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A small tagged particle immersed in a fluid exhibits Brownian motion and diffuses on a long timescale.
Meanwhile, on a short timescale, the dynamics of the tagged particle cannot be simply described by the usual
generalized Langevin equation with Gaussian noise, since the number of collisions between the tagged particle
and fluid particles is rather small. On such a timescale, we should explicitly consider individual collision events
between the tagged particle and the surrounding fluid particles. In this study we analyze the short-time dynamics
of a tagged particle in an ideal gas, where we do not have static or hydrodynamic correlations between fluid
particles. We perform event-driven hard-sphere simulations and show that the short-time dynamics of the tagged
particle is correlated even under such an idealized situation. Namely, the velocity autocorrelation function
becomes negative when the tagged particle is relatively light and the fluid density is relatively high. This result
can be attributed to the dynamical correlation between collision events. To investigate the physical mechanism
which causes the dynamical correlation, we analyze the correlation between successive collision events. We find
that the tagged particle can collide with the same ideal-gas particle several times and such collisions cause a

strong dynamical correlation for the velocity.
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I. INTRODUCTION

A particle immersed in a fluid exhibits random motion,
which is widely known as Brownian motion [1]. The Brow-
nian motion originates from the interaction between a tagged
particle (tracer) and the particles which compose the sur-
rounding fluid (fluid particles). In principle, the dynamics
of the tracer is deterministic because the full system, which
consists of the tracer and the fluid particles, obeys the Hamil-
tonian dynamics. However, if we observe only the tracer, the
dynamics looks stochastic (at least apparently).

For a description of such stochastic dynamics of the tracer,
the generalized Langevin equation (GLE) [2,3] has been em-
ployed in many cases. The GLE is a stochastic differential
equation which incorporates the memory effect (memory ker-
nel) and random noise. The properties of the memory kernel
and the random noise reflect the statistical properties of the
surrounding fluid. Formally, the projection operator method
[4] gives an expression for the memory kernel and the noise
is related to the memory kernel via the fluctuation-dissipation
relation. The dynamic equation for the tracer is given as
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where r and M are the position and mass of the tracer, K(¢) is
the memory kernel, and &(z) is the random noise. The random
noise satisfies
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where (- - - ) represents the statistical average, kg is the Boltz-
mann constant, 7 is the temperature, and 1 is the unit tensor.
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The projection operator formalism does not tell us the full
properties of the noise &(¢). It gives only the first and second
moments as Eq. (2). Therefore, in many practical cases, the
noise is assumed to be Gaussian. Then the dynamic equation
for the tracer is fully specified and can be analytically solved
[5]. Such a GLE with Gaussian noise is utilized to analyze
various experimental data [6—10]. The diffusion of the tracer
can also be directly studied by molecular dynamics simula-
tions. Recently, the memory kernels for some systems have
been calculated precisely from molecular dynamics simula-
tions [11,12]. For example, the power-law-type long-time tail,
which originates from hydrodynamic modes, was reported for
a Lennard-Jones fluid [11]. It should be noted that, in most
cases, a tracer is assumed to be large and heavy [13]. However,
in some cases, a tracer could be rather small and light. For
example, if we interpret a molecule which is dissolved in a
fluid as a tracer, the tracer size is comparable to the fluid
particles and the mass of the tracer is also comparable to that
of a fluid particle. (For example, if we consider a mixture
system which consists of isotopes and interpret a light species
as a tracer, the tracer mass can be slightly smaller (or larger)
than unity [14].) The dynamics of a tracer particle can be
experimentally measured, for example, by scattering, and we
need to describe the dynamics of the tracer particle to analyze
the experimental data.

Here we emphasize that the Gaussian noise approximation
is not justified a priori. Naively, we expect that the approxi-
mation is reasonable because the noise would be Gaussian as
a result of the many accumulated forces due to the collisions
of surrounding fluid particles. As long as the number of colli-
sions is sufficiently large, the average force will converge to a
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Gaussian noise by the central limit theorem. Conversely, when
the number of collisions is insufficient, the Gaussian noise
approximation does not work properly. Such a situation can
be realized when we consider the dynamics of a single tagged
particle in a dilute gas. The Gaussianity of the noise can be
evaluated via the Gaussianity of the displacement, since the
displacement is a linear combination of the noise [by Eq. (1)].
For instance, Yamaguchi and Kimura [15] investigated the
dynamics of a single hard sphere in a dilute hard-sphere gas.
They reported that the distribution function for the displace-
ment is non-Gaussian on a short timescale. We should be
careful when we employ the Gaussian noise approximation.
The tracer dynamics for the short timescale in a dilute fluid
can be described, for example, by the kinetic theory of gases
[16]. To illustrate the dynamics with a small number of colli-
sions, we should consider the individual collision events ex-
plicitly. Then we expect that the dynamics would be modeled
by the sequence of collision events. Burshtein and Krongauz
[17] modeled the dynamics of a tracer in a hard-sphere fluid as
a sequence of collision events. They assumed simple statistics
for the collision events (the statistical distributions of the
waiting time between successive collisions and the velocity
change distribution are decoupled and given as simple hypo-
thetical forms) and calculated dynamical quantities such as the
velocity autocorrelation function (VAC). Their model can suc-
cessfully reproduce some dynamical properties. However, we
note that the statistics employed would be a matter of further
discussion. We expect that the statistics depend rather strongly
on the fluid density. When the fluid is dilute, the collisions
are statistically almost independent [16]. Some assumptions
in the Burshtein-Krongauz model will be justified in such a
case. However, when the fluid is rather dense, the situation
becomes very complex. In a dense hard-sphere fluid [18,19],
the statistics of collisions would depend on various factors.
For example, they can be related to the structure of the fluid.
Recently, Mizuta et al. [20] performed a series of molecular
dynamics simulations for a fullerene particle immersed in lig-
uid argon. They reported that the dynamics of fullerene parti-
cles is affected by both the hydrodynamics and structure of the
fluid. Although their result is interesting, it seems difficult to
quantitatively separate the contributions of individual factors.
The statistics of collision events can also depend on the
mass of the tracer. For a collision between two hard spheres,
the velocities of the spheres after the collision depend on the
velocities before the collision and the masses of the two hard
spheres. The collision statistics depend on the cross section
of the collision and the relative velocity. For the collision
between a tracer particle and a fluid particle, the statistics
of the relative velocity depend on the masses of the tracer
and the fluid particle. Also, the momentum exchange between
the tracer and the ideal-gas particle depends on the mass
ratio. Then, if the mass of the tracer is changed, the collision
statistics would change (by the change of the relative velocity
distribution). If the tracer mass is sufficiently larger than the
fluid molecule mass, the momentum of the tracer will not be
largely affected by a single collision. However, if the tracer
mass is relatively small, the momentum largely changes even
by a single collision and consequently the backreflection and
the negative velocity autocorrelation of the tracer can occur
[19,21]. The statistics of the collision events would not be

