0)

�′(x0)p0(�(x0))

]
. (20)

With y = f0(x0) = fτ (�(x0)) and dy = p0(x0)dx0, the second
integral in Eq. (7) becomes

τ �iS =
∫ 1

0
dy

[
f −1
0 (y) − f −1

τ (y)
]2

=
∫ ∞

−∞
dx0 p0(x0)[x0 − �(x0)]2 . (21)

To optimize the entropy production with respect to the final
distribution, we substitute Eqs. (20) and (21) into Eq. (7).
Simplifying the notation from x0 → x, we have

Wmin = min
�(x)

∫ ∞

−∞
dx p0(x)

×
{

ln
p0(x)

�′(x)p0(�(x))
+ [�(x) − x]2

τ

}
, (22)

where Wmin is the minimum average work required when
pτ (x) may vary. In particular, we specify a class of allowed
final distributions where the bit is erased with probability
1 − ε,

fτ (0) = 1 − ε , (23)

In terms of �(x) this condition can be written as
�( f −1

0 (1 − ε)) = 0, or∫ ∞

−∞
dx �(x)δ

[
x − f −1

0 (1 − ε)
] = 0. (24)

From Appendix C, this minimization leads to

p0(�(x))
d

dx

[
p0(x)

�′(x)p0(�(x))

]
+ 2p0(x)

τ
[�(x) − x]

= λ̃δ
[
x − f −1

0 (1 − ε)
]
. (25)

If p0(x) is the Boltzmann distribution corresponding to the
potential V0(x), then we can rewrite Eq. (25) as

V ′
0 (�(x)) − V ′

0 (x)

�′(x)
− �′′(x)

�′(x)2
+ 2

τ
[�(x) − x]

= λδ
[
x − f −1

0 (1 − ε)
]
. (26)

Here λ is a parameter that is fixed by the boundary conditions,
Eq. (24), and �(x) = x, when x = ±∞.

A. Lower bound on optimal erasure cost

Minimizing the work, Eq. (7), over all possible final
distributions pτ (x) requires a trade-off between minimizing
the free-energy difference (the Kullback-Leibler distance be-
tween initial and final distributions) and the entropy produc-
tion. Minimizing the former leads to the local-equilibrium
distribution in Eq. (8), which in turn implies the free-energy
difference given in Eq. (10).

Borrowing from Eq. (22), the latter corresponds to mini-
mizing ∫ ∞

−∞
dx p0(x)

[�(x) − x]2

τ
(27)

with respect to �(x), under the constraints that �(x) is nonde-
creasing and that Eq. (24) holds. The constraints correspond
to setting �(x) � 0 for x < f −1

0 (1 − ε) and �(x) � 0 for
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FIG. 1. Illustration of the final distribution compatible with the
final macrostate that leads to minimum entropy production. (a) Prob-
ability density functions p0(x) (red) and pτ (x) (dark gray). (b) Cumu-
lative distributions f0(x) (red) and fτ (x) (dark gray). (c) The function
�(x) (red) shows the coordinate transformation from time 0 to τ . The
curves are calculated for a quartic well [see Eq. (37)] with Eb = 4 and
ε = 0.1.

x > f −1
0 (1 − ε). Minimizing Eq. (27) then corresponds to

minimizing the distance between x and �(x). As a result, the
optimal �(x) is

�(x) =
⎧⎨
⎩

x, x < 0
0−, 0 � x � f −1

0 (1 − ε)
x, x > f −1

0 (1 − ε)
, (28)

as shown in Fig. 1. We can write this minimization as

min
�(x)

∫ ∞

−∞
dx p0(x)

[�(x) − x]2

τ

= 1

τ

∫ f −1
0 (1−ε)

0
dx p0(x)x2 . (29)

This amounts to “pushing” the necessary amount of prob-
ability density “just over” the barrier separating the two
macrostates while “leaving behind” the probability ε remain-
ing after partial erasure (Fig. 1).

A lower bound for the minimum work needed is then given
by combining the individual minimizations:

Wmin � min
pτ (x)

∫ ∞

−∞
dx pτ (x) ln

pτ (x)

p0(x)

+ min
�(x)

∫ ∞

−∞
dx p0(x)

[�(x) − x]2

τ

= ln 2 + ε ln ε + (1 − ε) ln(1 − ε)

+ 1

τ

∫ f −1
0 (1−ε)

0
dx p0(x)x2. (30)

This bound is generally saturated in the limit τ → 0 because
of the overwhelming contribution of the entropy production to
the total work.

