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Aging arcsine law in Brownian motion and its generalization
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Classical arcsine law states that the fraction of occupation time on the positive or the negative side in Brownian
motion does not converge to a constant but converges in distribution to the arcsine distribution. Here we
consider how a preparation of the system affects the arcsine law, i.e., aging of the arcsine law. We derive an
aging distributional theorem for occupation time statistics in Brownian motion, where the ratio of time when
measurements start to the measurement time plays an important role in determining the shape of the distribution.
Furthermore, we show that this result can be generalized as an aging distributional limit theorem in renewal
processes.
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I. INTRODUCTION

The classical arcsine law states that the fraction of the time
T+(t ) that a random walker spends in the positive side follows
the arcsine distribution [1]. The time T+(t ) can be the occupa-
tion time for some observables in physical systems. This law
can be generalized to the distribution of the occupation time in
renewal processes with fat-tailed distributions [2,3] and in the
fractional Brownian motion [4]. These laws can be applied to
a plethora of systems such as the mean magnetization in spin
systems [3], occupation times in fluorescence of quantum dots
[5], currents in stochastic thermodynamics [6], α-percentile
options in stock prices [7,8], and leads in sports games [9].
Moreover, the propagator in Lévy walk processes can be
obtained by the generalized arcsine distribution through a
simple transformation [10,11]. Therefore, the arcsine laws
play an important role in many physical processes.

Stationarity is one of the most fundamental properties
in stochastic processes. In equilibrium, physical quantities
fluctuate around a constant value, and the value is given by
the equilibrium ensemble. However, statistical properties of
physical quantities depend explicitly on time in nonequilib-
rium processes such as glassy systems and biological sys-
tems, where the characteristic timescale diverges [3,5,12–21].
In nonstationary stochastic processes, aging phenomena are
essential, which can be observed by changing the start of
the observation time or the total measurement time under
the same setup [12,22]. In renewal processes, the distribution
of the time when the first renewal occurs, i.e., the forward
recurrence time, explicitly depends on the time when the
observation starts [3,21,23]. Furthermore, the mean-square
displacement (MSD) and the diffusion coefficient obtained
by single trajectories depend on the start of the observation
as well as the total measurement time in some diffusion
processes [15–20,24–26]. A typical model that shows aging is
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a continuous-time random walk (CTRW) with infinite mean
waiting time. In the CTRW, the MSD increases nonlinearly
[27], i.e., anomalous diffusion,

〈x(t )2〉 ∼ Dαtα (t → ∞), (1)

where x(t ) is a displacement, Dα is a constant, and 0 <

α < 1 characterizes the power-law exponent of the waiting
time distribution. Moreover, it shows aging; i.e., the MSD
explicitly depends on the start of the observation:

〈[x(ta + t ) − x(ta)]2〉 ∼ Dα[(ta + t )α − tα
a ] (2)

for ta � 1, where ta is called the aging time.
Aging phenomena are also observed in weakly chaotic

dynamical systems such as the Pomeau-Manniville map
[28–30]. In weakly chaotic maps, the invariant measure
cannot be normalized, i.e., infinite measure [31]. Moreover,
the generalized Lyapunov exponent, which characterizes a
dynamical instability of the system, depends explicitly on
the aging time [30]. In particular, the dynamical instability
becomes weak when the aging time is increased. When the in-
variant measure of a dynamical system cannot be normalized,
the density of a position does not converge to the invariant
measure. This situation is similar to nonequilibrium processes
exhibiting aging. In dynamical systems with infinite measures,
time-averaged observables do not converge to a constant but
converge in distribution in the long-time limit [32,33]. In par-
ticular, the distribution of time averages of an L1(μ) function,
i.e., a function integrable with respect to invariant measure μ,
converge to the Mittag-Leffler distribution [32,33]. Distribu-
tional behaviors of time averages are characteristics of infinite
ergodic theory, which includes the Mittag-Leffler distribution,
the generalized arcsine distribution, and another distribution
[34–40].

The aging distributional limit theorem in renewal pro-
cesses, i.e., aging of the Mittag-Leffler distribution, has been
studied in Refs. [21,23] and has been applied to a weakly
chaotic dynamical system [30]. However, aging of the arc-
sine law has not been considered so far to the best of our
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FIG. 1. Trajectory of Brownian motion with B0 = 0. In the aging
arcsine law, we measure the occupation time from ta to ta + tm.

knowledge. In this paper, we consider aging of the arcsine law.
We rigorously prove an aging distributional theorem in Brow-
nian motion. Moreover, we generalize the aging distributional
theorem to that in renewal processes in the long-time limit.
Finally, we discuss applications of the aging distributional
limit theorem to physical systems.