simple in this case. Such collision statistics can be naturally
handled by utilizing the methods developed in the kinetic
theory of gases [16,22], instead of the GLE. We can describe
the dynamics by the Boltzmann equation or by the Fokker-
Planck equation and then employ some collision statistics
to calculate the dynamical quantities such as the velocity
autocorrelation. For dilute gases, we may reasonably assume
that collisions are statistically independent. Then the collision
distribution can be described by the Poisson process; some
dynamical quantities behave qualitatively different from the
GLE with the Gaussian noise approximation. For example,
the mass dependence of the diffusion coefficient can be ex-
plained by the kinetic theory of gases. If the gas density is
relatively high, however, the description by the kinetic theory
of gases becomes nontrivial. The Burshtein-Krongauz model
would be interpreted as a phenomenological extension of the
kinetic theory to a relatively dense system. An extension of
the GLE by combining non-Gaussian-type processes which
mimic collisions has also been proposed [23,24]. However,
the microscopic origin of the negative velocity correlation has
not been fully clarified yet.

In this paper we investigate the dynamics of the tracer
particle on a short timescale, from the viewpoint of collision
events. As we mentioned, the statistics of collision events
and the short-time dynamics of the tracer depend on both
the fluid density and the tracer mass. They are also affected
by several different factors such as the fluid structure and
the hydrodynamic interaction. To eliminate such factors other
than the fluid density and the tracer mass, we consider systems
where fluid particles do not interact with each other (the ideal
gas). We investigate the dynamics of the tracer in the ideal gas
by the hard-sphere simulations. We perform a series of sim-
ulations with various parameter sets. We find that the tracer
exhibits a rather complex dynamics on the short timescale,
even by such an idealized and simplified model. We analyze
the dynamics of the tracer on the basis of the collision-type
dynamics by Burshtein and Krongauz [17]. We show that
the correlation between sequential collisions is important in
describing the short-time dynamics of the tracer.

II. MODEL AND METHOD

We consider the dynamics of a tracer immersed in an ideal
gas by a numerical simulation. In this work we use the term
“ideal gas” to mean a gas composed of point masses which do
not interact with each other at all. The point masses do not ex-
change their momenta via collisions. The tracer collides with
the ideal-gas particles whereas the ideal-gas particles do not
collide with each other. We model the tracer as a hard-sphere
particle and employ the standard hard-sphere simulation
method [25]. Both the tracer and ideal-gas particles move
ballistically until they collide. The velocities of the tracer and
ideal-gas particles instantaneously change when they collide.

We consider a single tracer particle and N ideal-gas par-
ticles in the cubic simulation box with periodic boundary
conditions. We set the number of ideal-gas particles as N =
10° for all the simulations. We express the masses of the
tracer and ideal-gas particles as M and m, respectively, the
size of the tracer as o (the size of the ideal-gas particles is 0),
the temperature of the system as 7, and the number density
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of the ideal-gas particles as p. [Here the particle density is
related to the system volume V as p = N/(V — wo3/6).] We
employ dimensionless units where the units of energy, mass,
and length are kgT (kp is the Boltzmann constant), m, and
o, respectively. In dimensionless units, the system can be
characterized only by two parameters: M and p. We vary the
density p in the range from 102 to 10° and the mass M in the
range from 1072 to 103.

The initial state of the simulation is generated as follows.
The tracer particle is located at the box center and the ideal-
gas particles are dispersed randomly in the box. (The position
of a newly generated ideal-gas particle should not overlap with
the tracer.) The initial velocities of the tracer and ideal-gas
particles are sampled from the Maxwell-Boltzmann distribu-
tion. To prevent the center of mass of the system from drifting,
we subtract the velocity of the center of mass from all the
particles in the system. Then the velocities of the particles
are rescaled to reduce the average kinetic energy to 3/2.
Since the momentum is conserved in the hard-sphere simu-
lation, the center of mass does not move during a simulation.
After the initial state is generated, we evolve the system by
using the established procedure for the hard-sphere simulation
[25].

Although the hard-sphere simulation itself is rather sim-
ple and clear, we should be careful about the handling of
the images due to the periodic boundary condition. In this
simulation, the mean free path of the tracer is long and this
leads to unexpected overlaps between the tracer and images
of ideal-gas particles. To avoid such overlaps, we perform the
simulations as follows.

1. We generate the initial state.

2. We find the ideal-gas particle (the target particle), which
collides with the tracer judging from their positions and veloc-
ities. The waiting time for the collision of this particle is At,.

3. We find the ideal-gas particle, which has a maximum
velocity relative to the tracer along the axis of the simulation
box. From the maximum relative velocity V., we obtain
the minimum time of collision of the image particle with the
tracer as Aty = (L — 0)/2Vimax, where L (=V'/3) is the box
length.

4. If At, < Aty, we update the position of all particles by
the step size At,, then proceed tot — t + At,, and repeat the
update unless Ar; < Af,. When At < Ar, is satisfied, we
update the position of all particles by the step size At; and
then proceed to t — ¢ + At; to attain the collision.

