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Interfacial shear strength (IFSS) is a key property in the design of composites and nanocomposites. Many
simulation studies quantify the interfacial characteristics of sandwichlike specimens in terms of the IFSS and
pullout force; a common feature of these studies is that they employ finite model systems and are therefore
subject to strong finite size effects. We propose an alternative approach which is applicable to both aperiodic and
periodic computational specimens. The interfaces are subjected to multiple shear deformation simulations over a
wide range of temperatures (T) and shear stresses (σzx). From these simulations we collect the failure times (tf );
by analyzing them in the framework of an extended Boltzmann-Arrhenius-Zhurkov kinetic equation we derive
the IFSS, the limiting stress for barrierless transitions, the activation energy, the activation volume for failure,
the sliding velocities, and a local elastic shear modulus for the interface. We test our methodology on epoxy
diglycidyl ether bisphenol F–diethyl toluene diamine interfaces in contact with (i) pristine graphene, (ii) graphene
with single-atom vacancies, and (iii) graphene with hydroxyl-OH groups. Differences in the mechanism of
interfacial failure among these three systems are discussed.
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Recent years have witnessed an emergent need for the de-
velopment of advanced nanocomposite materials with tailored
properties. Graphene has sparked the interest of researchers as
a filler, since it exhibits record high elastic properties [1,2],
thermal and electrical conductivity, and is impermeable to
gases. A downside of pristine graphene is its limited ability
to transfer stress to the matrix through the interface region;
thus, the resulting nanocomposites cannot carry large loads
due to premature interfacial failure [3]. To tackle this issue,
several researchers have focused on functionalized or defected
graphenic fillers [4–8]. The chemistry and morphology of the
resulting interfaces lead to stronger matrix-filler interactions
and thus enhance adhesive properties due to (i) strong cova-
lent bonds between the filler and matrix [4,6–8], (ii) stronger
electrostatic interactions due to charged groups, and (iii) me-
chanical interlocking that arises from the topography of both
surfaces.

A popular approach for assessing the interfacial proper-
ties of nanocomposites is through molecular dynamics (MD)
simulations of pullout experiments. These experiments are
performed in sandwichlike geometries (i.e., planar geometries
with alternating matrix-filler phases) that are aperiodic along
the pullout direction. The filler and the epoxy matrix are
displaced along opposite directions, leading to their eventual
separation at long times. As these geometries are aperiodic,
the intermolecular filler-matrix component of the potential
energy, Ematrix−filler, tends to zero in the limit of large pull-
out displacements. Hence, by monitoring and differentiating

*S.V.K. and A.P.S. contributed equally to this work.
†Corresponding author: doros@central.ntua.gr

Ematrix−filler during the course of the pullout simulation one can
obtain the force versus displacement curves and an estimate
of the interfacial shear strength (IFSS) [3]. This approach
has been employed in numerous studies in the past, such as
in epoxy matrices with carbon nanotube fillers [4,6], and in
epoxy-graphene nanocomposites [3,9–11].

Here we propose an alternative, kinetics-driven simulation
approach for estimating the interfacial failure characteristics,
which is applicable in sandwichlike geometries that are ei-
ther aperiodic or fully periodic along the pullout direction.
A detailed time-dependent study of local interfacial failure
is conducted, introducing kinetic concepts. The filler and the
matrix experience shear stresses σzx, with opposite magni-
tudes along the pullout direction, hence leading to noticeable
displacement for large enough σzx. The simulations are carried
out until simple displacement-dependent failure criteria are
satisfied. For each combination of T and σzx we perform nu-
merous simulations, and from each one we collect the failure
times, if applicable. Afterwards, the set of failure times for
each T and σzx is subjected to hazard analysis, from which we
extract the characteristic failure time tZ. Subsequently, T, σzx,
and tZ are input to a Boltzmann-Arrhenius-Zhurkov (BAZ)
kinetic expression, leading to the macroscopic parameters for
interfacial failure [12–14], i.e., the effective energy barrier
(U), its interaction part (U0), and the effective activation vol-
ume (γ ). All these observables provide crucial information
regarding stress transfer for any composite interface and can
be used to parametrize predictive hierarchical modeling strate-
gies for interfacial failure.

We apply our approach to epoxy matrix nanocompos-
ites with various kinds of graphenic fillers. The epoxy is
diglycidyl ether bisphenol F (DGEBF) (or EPON-862) and
the cross-linking agent is diethyl toluene diamine (DETDA).
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FIG. 1. (a) The four-atom orthogonal unit cell of graphene. (b) Atomistic representations [35] of (left) EPG, (middle) EDG, (right) EGO.
(c) Representation of the EPON-862 epoxy resin and the DETDA cross linker. (d) Illustration of (left) the relaxation and (right) the pullout
phases of the experiment. The green (yellow) × marker depicts the equilibrium-averaged center of mass of the epoxy (filler).