II. PRELIMINARIES

Consider 1D Brownian motion starting from the ori-
gin. This fundamental model of a stochastic process is
described by

ẋ(t ) = ξ (t ),

where ξ (t ) is a white Gaussian noise:

〈ξ (t )ξ (t ′)〉 = δ(t − t ′).

As is well known, the MSD grows as 〈x(t )2〉 = t , implying
that the diffusion coefficient D is D = 1/2. In what follows,
we denote Brownian motion at time t by Bt .

Here we recall the first-passage time (FPT) distribution
of a Brownian motion starting from position x, the classical
arcsine law, and give some notations. Let Px(s) be the proba-
bility density function (PDF) of FPT, which is the time when
a Brownian motion starting from position x reaches zero for
the first time. It is known that the PDF is given by

Px(s) = x

s
p(s, x) (3)

for all x > 0 and s > 0 [41], where p(s, x) is the propagator
of a Brownian motion,

p(s, x) = 1√
2πs

e− x2

2s , (4)

for s > 0 and x ∈ R.
Lemma 1: For all t > 0, the distribution of FPT Dt , which

is the time when a Brownian motion reaches zero for the
first time after time t passed, i.e., Dt ≡ inf{s > 0; Bs+t = 0}
follows Pr(Dt > s) = ∫ ∞

s ψt (u) du, where

ψt (s) = 1

π

√
t√

s(s + t )
. (5)

Proof: Integrating Px(s)p(t, x) with respect to x, we have

ψt (s) =
∫ ∞

0

x

s
p(s, x)p(t, x) dx = 1

π

√
st

s(s + t )
. (6)

�
We consider an occupation time T+(t ) that a Brownian

motion Bt spends on the positive side until time t ,

T+(t ) =
∫ t

0
1[Bs>0] ds, (7)

for t > 0, where 1[Bs>0] = 1 if Bs > 0 and 0 otherwise. The
classical arcsine law states that a ratio between an occupation
time of a Brownian motion starting from zero and measure-
ment time tm follows the arcsine distribution:

Pr

[
T+(tm)

tm
� s

]
=

∫ s

0
φ(s′) ds′ = 2

π
arcsin

√
s, (8)

where

φ(s) ≡ 1

π
√

s(1 − s)
(9)

for 0 < s < 1. Here we do not represent the initial position of
a Brownian motion explicitly, but it is B0 = 0. By the scaling
property of a Brownian motion, this statement is equivalent to
the following:

Pr[T+(1) � s] = 2

π
arcsin

√
s. (10)

III. AGING ARCSINE LAW

We introduce the aging time ta, which is a start of the
measurement (see Fig. 1). Before ta we do not track the
trajectory although the process was started. In other words,
a position of a Brownian motion is not the origin when the
measurement is started.

Theorem 1: For all tm > 0 and ta > 0, the ratio of occu-
pation time T+(tm; ta) ≡ T+(tm + ta) − T+(ta) to measurement
time tm follows

Pr

[
T+(tm; ta)

tm
� s

∣∣∣∣B0 = 0

]
=

∫ s

0
φ(r; s′) ds′ + q(r) + 1[s�1]q(r), (11)

where r ≡ ta/tm is the aging ratio,

φ(r; s) = 1

2π2

∫ 1/r

0

{
1√

1 − s(1 + sv)
+ 1√

s[1 + (1 − s)v]

}
dv√

v(1 − rv)
(12)
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FIG. 2. Distribution of the ratio of occupation time T+(tm; ta)
to tm in Brownian motion for different aging ratio r, where mea-
surement time tm is fixed as tm = 103. Symbols are the results
of numerical simulations, and the solid lines represent our theory
[Eq. (11)].

and

q(r) = 1

2π

∫ ∞

1/r

dv

(1 + v)
√

v
= 1

π
arccot(

√
r−1). (13)

The proof of Theorem 1 is given in Appendix A. We note
that φ(r; s) → φ(s) for r → 0. In other words, the classical
arcsine law is recovered when ta � tm. This is consistent
with the arcsine law without aging, ta = 0. Figure 2 shows
the effect of aging in the occupation time statistics. In the
limit of r → 0, the classical arcsine law is actually recovered.
Furthermore,