5. We update the velocity of the tracer and the target parti-
cle according to the collision.

6. We repeat steps 2-5 until 10 x 10° collisions are at-
tained.

From the trajectories of the tracer, we calculate several
dynamical quantities: the mean-square displacement (MSD),
the non-Gaussian parameter (NGP) [26], and the velocity
autocorrelation function defined, respectively, as

g(t) = (A (1)), 3)
_3(Art)
O[(t) = W - 1, (4)
(V@) -V(0))
C(t) = vy (5)

Here Ar(t) =r(t) —r(0) is the displacement of the tracer,
V(¢) is the velocity of the tracer and (---) represents the
statistical average. We also calculate a few quantities which
characterize the change of the tracer velocity by collisions.
They will be introduced later.

Before we show the simulation results; here we briefly
comment on the effect of the system size on the simulation
results. In our model, the ideal-gas particles can change their
velocities only via the collision with the tracer. Thus the re-
laxation time for the velocity of an ideal-gas particle becomes
very long and it depends on the system size. One may consider
that the velocity distribution of the ideal-gas particles deviate
from the equilibrium distribution. Also, one may suspect that
the dynamics of the tracer strongly depends on the system
size. Fortunately, as far as we examined, the velocities of the
ideal-gas particles obey the equilibrium Maxwell-Boltzmann
distribution. Some dynamical quantities of the tracer, such as
the MSD and VAC, do not show a measurable system size de-
pendence (unless the system size is too small and comparable
to the tracer size). Therefore, we conclude that the system-size
dependence for simulation results can be safely neglected (at
least for the analysis shown below).

II1. RESULTS

Figure 1(a) shows the mass dependence of the MSD for an
ideal-gas density of p = 1. In a short-time region, the ballistic
behavior (Ar?(¢)) o t? is observed and the MSD decreases as
M increases. This behavior is consistent with the fact that the
average absolute value of velocity decreases as M increases.
In a long-time region, diffusive behavior (Ar?(t)) ot is ob-
served and the MSD decreases as M increases. This result
means that the diffusion coefficient of the tracer depends on
M. One may argue that the M dependence is counterintu-
itive because the GLE (1) predicts that the inertia term does
not contribute to the long-time dynamics. However, from the
viewpoint of the kinetic theory of gases, the diffusion coef-
ficient can depend on the mass [16]. A similar behavior has
been reported for the motion of a tracer in Lennard-Jones
fluids [27,28] and hard-sphere fluids [21]. Nevertheless, in this
work we do not discuss the M dependence of the diffusion
coefficient.

Figure 1(b) shows the M dependence of the NGP. The pa-
rameters are the same as in Fig. 1(a). The NGP increases with
time in the ballistic regime, exhibits a peak in the transitional
regime, and decays in the diffusive regime. The peak increases
as M decreases. This result means that the statistics of the
displacement is non-Gaussian except in the diffusive regime
when M is small. The non-Gaussian behavior is observed
in various systems and often attributed to the heterogeneity
of the environment. For example, the glass forming liquids
[29] and polymer solutions [30] work as heterogeneous envi-
ronments for a tracer. However, in our system, the ideal-gas
particles never have the structures and thus the non-Gaussian
behavior cannot be attributed to the heterogeneity of the envi-
ronment. Therefore, we consider the non-Gaussian behavior
to have kinetic origin. In our system, the tracer dynamics is
affected only by the collisions and the non-Gaussian behavior
can be attributed to the properties of collisions. (Yamaguchi
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FIG. 1. The (a) MSD and (b) NGP of a tracer in an ideal gas for various M. The density of the ideal gas is p = 1.

and and Kimura also reported similar non-Gaussian behavior
for a dilute hard-sphere fluid [15].)

Figure 2 shows the p dependence of the MSD and NGP
with a constant mass of the tracer (M = 1). We observe that
the MSD collapses onto a single curve in the ballistic region.
The MSD deviates from the ballistic behavior to the diffusive
behavior and the crossover time decreases as p increases. This
o dependence is due to the change of the mean free path. In
Fig. 1 we observe a non-negligible peak for the NGP. The peak
value of the NGP is almost constant for p < 1, whereas the
value increases slightly as p increases for p > 1. Although
such an increase of the NGP against p is commonly observed
for liquids with heterogeneous structures [31], we have no
heterogeneity in our model, as mentioned above.

From the mass and density dependence shown above, we
conclude that the dynamics of the tracer qualitatively depends
on the mass and the density. If the mass is large (M 2 1),
the dynamics of the particle can be reasonably described as
the Gaussian process. (The GLE with the Gaussian noise

time t

FIG. 2. The (a) MSD and (b) NGP of a tracer in an ideal gas for various p. The mass of the tracer is M = 1.

approximation is reasonable.) If the density is low (p < 1),
the dynamics of the tracer can be expressed by the ballistic
motion and collisions (as the standard kinetic theory of gases
[16]). However, if the mass is small and the density is high
(M < 1and p 2> 1), the dynamics seems not to be expressed
as a simple and intuitive model. We consider that this is caused
by the “dynamic” correlation. (In our system, the fluid has no
static structure since it is an ideal gas.) Our result suggests that
the dynamic correlation solely gives such an apparently coun-
terintuitive behavior. A simple interpretation is that something
like a “cage” would be dynamically formed and the tracer
effectively experiences confinement on the short timescale.
However, this behavior is not trivial, and to investigate it in
detail we performed some additional simulations for several
parameter sets for M < 1and p 2 1.