In the limit ε → 0 of full erasure, we find

Wmin � ln 2 + Var(x)

2τ
, (31)

as discussed in the accompanying paper [16].

V. EXAMPLES

In this section, we apply our general analysis to two
example systems, with flat-well and quartic potentials.

A. Flat well

Let us consider information erasure in a system consisting
of a particle initially in equilibrium with a potential consisting
of two flat wells, separated by a thin barrier. This particular
example has been studied in Ref. [12] under limited control
and has the advantage that it can be evaluated analytically.
For the width of the individual wells, we choose

√
3, so that

〈x2〉0 = 1.
In Appendix D, we show that the erasure protocol that leads

to a local-equilibrium final distribution has the intermediate
probability distribution,

p(x, t ) =
{ √

3(1−ε)
6(1−ε)−3(1−2ε)t/τ x < x0(t )√

3ε
3(1−2ε)t/τ+6ε

x > x0(t )
, (32)

where

x0(t ) =
√

3(1 − 2ε)(1 − t/τ ). (33)

Remarkably, the optimum intermediate probability distribu-
tion stays piecewise uniform throughout the erasure process.

We also calculate the intermediate potential by inverting
the Fokker-Planck equation, Eq. (6), which leads to Eq. (D8).
The potential is illustrated in Fig. 2(a) along with the interme-
diate probability distribution.

As detailed in Appendix D, the entropy production when
erasing to local equilibrium is given by

�iSmin,leq = (1 − 2ε)2

τ
. (34)

The quadratic dependence of the entropy production on the
erasure error differs from the expressions found when the
form of the potential V (x, t ) is constrained in parametric
optimization [12] and when the density is constrained to be
at local equilibrium for 0 � t � τ in counterdiabatic driving
[15]. In our case, local equilibrium is imposed only at t = 0
and t = τ .

Equations (14), (16), and (34) then become the following
set of inequalities:

2 − 2

√
1 − 3(1 − 2ε)2

4
� �iSmin,leq τ = (1 − 2ε)2

� 2(1 − 2ε). (35)

Figure 3 shows the entropy production together with the
upper and lower bound. We immediately see that both bounds
are verified and that the lower bound becomes tight in the full-
erasure and zero-erasure limits.

1. Erasure beyond local equilibrium

Although a flat-well potential is arguably the simplest
case for bit erasure, it is still not possible to solve Eq. (26)
analytically. Therefore, we turn to the numerical methods de-
veloped in Appendix E. The resulting optimal erasure process
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FIG. 2. Partial (ε = 0.1) finite-time (τ = 1) erasure of a memory consisting of two flat wells separated by a thin barrier. (a) Potential V (x, t )
achieving a local-equilibrium final distribution. Second row: Resulting intermediate probability distribution p(x, t ). Third row: Intermediate
probability distribution for optimal erasure. (b) Potential achieving optimum erasure. At t = τ we prevent immediate relaxation to global
equilibrium by including a potential barrier at x = 0.

is illustrated in Fig. 2(b). In this protocol, a barrier emerges in
the right well during the first part of the protocol. This barrier
then steadily moves to the center of the potential, pushing
the probability to the left. As τ is small, the system does not
have time to relax to local equilibrium, leading to a peak in
the probability distribution near the barrier. After completing
the protocol, the system relaxes back to the local-equilibrium
distribution for t 
 τ .

The entropy production for these various erasure protocols
is shown in Fig. 4. For slow driving Wmin ≈ Wmin,leq (dashed

FIG. 3. Comparison between entropy production (thick red
curve) and its upper and lower bounds (gray curves bounding the
shaded region) for two flat wells, separated by a thin barrier.

red line). Meanwhile, for fast driving, τ → 0, Wmin converges
to the lower bound [lower black solid line, given by Eq. (30)].

For a flat-well potential, this lower bound can be evaluated
analytically using Eq. (D9),

�iSmin � (1 − 2ε)3

2
. (36)

Comparing this result with Eq. (34) shows that the lower
bound differs from the local-equilibrium result by a factor
2/(1 − 2ε). This means that relaxing the assumption of local
equilibrium is particularly useful in the fast driving limit.