φ(r; s) ∼ c(r)φ(s) (14)

for s → 0 and s → 1, where

c(r) = 1

2π

∫ 1/r

0

dv

(1 + v)
√

v(1 − rv)
. (15)

Therefore, constant c(r) explicitly depends on aging ratio
r. In particular, c(r) → 1/2 and c(r) → 0 for r → 0 and
r → ∞, respectively. We note that the classical arcsine law
cannot be recovered when the limit s → 0 or s → 1 is taken
in advance, i.e., c(r) does not go to one for r → 0 after s → 0
or s → 1. In other words, the limits of s → 0 and r → 0 are
not commutative.

IV. GENERALIZATION OF THE AGING ARCSINE LAW

Here we generalize our result, the aging arcsine law, to
occupation time statistics in renewal processes [3,42]. We
consider a two-state process (Rt )t�0, where the state is de-
scribed by a +1 or −1 state (see Fig. 3). Durations for +1
and −1 states are independent and identically distributed (IID)
random variables. The PDFs of durations for +1 and −1 states
are denoted by ρ+(τ ) and ρ−(τ ), respectively. We assume that
the PDFs follow power-law distributions,

ρ±(τ ) ∼ A±τ−1−α (τ → ∞), (16)

Rt

FIG. 3. Trajectory of Rt .

and α < 1. In general, the first duration does not follow ρ±(τ ).
However, the following results do not depend on the first
duration distribution in general. Therefore, in what follows,
we do not specify the initial condition. For 0 < α < 1, the
mean duration diverges, and the forward recurrence time
D±

t , which is a time at which state changes from ± to ∓,
respectively, for the first time after time t shows aging. In
particular, the PDF of D±

t depends explicitly on time t [43].
Let us define ψ±

t (τ ) as

ψ±
t (τ ) = p±

sin πα

π

tα

τα (τ + t )
, (17)

where p± is the probability of finding state is ± at time t and
given by p± = A±/(A+ + A−). In the limit of tm → ∞ with
ta/tm = r being fixed, we have

Pr

[
D±

ta

tm
� s, Rta ≷ 0

]
→

∫ s

0
ψ±

r (τ ) dτ. (18)

This is consistent with the Brownian motion result, Eq. (5),
where α = p± = 1/2 in Brownian motion.

In the renewal process, the classical arcsine law can be
generalized. Occupation time of the +1 state in the renewal
processes follows the generalized arcsine law [2,35]:

Pr

[
T+(t )

t
� s

]
→ 1

πα
arccot

{
[(1 − s)/s]α

β sin πα
+ cot πα

}

=
∫ s

0
φα,β (s′) ds′ (t → ∞), (19)

where T+(t ) =
∫ t

0
1[Rs>0] ds, β = A−/A+ and

φα,β (s)=β sin πα

π

sα−1(1 − s)α−1

β2s2α + 2βsα (1 − s)α cos πα + (1 − s)2α
.

(20)
Theorem 2: In the limit of tm → ∞ with ta/tm = r being

fixed, the ratio of occupation time T+(tm; ta) measured from ta
to tm + ta to measurement time tm follows

Pr

[
T+(tm; ta)

tm
� s

]
→ �α,β (r; s)

≡
∫ s

0
φα,β (r; s′) ds′ + q−

α (r) + 1[s�1]q
+
α (r), (21)
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where T+(tm; ta) =
∫ ta+tm

ta

1[Rs>0] ds,

φα,β (r; s) =
∫ s

0
ψ+

r (s′)φα,β

(
s − s′

1 − s′

)
ds′

1 − s′

+
∫ 1−s

0
ψ−

r (s′)φα,β

(
s

1 − s′

)
ds′

1 − s′ (22)

and

q±
α (r) =

∫ ∞

1
ψ±

r (τ ) dτ. (23)

The proof of Theorem 2 is given in Appendix B.