Figure 3 shows the MSD and NGP for several different
parameter sets. From Fig. 3(a) we find that the MSD shows
unexpected behavior for M = 0.01 and p = 100. Namely,
the MSD does not show the plain crossover from ballistic
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FIG. 3. The (a) MSD and (b) NGP of a tracer for several sets of mass M and an ideal-gas density p.

to diffusive behavior and we observe an intermediate sub-
diffusive region between the ballistic and diffusive regions.
Similar behavior of the MSD has been reported for several
systems such as glass forming liquids and polymer solutions
[32,33]. Although the data are not explicitly presented, similar
behavior has also been reported for the multi particle collision
dynamics (MPCD) type of model [34]. In Fig. 3(b) we ob-
serve a strong peak of the NGP for M = 0.01 and p = 100.
[Intuitively, the peak time for the NGP (fpeqx) corresponds to
the relaxation time of the tracer velocity. This interpretation
seems to be consistent with the MSD data. The MSD exhibits
ballistic behavior for t < fyea and diffusive behavior for r 2
fpeak-] Thus demonstrated, we confirm that our system exhibits
nontrivial dynamical behavior for small M and high p. These
results seem not to be simply described by the GLE or the
kinetic theory of gases. Questions naturally arise: What is the
origin of such nontrivial behavior? How can we describe the
dynamics?

Here we recall that our simulation model is a collision-
driven hard-sphere molecular dynamics model. In our model,
the tracer moves ballistically and the velocity changes only
through collisions with the ideal-gas particles. Therefore, it
would be reasonable for us to concentrate on the velocity of
the tracer. Figure 4 shows the VAC of a tracer particle for the
same parameter sets as in Fig. 3. For the case of M = 0.01 and
o = 100, the VAC becomes negative in the intermediate-time
region. The negative correlation in the VAC means that the
tracer is effectively reflected back by collisions (the backre-
flection). A negative VAC is usually attributed to the strong
static and dynamic correlations between fluid particles. How-
ever, in our system, the ideal-gas particles do not have static
and dynamic correlations and thus we cannot attribute the
negative VAC to the correlations between fluid particles. A
possible intuitive interpretation is as follows. If the mass of the
tracer is small, the tracer has a high velocity compared with
the surrounding ideal-gas particles. Also, due to the large mass
contrast, the momentum of an ideal-gas particle is almost
unaffected when the tracer and the ideal-gas particle collide.
Thus, we may interpret the ideal-gas particles as almost fixed

obstacles. Under such a situation, the backreflection behavior
may occur. Meanwhile, we should notice that the effect of the
backreflection becomes especially strong when the density is
high. To clarify the short-time dynamics, therefore, we should
analyze the collisions in detail. In addition to the short-time
dynamics, the long-time dynamics is important for some anal-
yses. The VAC typically exhibits a so-called long-time tail
in the long-time region. In our simulation results, however, a
power-law-type long-time tail is not clearly observed, at least
in the timescale examined. (We may observe the long-time
tail on a very long timescale, but it is beyond the scope of this
work and thus we do not consider the long-time region in what
follows.)

Burshtein and Krongauz [17] considered a similar negative
velocity correlation in hard-sphere fluids. They analyzed the
dynamics of a hard sphere carefully and proposed a simple
model which describes the motion of a hard sphere. They

1.0F — =1, p=1
== M =0.01,p=1
— =1, p=100
0.8 o 1/ =0.01, p=100
0.6
(@]
<
S o4
0.2
0.0
l l l l
10° 10
time t

FIG. 4. The VAC of a tracer for several sets of mass and ideal-gas
density. The parameters are the same as in Fig. 3.
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FIG. 5. Waiting-time distribution function P(t) for different val-
ues of the mass M and ideal-gas density p. The waiting time 7 is
normalized by the average T as t /7. For comparison, the exponential
distribution P(t) = (1/%)exp(—t/7) is also plotted.

modeled a process as a sequence of collision events, which
we may interpret as a renewal process. They assumed that
the time interval between two successive collisions is sam-
pled from a waiting-time distribution P(tr) and there is no
correlation between successive waiting times. They also as-
sumed that the velocity of the hard sphere is stochastically
changed from V to V'’ and the new velocity V' is sampled
from the velocity distribution P(V’|V). Their model claims
that the negative velocity correlation can emerge if both of
the following conditions are satisfied: (a) The waiting-time
distribution P(t) is not an exponential distribution and (b)
the average velocity after a collision is negatively correlated
to the velocity before the collision, (V' - V) < 0. Although
their model seems plausible, some assumptions in their model
cannot be fully justified. Thus we investigate the statistics of
collisions in our simulations below.

Figure 5 shows the waiting-time distribution between two
successive collision events. In this work we define the waiting
time as the time interval between two successive collision
events. (We do not distinguish whether or not the tracer col-
lides with the same ideal-gas particle.) The waiting time T
is normalized by the average waiting time T = [ dt TP(7).
We observe that the distribution function for the normalized
waiting time is almost independent of M and p. Moreover,
the waiting-time distribution can be reasonably fit to the ex-
ponential distribution. Naively, the exponential waiting-time
distribution means that the collision events are statistically
independent. Thus this result implies the Poisson distribution
for the number of collisions during a finite-time period. How-
ever, this naive argument is physically not fully justified. This
is because the statistics of the waiting time generally depend
on the tracer velocity. The observed waiting-time distribution
should be interpreted as the average waiting-time distribution
over the tracer velocity. This average waiting-time distribution
seems to be well described by the exponential distribution.
(We show the calculations for the waiting-time distributions in
Appendix A.) Anyway, assumption (a) is not satisfied. Ac-
cording to the Burshtein-Krongauz model, if the waiting-time
distribution is exponential, then the VAC is always positive.

Clearly, this is not consistent with our simulation result in
Fig. 4. We expect that some assumptions by Burshtein and
Krongauz would not be valid (at least for our system). We
will discuss the statistical properties of collisions in detail in
the next section.

IV. DISCUSSION

A. Gaussianity

In this section we discuss the Gaussianity of the dynamics
of the tracer. Our simulation results (Figs. 1-3) show that the
tracer exhibits non-Gaussian behavior even if the surrounding
fluid is an ideal gas. The NGP strongly depends on the tracer
mass M, and if M is sufficiently large, the NGP becomes
small. Therefore, if M is sufficiently large, the dynamics of
the tracer can be reasonably described by a Gaussian pro-
cess. For such a case, the GLE with Gaussian noise can be
utilized.