FIG. 4. Finite-time erasure costs in a flat-well potential. (a) Com-
parison between �iSmin (full line), �iSmin, leq (dashed line) for partial
erasure (ε = 0.1) of a flat well. Additionally, the upper and lower
bounds, Eqs. (14) and (30) (shaded region) are shown. (b) Same
quantities as the left panel, but scaled by τ .
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FIG. 5. Double-well potentials with different barrier heights.
(a) Equilibrium probability densities (blue shaded) for double-well
potentials of energy barriers Eb = 0.1, 1, 3, in units of kBT (red
curves). (b) Plot of the value of xm that makes Var0(x) = 1, as a
function of Eb. Dotted line indicates that xm ∼ (Eb)1/4 as Eb → 0.

B. Quartic double well

Next consider the potential

V0(x) = Eb

[(
x

xm

)2

− 1

]2

, (37)

which corresponds to a double-well potential, with energy
barrier Eb and minima at x = ±xm (see Fig. 5). This potential
has been studied extensively in the context of bit erasure, both
experimentally [6–9,11] and numerically [14,15].

Here we choose xm as a function of Eb so that Var(x) = 1
for all barrier heights. The function xm(Eb) is plotted in Fig. 5
(black curve). For Eb � 1, a scaling analysis of the condi-
tion 〈x2〉 = 1 shows that xm ≈ [�(1/4)/(21/4π1/2)](Eb)1/4 ≈
1.72(Eb)1/4. Conversely, for Eb 
 1, the equilibrium distribu-
tion tends to two δ functions at ±xm, implying that xm → 1.

The erasure protocol V (x, t ) leading to a local-equilibrium
final distribution for Eb = 4 can only be calculated numeri-
cally (see Appendix E). It is illustrated in Fig. 6(a).

We numerically calculate the dissipative correction
�iSmin,leq to the bare Landauer cost from Eq. (12). Addition-
ally, using Eqs. (14) and (16), we numerically calculate the
upper and lower bounds for the entropy production.

The results are displayed in Fig. 7. Importantly, the ad-
ditional cost for optimal finite-time erasure does not scale
exponentially with barrier height as claimed in Ref. [15].
Instead, we see that increasing the barrier height leads to a
saturation of the upper bound. This limiting case corresponds
to a potential with very deep wells, which leads to an initial
distribution consisting of two “delta peaks” [16].

1. Erasure beyond local equilibrium

Figure 6(b) illustrates the optimum erasure process. Then,
in Fig. 8, we show the (numerically calculated) optimal work
for finite-time erasure. One can check that, for fixed variance
of the initial distribution, the erasure cost grows with a higher

FIG. 6. Partial (ε = 0.25) finite-time (τ = 0.5) erasure of a memory consisting of a quartic double well with energy barrier Eb = 4.
(a) Potential V (x, t ) achieving a local-equilibrium final distribution and resulting intermediate probability distribution p(x, t ). (b) Intermediate
probability distribution for optimal erasure and potential achieving optimum erasure. At t = τ we prevent immediate relaxation to global
equilibrium by including a potential barrier at x = 0. At t/τ = 1, the jump in the potential is slightly shifted to positive values due to numeric
instabilities.
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FIG. 7. Entropy production (solid lines) for partial erasure of
the quartic double-well potential together with the upper and lower
bounds (shaded region) as a function of the barrier height for full and
partial erasure.

barrier, both in the fast and in the slow erasure limit. In the
slow limit, we again find that Wmin approaches Wmin,leq. In the
fast limit, it approaches the lower bound.

VI. DISCUSSION AND CONCLUSION

In this article, we have given a detailed treatment of the
theory underlying optimization of thermodynamic processes,
where the final constraint is placed at the level of a macrostate.
At the level of microstates, an entire class of distributions is
allowed. We have applied this formalism to the case of infor-
mation erasure, deriving both optimal protocols and various
bounds.

Optimizing over a class of microscopic distributions can
yield an optimal protocol for finite time bit erasure that uses
up to a factor of four less work compared to protocols that
end in local-equilibrium when the bit is fully erased [16].
When only part of a bit is erased, the difference in erasure
cost between the local equilibrium protocol and the optimal
one can be even greater, a conclusion that follows from our
analysis of the flat-well potential: For short erasure processes,
the minimum erasure cost tends toward the lower bound in
Eq. (36), while the local-equilibrium erasure cost is given by
Eq. (34). Their ratio is a factor of 2/(1 − 2ε), which diverges
for ε → 1/2.