Three kinds of fillers are examined: (i) pristine graphene
(EPG), (ii) graphene with vacancies (EDG), and (iii) graphene
oxide (EGO); see Fig. 1(b). Even though we have not con-
sidered chemical bonding between the filler and the matrix
phases, our simulation approach could be extended to cases
where chemical bonds are present across the interface [15].

The configurations [16] were subjected to pullout ex-
periments as shown in Fig. 1(d) by applying on both
the graphite and polymer phases equal and opposite to-
tal external forces in the x direction. From the external
force Fx applied we estimate the interfacial shear stress
as σzx = Fx/〈Axy〉 with 〈Axy〉 = 2lxly being the total con-
tact area between the filler and the epoxy. An inter-
face is considered fractured when the relative filler-matrix
displacement, �rx = |(rF

x,cm − 〈rF
x,cm〉) − (rE

x,cm − 〈rE
x,cm〉)| =

|�rx
F − �rx

E|, exceeds a critical value �rcrit
x , which was set

to the lattice constant of graphene. More details regarding the
model systems and the simulation parameters can be found in
Ref. [17] and in Supplemental Material Sec. S1 [18].

A local shear modulus was extracted from the slope of the
stress versus displacement (σzx/〈�rx〉) curve in the low stress
regime. The local shear modulus for the interface was derived
as Gif = σzx/ε

if
zx, with εif

zx = 〈�rx〉/�zE−G defining a local
interfacial shear strain; �zE−G = 0.37 nm was taken as the
closest distance between the graphite peak and an epoxy atom
peak in the density distribution along the z direction. The

Gif versus T plots are shown in Fig. S2 of the Supplemental
Material [18]. The slope, dGif/dT , and the extrapolation
Gif

T =0 of Gif in the limit T = 0 K are shown in Table I. As
expected, the lowest Gif

T =0 is observed in EPG; in EDG Gif
T =0

is slightly higher; while in EGO it is higher by about an
order of magnitude at 369 MPa, indicating best adhesion.
For an order of magnitude comparison, the shear modulus of
EPON-862 resin is ∼1 GPa according to experiments [36] and
simulations [17], while the Winkler modulus of poly(methyl
methacrylate) with embedded bilayer graphenes multiplied
by �zE−G = 0.37 nm is ∼370 MPa [37].

Figure 2 presents the mean times to local fracture tf
for EPG, EDG, and EGO as functions of σzx for T =
20–300 K. σzx corresponds to IFSS which has been shown
to be both temperature and strain-rate dependent for T < Tg,
albeit there have been conflicting trends in the literature de-
pending on the conditions of the experiments [38,39]. For
σzx < σlim, tf decreases exponentially with σzx; the drop be-
comes less steep with increasing temperature, suggesting an
∼ exp[γ σzx/(kBT )] dependence [12]. For σzx ∼ σlim, the plot
in Fig. 2 features a “knee,” after which tf becomes indepen-
dent of temperature and all curves collapse to a power law,
tf ∼ σzx

−0.5, in the limit of large σzx, indicating accelerating
motion. The aforementioned suggest the manifestation of two
distinct failure mechanisms depending on the magnitude of
the imposed stress, as explained below.

TABLE I. Parameters of EPG, EDG, and EGO.

System U0 (kcal/mol) γ (nm3) σlim (MPa) τlim (ps) dGif/dT (MPa/K) Gif
T =0 (MPa)

EPG 3.9 5.4 5.0 5.5 −0.231 64.0
EDG 9.1 9.2 6.9 4.8 −0.175 71.1
EGO 11.1 0.7 114.9 1.2 −0.560 369.0
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FIG. 2. Mean failure times for (a) EPG, (b) EDG, and (c) EGO.
The dashed lines are fits to the extended BAZ equation [Eq. (3)]. The
vertical (horizontal) dotted line delimits σlim(τlim ). The insets show
the extrapolated fracture times for σzx = 0 vs temperature.