As we mentioned, the GLE with Gaussian noise has been
widely employed to analyze experimental data. However, our
results imply that the application of the GLE may not be
fully justified in some cases. Here we discuss the validity
of the GLE for some experimental systems. Recent progress
of experimental techniques has enabled us to experimentally
measure the short-time ballistic motion of a tracer particle
[8,10]. Li et al. [8] investigated the dynamics of 3-pum beads
in dilute gases (2.75 and 99.8 kPa) on the microsecond scale.
The mass of the tracer is about 10~10 g, whereas the mass
of the gas molecule is about 10723 g. Clearly, the mass ratio
is very large (about 10'3) and thus we expect that the tracer
dynamics is reasonably described by the GLE. Note that the
memory effect is negligible in this system and thus the GLE
reduces to a simple Langevin equation. Huang et al. [10]
measured the dynamics of a tracer in a fluid. Although the
fluid density is much larger than in the experiments by Li
et al., the mass ratio is estimated to be the same order as that of
Li et al. Therefore, we conclude that for typical experimental
conditions for the short-time dynamics of a tracer particle, the
GLE (or the Langevin equation) with Gaussian noise can be
safely employed.

However, the argument above does not fully justify the use
of the Langevin equation to analyze the other experimental
data. The Langevin equation is utilized for various analy-
ses of experimental data, even for very small objects. Some
examples are light absorbance in infrared (IR) spectroscopy
and diffusion in nuclear magnetic resonance (NMR). In IR
spectroscopy, absorbance is often calculated based on the os-
cillator model for polar functional groups. A functional group
is not sufficiently small compared to the surrounding objects
and analyses based on the Langevin equation may not be
justified. Actually, Roy et al. [35] measured two-dimensional
correlation spectra and reported that the dynamics is not
Gaussian. In NMR, diffusion of a proton (or other atom) is
estimated from the NMR signal based on a simple diffusion
equation for the Brownian motion. (Even if the Langevin
equation is not formally justified, we empirically know that
the analysis based on the simple Langevin equation gives
reasonable results in most cases.) We consider that if the con-
ventional analyses do not give physically reasonable results
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we should analyze the data carefully based on the collision
dynamics. (Strictly speaking, we should employ quantum dy-
namics to analyze the IR or NMR data [36]. However, the
naive incorporation of Gaussian noise like a Langevin thermo-
stat in quantum systems is questionable [37]. In future work it
be useful to consider the modeling of thermostats.)

B. Correlation between collisions

In this section we consider collision events in detail. As we
showed, the waiting-time distribution P(t) in our system is
well described by the exponential distribution. [Assumption
(a) in the Burshtein-Krongauz model is not satisfied.] The
Burshtein-Krongauz model does not give a negative VAC for
the exponential waiting-time distribution. Here it should be
mentioned that the exponential waiting-time distribution is
also reported for hard-sphere fluids [38]. The reason why the
waiting time obeys the exponential distribution is not clear.
Because our system is similar to hard-sphere systems in some
aspects, we expect there is a common mechanism which gives
the exponential waiting-time distribution.

In the Burshtein-Krongauz model, the correlation between
the velocities before and after the collision is also an im-
portant quantity. To investigate the statistical properties of
the collision events in detail, we consider the correlation be-
tween velocities by introducing a quantity defined as y; =
(V' V)eon/ (V¥ eon (where V and V' are the velocities of the
tracer before and after a collision event and (- - - )0 repre-
sents the statistical average with respect to collisions). If we
assume that the distribution of the velocity after the collision
is Gaussian, the collision event statistics can be characterized
only by this y;. In the Burshtein-Krongauz model, y; should
be negative to give a negative VAC.

It would be informative to analyze y;. In our system, the
statistics of the fluid particles are simple and thus we can
theoretically calculate y;, which can be expressed in a simple
form as

M
T 3M 44

(see Appendix B for details of the model and calculations).
Here we should note that y; given by Eq. (6) is independent
of the ideal-gas density p. Therefore, we expect that y; > 0
holds for any M and p. We show the prediction by Eq. (6)
together with the simulation data in Fig. 6. We find that Eq. (6)
reasonably reproduces the simulation result without any fitting
parameters. From these results we conclude that the velocity
correlation factor y; cannot be negative in our model. This
means that assumption (b) in the Burshtein-Krongauz model
is not satisfied either. From these results we conclude that nei-
ther assumption in the Burshtein-Krongauz model is satisfied
in our system. However, the original idea of the Burshtein-
Krongauz model that the dynamics of the tracer is described
by the successive collision events seems reasonable. We
expect that with several modifications, a Burshtein-Krongauz-
type model may explain the dynamical behavior. Before we
consider the modification, we should investigate the detailed
statistical properties of the collision events.

We consider that the successive collisions can be correlated
in our system. Then the correlation factor y; is not suffi-
cient to characterize the properties of the collision events. We

4! (6)

1.0+
> 0.5
p
o 1
= 100
theory
0.001 0.1 10 1000
M

FIG. 6. Correlation factor y; of the velocity before and after a
collision. The mass M dependence of y; for two different values of
p is shown. The data for different p are almost the same and data
points look fully overlapped.

should investigate multiple collisions which can be correlated.
We define the correlation factor for the multiple collision
events as

(Vi+n . Vi)coll

Yn =
(V 12 >coll

(N
If the successive collision events are independent, we have
va = y{'. If the successive collision events are not statistically
independent, y, may behave in a different way. Figure 7
shows the correlation factor y, directly calculated from the
simulations. For M = 1 and p = 1, y, decays exponentially
as n increases, which seems to be consistent with the estimate
based on the statistically independent collisions. For M =
0.01 and p = 100, however, we find that y, does not exhibit
exponential decay. Clearly, y, has a negative peak at n = 3,
while y; and y, are almost zero. Therefore, the successive
collision events are not statistically independent if the mass