V. APPLICATION OF THE AGING GENERALIZED
ARCSINE LAW TO PHYSICAL SYSTEMS

Here we apply the aging distributional limit theorem in
renewal processes to dynamical systems and Lévy walk pro-
cesses. The 1D map that we consider here is defined on [0,1],
T (x):[0, 1] → [0, 1]:

T (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x + (1 − c)
(x

c

)1+1/α

x ∈ [0, c]

x − c

(
1 − x

1 − c

)1+1/α

x ∈ (c, 1]

, (24)

where c (0 < c < 1) is a parameter characterizing a skewness
of the map and 0 < α < 1 [37]. There are two indifferent fixed
points at x = 0 and 1, T (0) = 0 and T (1) = 0 with T ′(0) =
T ′(1) = 1. With the aid of the chaotic behaviors outside
the two indifferent fixed points, durations on [0, c] or (c, 1]
are considered to be independent and identically distributed
random variables. Moreover, the duration distributions follow
a power law [37,38]. Therefore, the aging distributional limit
theorem can be applied to the occupation time statistics in
the intermittent map. In the case of no aging, the ordinary
generalized arcsine law is shown [35], where parameter β is
given by

β = α + c

α + 1 − c

(
1 − c

c

)2α

. (25)

Figure 4 shows the distribution of the ratio of occupation time
T+(tm; ta) to tm on [0, c]. The shape of the distribution strongly
depends on aging ratio r. Moreover, the generalized arcsine
distribution can be recovered for small r. This is because
the generalized arcsine distribution is obtained by substituting
r = 0 and ψ+

r (s) = p+δ(s) and ψ−
r (s) = p−δ(s) in Eq. (22).

Occupation time statistics can be applied to Lévy walk
processes. In a Lévy walk [10], a particle moves with constant
velocity v for a random duration and changes its sign, i.e.,
−v, at the next walk, where we assume that durations are
IID random variables and the duration PDFs for ±v states
follow ρ±(τ ) with Eq. (16) and α < 1. Therefore, the two-
state process Rt is considered to be velocity over v in the
Lévy walk. The position Xt in the Lévy walk at time t can be
represented by Xt = ∫ t

0 vRt ′ dt ′ = v[2T+(t ) − t], where T+(t )

s

s

P
r

T
+
(t

m
;t

a
)

t m
≤

s
P

r
T

+
(t

m
;t

a
)

t m
≤

s

FIG. 4. Distribution of the ratio of occupation time T+(tm; ta ) to
measurement time tm in the intermittent map [Eq. (24)] for different
aging ratio r, where measurement time tm is fixed as tm = 105

[(a) α = 0.5 and (b) α = 0.7 (c = 0.6)]. Symbols with lines are the
results of numerical simulations, and the solid line represent the gen-
eralized arcsine distribution without aging, �α,β (s) = ∫ s

0 φα,β (s′) ds′.
We used a uniform distribution as the initial distribution.

is the time of the positive velocity up to time t . Since the
velocity in the Lévy walk, vRt , is described by a renewal
process, our aging distribution limit theorem can be applied
to obtain the propagator of the position Xt in the Lévy walk.
In particular, the distribution of the displacement Xtm,ta from
time ta to tm, Xtm,ta ≡ Xtm+ta − Xta , is given by the distribution
of v[2T+(tm; ta) − tm]:

Pr(Xtm,ta/tm � x) → �α,β

(
r;

x + v

2v

)
. (26)

VI. CONCLUSION

We have shown an aging distributional theorem of occu-
pation time on the positive side in Brownian motion. FPT
distribution Px(s) of Brownian motion starting from x is a
key distribution to derive the theorem. The distribution of the
occupation time is described by aging ratio r. The classical
arcsine law is recovered when aging time ta is much smaller
than measurement time tm, r → 0. We have also shown that
the aging arcsine law is generalized to the occupation time
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distribution in renewal processes under the limits of ta → ∞
and tm → ∞. The ordinary generalized arcsine law is also
recovered in the limit of r → 0. Finally, this generalized aging
arcsine law can be successfully applied to the occupation
time statistics in intermittent maps with infinite invariant
measures and the distribution of the displacement in the Lévy
walk.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant No.
18K03468 (T.A.). T.S. was supported by JSPS research fel-
lowship and JSPS KAKENHI Grant No. JP19J11798. K.Y.
was supported by JSPS KAKENHI Grants No. JP19H01791
and No. JP19K21834.