A popular model for describing fracture behavior is em-
bodied in the Boltzmann-Arrhenius-Zhurkov (BAZ) equation
[12]. Zhurkov extended the Arrhenius [40,41] expression for
the temperature dependence of the rate of thermally activated
infrequent events, which in turn invokes Boltzmann statistics.
The BAZ equation considers that the free energy barrier that
has to be overcome for an infrequent transition to occur is
modified by the imposition of an external force; the work as-
sociated with that force adds a bias to the energy hypersurface
of the system. The fracture rate is thus determined by both
temperature and mechanical stress:

tZ = τ0 exp
(U0 − γ σzx

kBT

)
. (1)

U0 is the magnitude of the energy barrier in the absence of
stress, γ is an activation volume which indicates the volume
of the region responsible for the cohesion of the interface,
and τ0 is usually set to the natural oscillation frequency of
atoms which is in the order of 10–13 s. σlim corresponds to the

FIG. 3. The cumulative hazard function H(t) based on the failure
times of EDG at T = 300 K in (a) linear and (b) semilog plots. The
dashed lines in (a) represent linear fits and the dotted line in (b)
corresponds to τlim = 4.8 ps. The inset shows tf , ttrav, and tZ; the
vertical dotted line illustrates σlim = 6.9 MPa, and the dashed line
corresponds to the second branch of Eq. (3) (σzx � σlim).

stress value for which the exponent becomes zero; thus, σlim =
U0/γ . Consequently, for σzx = σlim, the failure time becomes
tZ = τ0 [12]. However, our simulations suggest a somewhat
different picture: at the limiting stress σlim we observe, tZ
collapse to a limiting value (τlim, denoted by the horizontal
dotted line in Fig. 2), which is orders of magnitude longer
than 10–13 s. In our simulations, τlim does not correspond to
an oscillation frequency; instead, it is a basin traversal time
tZ = τlim for σzx = σlim that exhibits a dependency on the
system’s constitution.

To discern the contributing mechanisms we performed
hazard analysis on the failure time distributions ρ(t). The
cumulative hazard function H(t) is computed with respect to
the list of sorted failure times tT,σzx = (t1, t2, .., tN )T,σzx us-
ing the estimate H (ti ) = ∑i

j=1 1/(N − j + 1) [42]. The slope
of H(t) equals the hazard function, h(t ) = dH (t )/dt which
corresponds to the probability density for failure at time t ;
therefore, high (low) slope indicates high (low) failure rates.
Figure 3 depicts the cumulative hazard function H(t) for EDG
at T = 300 K. From the semilog plot in Fig. 3(b) one can
discern two distinct regimes:

(i) There is an initial time period (ttrav) before failure
and this is reflected in the value H (t ) = 0 at short times.
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During this time, the filler experiences shearing forces and
is displaced relative to the polymer, the configuration of the
whole system moving towards the edge of its local energy
basin.

(ii) After time ttrav the filler may slip, its displacement
exceeding �rcrit

x , and this is reflected in an increase of H(t)
due to the accumulation of failure events. At short times, H (t )
exhibits nonlinearities, while for longer times H (t ) increases
linearly with time, suggesting a Poisson-like rate process,
shifted in time by ttrav. Poisson processes have the property
that the slope of H (t ) is constant and equals the failure rate
which is the inverse of the mean residence time in the basin
tZ. More information about fitting H(t) for estimating tZ can
be found in Supplemental Material Sec. S4 [18].

Based on the above kinetic analysis the mean failure times
can be approximated as

tf ∼ tZ + ttrav �
{tZ , σzx � σlim

ttrav, σzx � σlim
, (2)

while any discrepancies can be traced to the nonlinearities of
H(t) for moderate stresses. It is instructive to examine the lim-
iting cases for low and high shear stresses: (i) for low stresses
(σzx � σlim), ttrav becomes negligibly small in comparison to
the failure time (ttrav � tf ). Therefore, tf is practically equal
to tZ, and they can be described very well by the macro-
scopic BAZ equation [Eq. (1)]; e.g., compare triangles, tf ,
with squares, tZ, in the inset to Fig. 3(a). (ii) For high stresses
(σzx � σlim), ttrav follows the power law with respect to stress
presented in the inset to Fig. 3(a) and becomes the dominant
term in Eq. (2), since the transitions become barrierless and
tZ → 0; e.g., compare triangles, tf , with circles, ttrav, in the
inset to Fig. 3(a).