1.0
0.8
0.6

<

0.4
0.2

0.0

FIG. 7. Correlation factor of the velocity for multiple collisions
¥ Here n represents the number of collisions. The data for different
values of the mass M and the ideal-gas density p are shown.
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is small and the ideal-gas density is high. As a consequence,
we cannot simply apply the Burshtein-Krongauz model.
Based on this result, here we attempt to construct a mod-
ified version of the Burshtein-Krongauz model. From the
simulation results of the correlation factor data for the multi-
ple collisions y,,, it would be possible to treat several collision
events (for example, n = 3 or 4 events) as a coarse-grained
event. Then we can express the correlation factor for the
coarse-grained collision event as yegr = ;. Also, the waiting-
time distribution between two coarse-grained events becomes

Pur(t) = /dn e dTS(T =T = — T)P(T) - P(T)

n—1

= Do exp(—1/7). (8)
Equation (8) is the I" distribution and is clearly different from
the exponential distribution, for n > 2. If we assume that
coarse-grained collision events are statistically independent,
we can utilize the Burshtein-Krongauz model by interpreting
their collision events as coarse-grained collision events. With
such a coarse graining, the negative velocity correlation can be
reasonably explained by the (modified) Burshtein-Krongauz
model.

C. Origin of negative correlation

Although the Burshtein-Krongauz model seems to work
with some modifications, it does not explain why the corre-
lation factor y,, becomes negative for n = 3. To clarify the
emergence mechanism of the negative correlation, we analyze
the correlation factor in further detail. Because now we know
that the successive collisions are not independent, it would be
reasonable to consider whether or not the correlation comes
from the same ideal-gas particle. It would be informative to
decompose the correlation factor y, into the correlation by the
collisions with the same ideal-gas particle and the collisions
with different ideal-gas particles. We thus define the self- and
distinct parts of the correlation factor for multiple collisions:

Yo =y +y9, ©)
o VigVil(Kipr = Kign))
yo = Vi (V‘zl')l o)) (10)
VipaVil(Kips # Kin))
yar = Vi (V;; 7 Kitn)) (11)

where I(---) takes the value 1 if the argument is true and
0 if not and K; represents the index of the ideal-gas parti-
cle which collides with the tracer at the ith collision event.
Figure 8 shows the self- and distinct parts of the collision
factor for M = 0.01 and p = 100. From Fig. 8 we find that
¥ is negative for n > 3 whereas y@ is positive for all n.
This result means that the collisions by different particles do
not contribute to the negative correlation and the negative
correlation emerges from the collisions with the same particle.

The reason why the correlation occurs at n =3
can be now understood rather intuitively. We consider
the sequence of several collision events. At the first collision
(n = 1), the correlation is always positive (y; > 0), as we

0.05

(d)
’ Yn

0.00

(s)
n

Yn Y

-0.05

-0.10

FIG. 8. Self- and distinct parts of the correlation factor for mul-
tiple collisions ¥ and y,@, respectively. The mass and ideal-gas
densities are M = 0.01 and p = 100, respectively. The full correla-
tion factor is given as y, = y* + y 4.

demonstrated. By this first collision, the tracer and the ideal-
gas particle exchange momentum and move apart from each
other. Therefore, at the second collision (n = 2) the tracer
cannot collide with the same ideal-gas particle as in the first
collision. After the second collision, the momentum of the
tracer is changed again and the tracer can move towards the
ideal-gas particle which collided in the first collision. Thus,
for n > 3, we have the correlation with the same ideal-gas
particle.

Before we end this subsection, we briefly discuss the MSD.
As 1s well known, the MSD and the VAC can be related via
the Kubo formula [39]. The MSD is obtained by doubly inte-
grating the VAC. Conversely, we have the velocity correlation
as

d>(Ar* (1))
dr?

If the velocity correlation becomes negative, at a certain time
we should have (V(¢) - V(0)) = 0. This means that if we have
a negative velocity correlation, we may observe an inflection
point in the MSD. In addition, if the negative correlation is
strong, the MSD may exhibit an intermediate region between
the short-time ballistic region and the long-time diffusive
region. Indeed, we observed such a nontrivial intermediate
region in Fig. 3(a). Interestingly, the timescale where we
observe this intermediate region seems to be the same where
we observe the strong peak of the NGP in Fig. 3(b). Therefore,
we consider that the collision with the same ideal-gas particle
is the origin of various nontrivial short-time behaviors of the
tracer.

=(V()-V(0)). 12)

D. Comparison with other simulations

In this section we compare our results with other sim-
ulations. Mizuta et al. [20] investigated the dynamics of a
single fullerene in liquid argon by using a molecular dynamics
simulation. They investigated the dynamics of fullerenes on
various timescales. On the short timescale where the time is
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shorter than the Enskog time, they showed that the Enskog
theory [16] reasonably describes the VAC of a fullerene. The
Enskog theory is based on the kinetic theory of gases and
thus the results by Mizuta ef al. imply that the short-timescale
dynamics is governed by collisions. The Enskog time is the
timescale where approximately only one collision per fluid
particle occurs. On longer timescales, the behavior deviates
from the Enskog theory. Mizuta et al. reported the effect of
the fullerene size. For a small fullerene (or for a fluid particle)
they reported that the VAC becomes negative in the short-
timescale region. This result is qualitatively consistent with
ours. However, we should stress that fluid particles strongly
interact with each other in their system. Therefore, we cannot
quantitatively compare our result with their simulation data.
We expect that our analysis would be useful to study some
aspects of the short-timescale dynamics in realistic systems
like those investigated by Mizuta et al.