The method for finding the final probability distribution
that results in the minimum-work erasure protocol is quite
involved and can only be treated numerically even for quite
simple example systems. Nonetheless, the resulting time-
evolution of the probability distribution has some intuitive
appeal (see Figs. 2 and 6): An optimal partial erasure protocol
into the left well takes the closest part of the probability
distribution from the right well, pushes it over the barrier and
redistributes probability density so as to minimize a trade-off
between free-energy difference and entropy production.

In that context, it is noteworthy that the control potential
V (x, t ) needed to achieve a desired evolution p(x, t ) of prob-

FIG. 8. Finite-time erasure costs in a quartic potential. (a) Com-
parison between �iSmin (full line), �iSmin, leq (dashed line) and the
upper and lower bounds, Eqs. (14) and (30) (shaded region) for a
double well, Eq. (37) with Eb = 2, 4, 8. (b) Same quantities as the
left panel but scaled by τ .

ability density is often quite involved, with steep gradients
and discontinuities. The complicated shape of the required
potential leads not only to numerical difficulties (Appendix E)
but also to experimental challenges. Indeed, an important open
question is whether inevitable limitations to experimental
control over the potential can nonetheless allow experimental
protocols whose average work closely approximate the mini-
mum values discussed here.

One straightforward strategy to further reduce costs beyond
our derived bounds would be to manipulate the intrinsic time
and length scales during the protocol. In the limit of infinitely
fast relaxation times, such a strategy would enable finite-time
erasure at no additional cost beyond the Landauer limit as
shown, e.g., in Refs. [25,26]. Tempting as such an approach
might be, it is not realistic. Although reducing the length and
time scales improves the performance of bit erasure, it would
make little sense to have the ability to impose faster or shorter
scales and only use them for part of a protocol. Thus, we
consider such a technological optimization to have been first
carried out, fixing length and time scales. Then one proceeds
to protocol optimization, the focus of this paper.

One potential drawback of our finite-time protocols is that,
for fast erasure, probability accumulates near the center of
the potential and might leak back into the wrong part of the
potential after completion of the protocol. There are several
ways to avoid this problem: As already mentioned in Sec. V,
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one could add a thin, high barrier at the center of the potential
immediately after completing the erasure. The barrier would
guarantee that the system relaxes to the correct macrostate and
can be removed later. Another possibility would be to push the
probability slightly farther, past the center of the potential. In
this way, the system will generally relax to the correct state,
with a controllable trade-off between the extra work required
to push probability farther past the edge of the macrostate,
against the amount of probability that will leak back into the
original macrostate. Similarly, if the goal is partial erasure,
then one can choose a protocol with a nominally smaller value
of ε that will reach the desired value in the relaxation after
the end of the protocol. In this article, we have not explored
such trade-offs, which all constitute suboptimal protocols.
Our reasoning is that there are many ways to be suboptimal,
and it makes more sense to explore them in the context
of a specific experimental realization, where experimental
constraints, which also lead to suboptimal strategies, can
be accommodated. In the absence of specific experimental
constraints, our strategy, which achieves minimum work at
the cost of needing extra time afterward, seems a reasonable
exemplar.

Finally, we note that our study here and in Ref. [16] has
focused on the average work to perform the single opera-
tion of bit erasure. It would be interesting to consider the
trade-offs between mean values and fluctuations [27,28]. The
main difficulty in optimizing a trade-off between the average
amount of work and its variance is that one no longer has a
direct connection with the Wasserstein distance. This makes
the application of optimal transport theory significantly more
challenging. Furthermore, it would be interesting to look for
optimizations that include a sequence of computational oper-
ations [29]. To do this, one would need to take into account
that at the start of a new operation, the bit might not yet be
in local equilibrium. Therefore, to optimize the full sequence
of operations, every separate operation might have to be
suboptimal.
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FIG. 9. Example plot of the initial inverse distribution function
f −1
0 (y) and the final local-equilibrium inverse distribution function

f −1
leq (y). The curves are calculated for a quartic well [see Eq. (37)]

with Eb = 2 and ε = 0.2.