We formulated an extension to the BAZ model which is as
follows:

tf =
{
τ0e(U0−γ σzx )/(kBT ) + τlim, σzx � σlim√

2ρA�rcrit
x /σzx, σzx � σlim

, (3)

where U0, γ , and τ0 are Zhurkov’s macroscopic material con-
stants, and ρA = m̃/Axy is the areal reduced mass density with
m̃ = mfillermepoxy/(mfiller + mepoxy) being the reduced mass of
the two body system; note that lim

mepoxy→∞ m̃ = mfiller. Essen-

tially, the first branch of Eq. (3) extends Zhurkov’s equation
to incorporate a characteristic traversal time period. It models
failure as a delayed Poisson process in which the material is
unable to fail at very small times, and only after time τlim

does it have a chance to fail. τlim is commensurate to the
time required for the material to “wake up from inertia.” τ0

is associated with the oscillation frequency of the interface
and thus relates to the failure rate dictating the pure Poisson
process. A similar picture could be manifested in experiments
but these traversal times are way too small to be observed. By
setting τlim = 0 we obtain the original BAZ equation [Eq. (1)].
The second branch of Eq. (3) for σzx � σlim considers that the
filler is decoupled from the matrix and is accelerating under
constant applied force.

Equation (3) requires three parameters (τ0,U0, γ ), which
are determined as discussed in Secs. S5 and S6 of the Sup-
plemental Material [18]. From the master curves shown in
Fig. 4 one can derive γ as the slope, and U0 as the intercept

FIG. 4. Effective energy barrier vs shear stress for: (left) EPG,
(middle) EDG, and (right) EGO.

of a linear fit. Note that EGO presents a complicated behavior
at low temperatures, thus the slope for this case was taken
from the higher temperatures, since these are more relevant
experimentally. The U (σzx ) dependence in EGO exhibits a
parallel shift in the region around 250 K. We attribute this
effect to a change in the segmental mobility of the polymer,
which affects the mechanism of reinforcement of the interface
by –OH groups; for more details please see Supplemental
Material Sec. S7 [18].

The fitted parameters are displayed in Table I. EPG features
the lowest energy barrier and this conforms with the short
failure times [3]. The highest U0 is that of EGO and this is
attributed to the strong interactions of –OH groups with epoxy
plus the rougher geometry produced by sp3 carbons, which
promotes mechanical interlocking with the polymer at the
atomistic level. The estimated effective barriers are about an
order of magnitude lower than experimental ones on relevant
systems [3,11,12,43]. This is not unexpected, given that our
simulations correspond to local interfacial failure at the atom-
istic level, while experiments reflect macroscopic fracture,
which results from a cascade of such atomistic failure events
over a not necessarily perfectly flat interface. Moreover, the
γ for EPG and EDG is larger than that for EGO by about
an order of magnitude. This is because in EPG and EDG the
process of overcoming the energy barrier under externally im-
posed shear involves interactions across an extended—more
or less molecularly smooth—surface (the holes in EPG do
not perturb this smoothness), while in EGO the process of
overcoming the barriers is localized to the vicinity of the –OH
functional groups. The predicted γ ’s conform with experi-
mental estimates for relevant systems, e.g., for DGEBA-based
epoxy with p-aramid fibers, γ ∼ 3.1 nm3 [38].

Figure 2 illustrates evaluations of Eq. (3), which pro-
vide a good description of simulation findings. The insets in
Fig. 2 depict tf in the absence of shearing forces (σzx = 0);
the graphenic fillers are practically static for temperatures
lower than 100 K, while at room temperature the probabil-
ity for spontaneous transitions becomes considerable. For all
stresses, tEPG

f < tEDG
f � tEGO

f . Literature findings from previ-
ous MD studies are compared against the failure times (tf )
from our work in Table S1, Sec. S8, of the Supplemental
Material [18]. Our IFSS values for EPG are similar to (larger
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FIG. 5. The postfailure displacement of (a) EPG, (b) EDG, and (c) EGO at 300 K as a function of time. The circles in (d)–(f) depict the
sliding velocities based on the slopes of the time vs displacement plots in (a)–(c), respectively; the triangles depict analytic evaluations based
in Eq. (4).

than) IFSS from periodic [44] (aperiodic [11]) systems along
the pullout direction.

With tf known, one can attempt a prediction of the postfail-
ure sliding velocities for σzx < σlim, based on the following
expression:

v
theory
slide (t ) = �rcrit

x /tf , σzx < σlim. (4)

For σzx < σlim, tf corresponds to the time needed for the
filler to become displaced by �rcrit

x . Unless the potential
energy hypersurface has been perturbed significantly during
the sliding of the filler, the sliding velocity is expected to be
constant. In order to assess the validity of these predictions we
performed additional simulations for all systems at 300 K with

the fillers being displaced indefinitely after the initial failure.
In Fig. 5, the simulated sliding velocity (vsim

slide) of both EPG
and EDP plateaus to a value that is ∼2 orders of magnitude
higher than v

theory
slide from Eq. (4). Agreement is good for EGO,

suggesting that the postfailure dynamics can be described
as a sequence of “stick-slip” events (see the visualization in
Sec. S9 of the Supplemental Material [18]).
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