On a long timescale where the time is longer than the
kinematic time of the momentum diffusion over the particle
size, they reported that the GLE works reasonably well. In-
tuitively, on a long timescale, the fluid can be treated as a
continuum fluid rather than discrete particles. Then the GLE
can be safely employed. This intuitive expectation is consis-
tent with their result. Conversely, our system does not have
interactions between the fluid particles and thus it seems un-
reasonable to treat fluid particles as a continuum fluid. In our
system, the fluid particles move ballistically until they collide
with the tracer. Because we employed periodic boundary con-
dition, the mean free path A of the ideal-gas particles depends
on the system size as A &~ V/o2. The Knudsen number Kn can
be estimated as follows:

A 1%

Kn=2==2. (13)
o o’

Clearly, the Kn obtained is much larger than 1 for a suffi-
ciently large system (Kn >> 1). Therefore, we conclude that
the ideal gas cannot be regarded as a continuum fluid for the
tracer. Consequently, our system does not obey usual con-
tinuum hydrodynamic equations such as the Navier-Stokes
equation. Our system is designed to study the short-time
dynamics and should not be used to study the long-time
dynamics. This would explain why we do not observe the
long-time tail in the long-time region. To apply the continuum
hydrodynamic equations to our model, we should consider
very long timescale and very long length scale. The long-time
tail may be observed on such a very long timescale, although
it would be longer than the current simulation timescale.
Because the fluid cannot be expressed by usual continuum
hydrodynamic equations, it would not be straightforward to
interpret the non-Markovian memory effect in our system.
(Normally, the memory kernel can be related to molecular-
scale hydrodynamics [11,12,20].) It is not clear whether or not
the collision-based description can be successfully related to
the hydrodynamic description. It would be an interesting fu-
ture work to study how the collision-based and hydrodynamic
descriptions are connected.

We also compare our results with the simulation by Alder
et al. [21]. They investigated the effect of the tracer mass and
the tracer size on the dynamics in a hard-sphere fluid. They
analyzed the VAC of the tracer and showed that the VAC of

the tracer has a negative peak when the mass of the tracer is
small. This result is consistent with our result. According to
our analysis, such a negative VAC can be attributed to the
property of multiple (typically three) sequential collisions.
Although the VAC data by Alder ef al. were not analyzed
in terms of collisions, their data seems to be consistent with
our analysis: The VAC becomes negative at the time when
three collisions occur on average. This implies that our theory
holds, at least qualitatively, even with the existence of the
hard-sphere interaction between fluid particles. We expect that
interpretations and analyses based on collision events will be
useful to study the short-time dynamics of various systems.

V. CONCLUSION

We have investigated the short-time dynamics of a tracer
in an ideal gas. Our system can be characterized by only two
parameters, the mass of the tracer M and the fluid density
0, in dimensionless units. We performed hard-sphere-type
simulations and calculated various dynamical quantities such
as the MSD, NGP, and VAC for various values of M and p.
The dynamical behavior is largely affected by M and p. For
M 2 1, the NGP is very small and the GLE with Gaussian
noise can describe the dynamics well. For M < 1, however,
the dynamics cannot be described by a Gaussian stochastic
process. We should explicitly consider collision events to de-
scribe the dynamics for M < 1. For p < 1, the behavior is
relatively simple and seems to be consistent with the standard
kinetic theory of gases. Meanwhile, for M <1 and p > 1,
some nontrivial dynamical properties have been observed. For
example, the VAC exhibits a negative value.

To study the origin of such nontrivial behavior, we an-
alyzed the collision events in detail. We showed that the
waiting-time distribution between two successive collisions is
almost an exponential distribution and the correlation factor
y) is almost positive. The Burshtein-Krongauz model predicts
that the VAC is always positive for our system, but it is
not consistent with the simulation result. We introduced the
correlation factor between multiple collisions y, to further
investigate the statistical properties of collision events. We
showed that the velocities before and after multiple collisions
are rather strongly correlated and this correlation is the origin
of the negative VAC. In addition, we showed that the strong
correlation mainly comes from multiple collisions between
the tracer and the same ideal-gas particle.

Although our system is highly idealized and simplified,
we believe that our results are informative in the analysis of
realistic systems. The dynamical correlation between multiple
collision events would exist in realistic systems. Analyses
based on the collision picture, such as the analysis of the cor-
relation factor y,, and the decomposition of it to y*) and y@,
would be useful in the analysis of the short-time dynamics
in various systems. The analysis of systems with interactions
such as the hard-sphere fluid and the Lennard-Jones fluid
would be an interesting future work.

APPENDIX A: WAITING-TIME DISTRIBUTION

In this Appendix we roughly estimate the waiting-time
distribution for the tracer particle in an ideal gas. The collision
statistics depend on the velocity of the tracer relative to an
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ideal-gas particle. The distribution of the relative velocity is
generally not that simple (as we consider in Appendix B).
However, under some special conditions, the distribution re-
duces to rather simple forms. If the tracer mass is sufficiently
large (M > 1), the tracer velocity becomes very small com-
pared to that of the surrounding ideal-gas particles. The
relative velocity distribution approximately coincides with
the Maxwell-Boltzmann distribution of the ideal-gas parti-
cle. Then the collision statistics do not depend on the tracer
velocity V. Individual collision events are expected to be
statistically independent and then the number of collisions
during a finite-time period should obey the Poisson distribu-
tion. This Poisson distribution can be directly related to the
exponential waiting-time distribution. Therefore, we expect
that the waiting-time distribution becomes exponential if M
is sufficiently large.

On the other hand, if the tracer mass is sufficiently small
(M « 1), the relative velocity distribution is almost the same
as the tracer velocity V. Here we consider the case where
the tracer velocity V is set constant. In this case, the relative
velocity distribution is also fixed and we will observe several
collision events during a finite-time period. The individual
collision events are statistically independent, and thus we
expect the exponential waiting-time distribution. Therefore,
we have

P(z|V) =

exp[—7/T(V)], (AL)

(V)

where T(V) is the average waiting time for the tracer velocity
V. We expect that the interval between collisions decreases
as the tracer velocity increases. Naively, we consider that the
average waiting time can be related to the tracer velocity as
T(V) = A/|V|, where A is a mean free path and we assume
that A is independent of V. (The mean free path A depends on
the ideal-gas density p.) Then we can express the waiting-time
distribution as

P(r) = /dVP(r|V)Peq(V)

_ f mdv% exp(—TV/A)Peg(V),  (A2)

0

where V = [V, and P(V) and Peq(V) represent the equi-
librium distribution functions for V and V, respectively. The
waiting-time distribution can be then calculated to be

© Axv3 M\ Vo MV?
= #[—(3 + )T ex <%—2>erfc<i)
 AVM P\2 V2

2 . ]
+4=C+7)|,
T

with T = v /A+/M. Equation (A3) can be reasonably approx-
imated by the exponential distribution

Py~ — |8 —\/EL (A4)
vV 7 P\ TV avar )

(A3)

Thus, if M is sufficiently small, the waiting-time distribution
approximately reduces to the exponential distribution with the
average waiting time T ~ A/TM/8.