APPENDIX A: DERIVATION OF EQ. (12)

According to Eq. (8), the cumulative local-equilibrium
distribution fleq(x) is given by

fleq(x) =
{

2(1 − ε) f0(x) x < 0
1 − ε + 2ε

∫ x
0 dx′ p0(x′) x � 0

, (A1)

=
{

2(1 − ε) f0(x) x < 0
1 + 2ε [ f0(x) − 1] x � 0 . (A2)

Inverting this function gives

f −1
leq (y) =

{
f −1
0

[ y
2(1−ε)

]
0 � y < 1 − ε

f −1
0

(
1 + y−1

2ε

)
1 − ε � y � 1

. (A3)

Figure 9 shows an example plot of the resulting inverse
functions.

Expanding the integrand in Eq. (11) and inserting Eq. (A3)
gives

�iSmin,leq = 1

τ

{∫ 1

0
dy f −1

0 (y)2 +
∫ 1−ε

0
dy f −1

0

[
y

2(1 − ε)

]2

+
∫ 1

1−ε

dy f −1
0

(
1 + y − 1

2ε

)2

− 2
∫ 1

0
dy f −1

0 (y) f −1
leq (y)

}
. (A4)

Substituting y = f0(x) in the first integral, y/2(1 − ε) = f0(x) in the second integral, and 1 + (y − 1)/2ε = f0(x) in the third
integral yields

�iSmin,leq = 1

τ

[ ∫ ∞

−∞
dx p0(x)x2 + 2(1 − ε)

∫ 0

−∞
dx p0(x)x2 + 2ε

∫ ∞

0
dx p0(x)x2 − 2

∫ 1

0
dy f −1

0 (y) f −1
leq (y)

]

= 2

τ

[
〈x2〉0 −

∫ 1

0
dy f −1

0 (y) f −1
leq (y)

]
, (A5)

where 〈x2〉0 is the second moment of the initial distribution. Because of the symmetry of the potential (and therefore the initial
distribution), it equals the variance of the initial distribution:

〈x2〉0 = Var(x) ≡ 1. (A6)
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Finally, inserting Eq. (A3) for the remaining integral and recalling Eqs. (9) and (10), we obtain Eq. (12) of the main text.

APPENDIX B: DERIVATION OF EQ. (14)

We start by splitting the integrals in Eq. (12) further to obtain∫ 1−ε

0
dy f −1

0 (y) f −1
0

[
y

2(1 − ε)

]
= I1 + I2 (B1)

and ∫ 1

1−ε

dy f −1
0 (y) f −1

0

(
1 + y − 1

2ε

)
= I3 + I4 , (B2)

where

I1 ≡
∫ ε

0
dy f −1

0 (y) f −1
0

[
y

2(1 − ε)

]
�

∫ ε

0
dy f −1

0 (y)2, (B3)

I2 ≡
∫ 1/2

ε

dy f −1
0 (y) f −1

0

[
y

2(1 − ε)

]
, (B4)

and

I3 ≡
∫ 1−ε

1/2
dy f −1

0 (y) f −1
0

[
y

2(1 − ε)

]
, (B5)

I4 ≡
∫ 1

1−ε

dy f −1
0 (y) f −1

0

(
1 + y − 1

2ε

)
�

∫ 1

1−ε

dy f −1
0

(
1 + y − 1

2ε

)2

. (B6)

The inequalities follow from the fact that f −1
0 (y) is an increasing function and ε � 1/2 (see also Fig. 9).

Because p0(x) is an even function, we have p0(−x) = p0(x), and the cumulative distribution obeys

f0(−x) + f0(x) = 1, (B7)

which in turn implies

f0
( − f −1

0 (y)
) = 1 − f0

(
f −1
0 (y)

)
⇐⇒ f −1

0 (y) = − f −1
0 (1 − y). (B8)

Equation (B8) can be used to rewrite I2:

I2 = −
∫ 1/2

ε

dy f −1
0 (1 − y) f −1

0

[
y

2(1 − ε)

]
= −

∫ 1−ε

1/2
dy′ f −1

0 (y′) f −1
0

[
1 − y′

2(1 − ε)

]
, (B9)

which implies

I2 + I3 =
∫ 1−ε

1
2

dy f −1
0 (y)

{
f −1
0

[
y

2(1 − ε)

]
− f −1

0

[
1 − y

2(1 − ε)

]}
, (B10)