APPENDIX A: PROOF OF THEOREM 1

Proof: By the scaling property of Brownian motion, statistical properties of Bst are the same as those of
√

tBs. It follows that
statistical properties of occupation time T+(tm; ta)/tm are the same as those of T+(r + 1) − T+(r) because

T+(tm; ta)

tm
= 1

tm

∫ ta+tm

ta

1[Bs>0] ds =
∫ r+1

r
1[Bstm >0] ds. (A1)

First, we consider case Bta > 0. Using the scaling property, we have

Pr

[
T+(tm; ta)

tm
� s, Bta > 0

]
= Pr[T+(r + 1) − T+(r) � s, Br > 0]. (A2)

Since the probability of Bta > 0 is 1/2,

Pr

[
T+(tm; ta)

tm
� s, Bta > 0

]
= 1

2

∫ s

0
ψr (s′) Pr[T+(1 − s′) � s − s′] ds′ (A3)

for s < 1 and

Pr

[
T+(tm; ta)

tm
= 1, Bta > 0

]
=

∫ ∞

1

ψr (s′)
2

ds′. (A4)

It follows that

Pr

[
T+(tm; ta)

tm
� s, Bta > 0

]
= 1

2

∫ s

0
ψr (s′) Pr

[
T+(1) � s − s′

1 − s′

]
ds′ + 1[s�1]q(r)

= 1

2π2

∫ s

0
ds′

√
r√

s′(s′ + r)

∫ s−s′
1−s′

0

du√
u(1 − u)

+ 1[s�1]q(r) (A5)

By a change of variables (y = s′/r), we obtain

Pr

[
T+(tm; ta)

tm
� s, Bta > 0

]
= 1

2π2

∫ s
r

0

dy√
y(1 + y)

∫ s−ry
1−ry

0

du√
u(1 − u)

+ 1[s�1]q(r). (A6)

Moreover, by a change of variables (u = v−ry
1−ry ), we obtain

Pr

[
T+(tm; ta)

tm
� s, Bta > 0

]
= 1

2π2

∫ s
r

0

dy√
y(1 + y)

∫ s

ry

dv√
(1 − v)(v − ry)

+ 1[s�1]q(r)

=
∫ s

0

1

2π2

dv√
1 − v

∫ v
r

0

dy√
y(v − ry)(1 + y)

+ 1[s�1]q(r)

=
∫ s

0

1

2π2

dv√
1 − v

∫ 1
r

0

dy′
√

y′(1 − ry′)(1 + vy′)
+ 1[s�1]q(r), (A7)

where the order of integration was interchanged in the second line. By a similar calculation, we have

Pr

[
T+(tm; ta)

tm
� s, Bta < 0

]
=

∫ 1

s

1

2π2

dv√
v

∫ 1
r

0

du√
u(1 − ru)[1 + (1 − v)u]

(A8)

for s > 0. For Bta < 0 and s = 0, the probability is

Pr

[
T+(tm; ta)

tm
= 0, Bta < 0

]
= 1

2

∫ ∞

1
ψr (s′) ds′. (A9)

It follows that aging arcsine distribution is given by Eq. (11), and the PDF φ(r; s) is given by Eq. (12). �
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APPENDIX B: PROOF OF THEOREM 2

Proof: By a scaling argument, aging occupation time statistics can be obtained by a similar way in Brownian motion. By a
change of variables, we have

T+(tm; ta)

tm
= T̃+(r + 1) − T̃+(r), (B1)

where T̃+(r) =
∫ r

0
1[Rstm >0] ds. We note that limits ta � 1 and tm � 1 are necessary to derive the distribution of occupation time

in renewal processes, which is different from the arcsine law in Brownian motion. For Rta > 0 and tm � 1 and ta = rtm � 1, we
have

Pr

[
T+(tm; ta)

tm
� s, Rta > 0

]
= Pr[T̃+(r + 1) − T̃+(r) � s, Rta > 0]. (B2)

By a similar calculation as in the aging arcsine law, we obtain

Pr

[
T+(tm; ta)

tm
� s, Rta > 0

]
→

∫ s

0
dv

∫ v

0

ψ+
r (s′)

1 − s′ φα,β

(
v − s′

1 − s′

)
ds′ + 1[s�1]q

+
α (r). (B3)

Similarly,

Pr

[
T+(tm; ta)

tm
� s, Rta < 0

]
→

∫ 1

s
dv

∫ 1−v

0
ψ−

r (s′)φα,β

(
v

1 − s′

)
1

1 − s′ ds′ (B4)

for s > 0 and

Pr

[
T+(tm; ta)

tm
= 0, Rtm < 0

]
→

∫ ∞

1
ψ−

r (s′) ds′. (B5)

It follows that aging arcsine distribution is given by Eq. (21), and the PDF φα,β (r; s) is given by Eq. (22). �
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