From the estimates shown above, for both sufficiently large
and sufficiently small M cases, we have exponential distribu-
tions. For the intermediate M cases, we intuitively expect that
the waiting-time distribution would be expressed similarly to
Eq. (A3). We replace V by the relative velocity v’ = |V — v|
(v is the velocity of an ideal-gas particle),

oo U/
P(t) = / dv'X exp(—1v'/A)Peq(V), (A5)
0

where P(v') is the equilibrium relative velocity distribu-
tion. The relative velocity obeys the Maxwell-Boltzmann
distribution and thus we approximately have the exponential
waiting-time distribution (as in the case of the sufficiently
small M). Therefore, the waiting-time distribution will be well
approximated by the exponential distribution for any M. This
is consistent with the simulation results shown in Fig. 5.

APPENDIX B: CALCULATION OF y,

In this Appendix we show a detailed calculation of the
correlation factor y;. We consider the equilibrium system,
in which the ideal-gas particles are distributed uniformly
in space, and the velocity is sampled from the Maxwell-
Boltzmann distribution.

In what follows, we calculate y; in dimensional units (not
in the dimensionless units in the main text) for the sake of
clarity. We denote the velocities before and after the collision
by V and V’. We denote the velocity of the ideal-gas particle
which collides with the tracer by v. We calculate y; = (V' -
Veon/ (Vz)con under the following assumptions.

(i) The ideal-gas particles are uniformly distributed in
space.

(i) Both the tracer and ideal-gas particles obey the
Maxwell-Boltzmann distribution

N A - (B1)
"=\ mkr ) P\ T2k )

3/2 2
Pv) = —2 exp [ — 2 (B2)
& 2wkgT 2kgT )’

We consider the velocity of the tracer after the collision
with an ideal-gas particle. The velocity after the collision
V' is simply obtained from the momentum and the energy
conservation

2m
M+ m

where 7 is the unit vector between the tracer and the ideal-gas
particle when the collision occurs (the direction vector). To
calculate y;, we need to calculate the ensemble average. We
can express the average of the internal product of velocities
(V'-V)con as

V=V +

F-(v-=V)P, (B3)

dVdvdi P,(V)Py(v)P;(#)|v - V|V -V
<V, : V)co]l =

’

/ dVdv di P,(V)P,(v)Py(F)|v — V|
(B4)

032104-10



SHORT-TIME DYNAMICS OF A TRACER IN AN IDEAL GAS PHYSICAL REVIEW E 102, 032104 (2020)

where P,;(7) represents the equilibrium distribution of the di- between the tracer and the ideal-gas particle. (The average
rection vector. The factor |v — V| comes from the fact that with respect to collision (- - - ). is different from the simple
the collision frequency is proportional to the relative velocity equilibrium average by this factor.) From Egs. (B3) and (B4),

J

m /dVdv di P,(V)P,(v)P;(F)|lv —=VI|F- (v =V)i-V

n=1+ (BS)

M+m /dVdvd?P,(V)Pg(v)Pd(i')w V2

We can rewrite Eq. (B5) in a simpler form by introducing the reduced mass and the relative velocity. We define v = M + m,
w=Mm/v,u =MV + mv)/v,and v = v — V. Then Eq. (B5) reduces to

2m f du dv'di Py@®)|V'|(F - v)F - (u — 20"y exp (— “oH")

n=1+ (B6)

M +m / du dv'di Py(#)|v'|(u — 2v') exp (— —”";:;’;”/2)
We calculate the integral in the denominator of the second term on the right-hand side of Eq. (B6). The integrand does not

depend on 7 and thus we can easily perform the integral over 7. Then we have

2 2 2 2 2 12
/dudv’di'Pd(i')|v’|<u - %v) exp G%) - /du dv’|v/|(u - %v) exp (_%)

2
- n3/2(2kBT)9/2(U5/§H2 + ;/—Tm) (B7)
Next we calculate the integral in the numerator of the second term on the right-hand side of Eq. (B6). Without loss of generality,
we can set the direction of the relative velocity parallel to the z axis: v' = [0, 0, v']. For convenience, we rewrite the direction
vector in spherical coordinates as # = [sin 6 cos ¢, sin 6 sin ¢, cos 8]. To proceed with the calculation, we need the distribution
function for the direction vector. Now a collision occurs between the tracer particle fixed at the origin and the ideal-gas particles
which moves parallel to the z axis, with velocity v’. Then the distribution of the normal vector should be proportional to the
direction vector which is projected onto the xy plane:

P,;(#,) o |sinf cosB]|. (BS)
In addition, not all the ideal-gas particles can collide with the tracer. For v' > 0, the probability distribution becomes

—sinfcosf/nm form/2 <O

Fa®,¢) = {0 otherwise. (B9)
Similarly, for v" < 0, we have
__Jsinfcosf/m  for0 <O < 7/2
Fa(0.9) = {O otherwise. (B10)
By utilizing Eqs. (B9) and (B10), finally we have
2 2
m vu” + pv
fdu dv'd# Py RV |G- v - (u _ —u’) exp (=L TRV ) 032 (p,T ) . (B11)
v 2kgT V323
By substituting Eqs. (B7) and (B11) into Eq. (B6), we have the following simple expression for y;:
_ M (B12)
"Mt am
This gives Eq. (6). From this derivation, it would be rather trivial that y; does not have a negative value.
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