Note that f −1
0 (y) > 0 for y > 1/2 and recall that f −1

0 (y) is an increasing function. Since y � 1 − y in the interval [1/2, 1], it is
clear that the integrand in Eq. (B10) is positive over the entire integration domain. From this, we can deduce

I2 + I3 � 0. (B11)

Next, combining I1 and I4 yields

I1 + I4 �
∫ ε

0
dy f −1

0 (y)2 +
∫ 1

1−ε

dy f −1
0

(
1 + y − 1

2ε

)2

=
∫ 1

1−ε

dy′ f −1
0 (y′)2 +

∫ 1

1−ε

dy f −1
0

(
1 + y − 1

2ε

)2

� 2
∫ 1

1−ε

dy f −1
0

(
1 + y − 1

2ε

)2

= 4ε

∫ 1

1/2
dy′ f −1

0 (y′)2 = 2ε〈x2〉0, (B12)

where we used the symmetry relation, Eq. (B8), in line 2 and the fact that f −1
0 [1 + (y − 1)/2ε)] is smaller than f −1

0 (y) (see
Fig. 9) in line 3.

Equations (12), (A6), (B1), (B2), (B11), and (B12) together lead to

�iSmin,leq � 2(1 − 2ε)
Var(x)

τ
, (B13)

which is Eq. (14) in the main text.
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APPENDIX C: DERIVATION OF EQ. (25)

To minimize Eq. (22) under the constraint Eq. (24), we define an augmented Lagrangian

L =
∫ ∞

−∞
dx p0(x)

[
ln

p0(x)

�′(x)p0(�(x))
+ [�(x) − x]2

τ

]
− λ̃

∫ ∞

−∞
dx �(x)δ

[
x − f −1

0 (1 − ε)
]
, (C1)

and set variations with respect to �(x) equal to zero,

δL
δ�(x)

= 0. (C2)

One can verify that, to first order in δ�(x),∫ ∞

−∞
dx p0(x) ln

p0(x)

[�′(x) + δ�′(x)]p0[�(x) + δ�(x)]

=
∫ ∞

−∞
dx p0(x) ln

p0(x)

�′(x)p0(�(x))
−

∫ ∞

−∞
dx

p0(x)

�′(x)
δ�′(x) −

∫ ∞

−∞
dx

p0(x)p′
0(�(x))

p0(�(x))
δ�(x)

=
∫ ∞

−∞
dx p0(x) ln

p0(x)

�′(x)p0(�(x))
+

∫ ∞

−∞
dx δ�(x) p0(�(x))

d

dx

p0(x)

�′(x)p0(�(x))
, (C3)

where we integrated by parts in the second integral of the second line to arrive at the last line. Furthermore, again to first order
in δ�(x), ∫ ∞

−∞
dx p0(x)[�(x) + δ�(x) − x]2 =

∫ ∞

−∞
dx p0(x)[�(x) − x]2 + 2

∫ ∞

−∞
dx p0(x)[�(x) − x]δ�(x)

and ∫ ∞

−∞
dx [�(x) + δ�(x)]δ

[
x − f −1

0 (1 − ε)
] =

∫ ∞

−∞
dx �(x)δ

[
x − f −1

0 (1 − ε)
] +

∫ ∞

−∞
dx δ�(x)δ

[
x − f −1

0 (1 − ε)
]
, (C4)

which leads to a variation

δL =
∫ ∞

−∞
dx δ�(x)

{
p0(�(x))

d

dx

p0(x)

�′(x)p0(�(x))
+ 2p0(x)

τ
[�(x) − x] − λ̃δ

[
x − f −1

0 (1 − ε)
]}

. (C5)

The Euler-Lagrange equation, Eq. (C2), now leads to Eq. (25) in the main text.

APPENDIX D: EXACT CALCULATIONS FOR THE
FLAT-WELL POTENTIAL

Here we present the detailed calculations for the results
presented in Sec. V A.

1. Intermediate probability distribution and potential

The initial cumulative distribution is given by

f0(x) = x + √
3

2
√

3
for |x| �

√
3. (D1)

With this and Eq. (A2), we eventually find the inverse of
the interpolating function, Eq. (4),

�−1
t (x) =

{√
3(1−2ε)t/τ+2(1−ε)x
2−(1−2ε)t/τ−2ε

x < x0(t )√
3(1−2ε)t/τ+2εx
(1−2ε)t/τ+2ε

x > x0(t )
, (D2)

where

x0(t ) =
√

3(1 − 2ε)(1 − t/τ ) (D3)

is chosen so that �−1
t (x) and

f (x, t ) = f0
(
�−1

t (x)
)

(D4)

are continuous.

Differentiating the cumulative distribution yields the inter-
mediate probability distribution in Eq. (32):

p(x, t ) =
{

pl (t ) x < x0(t )
pr (t ) x > x0(t ) (D5)

=
{ √

3(1−ε)
6(1−ε)−3(1−2ε)t/τ x < x0(t )√

3ε
3(1−2ε)t/τ+6ε

x > x0(t )
. (D6)

Using Eq. (6), we calculate the intermediate potential

V (x, t ) =
{ ṗl (t )

2pl (t ) (x + √
3)2 x < x0(t )

Vr (x, t ) x > x0(t )
, (D7)

with

Vr (x, t ) ≡ ln
pl (t )

pr (t )
+ ṗl (t )

2pl (t )
[x0(t ) +

√
3]2

+ x − x0(t )

pr (t )

{
ṗl (t )[x0(t ) +

√
3]

+ ṗr (t )

2
[x − x0(t )] − ẋ0(t )[pr (t ) − pl (t )]

}
.

(D8)

Note that the remaining constant is chosen such that the
minimum of the potential is equal to zero.
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2. Entropy production during erasure to local equilibrium

Inverting Eq. (D1) yields

f −1
0 (y) =

√
3(2y − 1) for 0 � y � 1. (D9)

with which Eq. (12) can be evaluated to find Eq. (34) in the
main text.

To calculate the lower bound, Eq. (16), we need the follow-
ing quantity:

〈|x|〉0 =
∫ √

3

−√
3

dx
|x|

2
√

3
=

√
3

2
. (D10)

APPENDIX E: NUMERICAL METHODS FOR FINDING
THE OPTIMAL PROTOCOL AND COMPUTING THE

ENTROPY PRODUCTION

To find optimal protocols and associated quantities nu-
merically, we need to solve the variational equation, (26),
which defines a boundary-value problem. To simplify the
numerics, we limit the domain of the solution by setting
V0(x) → ∞ for x /∈ [−xmax, xmax]. Then, we calculate �(x)
via a shooting method [30]: We fix �(−xmax) = −xmax and
make an initial guess for �′(−xmax). We integrate Eq. (26)
using a Runge-Kutta method and check whether the condition
�( f −1

0 (1 − ε)) = 0, cf. Eq. (24), is satisfied. If �(�( f −1
0 (1 −

ε))) > 0, we reduce �′(−xmax) and integrate again. Similarly,
if �(�( f −1

0 (1 − ε))) < 0 we increase �′(−xmax) and repeat
the integration. We iterate until |�(xmax) − xmax| < 10−3. As

Eq. (26) allows for a discontinuity in �′(x) at x = f −1
0 (1 − ε),

we can repeat the above procedure to find �′( f −1
0 (1 − ε)) that

leads to �(xmax) = xmax.
Having determined �(x), the remaining tasks are to find the

time-dependent probability densities p(x, t ), the cumulative
distribution f (x, t ), and the time-dependent potential V (x, t )
that implements the control. To find the cumulative distribu-
tion f (x, t ), we use Eqs. (3) with (4), which translates to

�t (x) ≡ x + t

τ
[�(x) − x]. (E1)

Having found f (x, t ), we can differentiate with respect to
x to find the corresponding density p(x, t ). To find V (x, t ), we
use Eq. (6) and change the lower integration limits to −xmax.
Finally, we compute �iSmin using Eq. (21). The code (in C)
can be found in Ref. [31].

Because the map �(x) can tend toward functions with
discontinuous derivatives—especially for short protocols with
τ � 1—finding the numerical solution can be challenging.
We checked the shooting method described above with
the built-in Mathematica command NDSolveValue, which
claims to internally implement the shooting method as a root-
finding problem.

In addition, we discretized pτ (x) and wrote code to esti-
mate W using Eq. (7). We then minimized W by gradient
descent, directly varying the discretized values of pτ (x).
Both of these approaches produced results that agree with
those presented in the paper. However, all methods fail for
small-enough τ and/or large-enough Eb, where solutions can
become more singular.
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