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The aim of this paper is to investigate the pore-scale mass transfer and desorption behaviors in deformable
porous media using a coupling immersed boundary method (IBM)–lattice Boltzmann (LB) scheme. In this
numerical model, a three-dimensional multiple-relaxation-time LB model is used to simulate fluid flow in
porous media consisting of movable rigid adsorbent particles. To consider the effect of dynamic deformation of
a porous structure, an improved immersed boundary method scheme is introduced to describe the fluid-structure
interaction at the interface between the carrier gas and moving absorbent particles. Moreover, a LB model for
the convection diffusion equation is adopted to consider the mass transfer of adsorbate into the macropores
and micropores of the porous adsorbent. This coupled IBM-LB model is used to illustrate the mass transfer and
desorption processes in shrinkage deformation of the porous structure caused by the movement of rigid adsorbent
particles along different directions. At the initial time, these adsorbent particles have a saturation adsorption
amount, and the adsorbate in the macropores has the uniform concentration distribution. The numerical results
show that the time history curve of the adsorbate concentration in the macropores can be divided into an
upturn period and a downturn period during the dynamic desorption process. In the concentration upturn
period governed by Langmuir adsorption kinetics, the shrinkage deformation of the porous structure along
different directions has no remarkable effect on the mass transfer and desorption behaviors. However, during the
concentration downturn period governed by the mass transfer rate of the adsorbate, the shrinkage deformation
of the porous structure obviously decreases the efficiency of the desorption process. In addition, the roles of the
deformation direction and morphology of the porous media in the desorption process are illustrated in this work.
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I. INTRODUCTION

The process of mass transfer coupling with adsorption or
desorption in deformable porous media is a widespread phe-
nomenon in the natural environment and engineering fields,
e.g., in the drying of porous media with shrinkage behavior,
preparation of organized porous materials, contaminant trans-
port processes in deformable soil, and swelling and shrinkage
of coalbed methane reservoirs during gas adsorption and des-
orption [1–5]. The fluid flow, transfer, and ad- and desorption
processes can induce the deformation of porous media [6,7].
In turn, the changing pore structure has a great influence on
the characteristics of the momentum, heat, and mass transfer
and ad and desorption processes due to variations in perme-
ability, tortuosity, surface stress, and specific surface area.
Therefore, suitable modeling and simulations are required to
understand this complex influence mechanism [8].
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The existing theoretical and numerical methods for study-
ing transfer behaviors in deformable porous media are pri-
marily based on the macroscopic or representative element
volume scale model, such as homogenization and mixture
theory [9–14]. Under the framework of the mixture theory
model, Albro et al. [15] investigated solute transport, uptake,
and desorption in soft biological porous tissues subjected to
dynamic mechanical loading. The results showed that dy-
namic loading of deformable porous media can enhance the
transport of solutes, as attributed to momentum exchange
between the solute and solid matrix. Moreover, Yang [16]
presented a mixed element method for describing gas flow
and mass transfer coupling adsorption in deformable coalbed
methane reservoirs, and the effects of deformation on per-
meability were considered in this model. Recently, Zhang
[17] established a macroscopic theory model for deformable
porous media interacting with the adsorption of fluid species.
This comprehensive model derived from mixture theory can
predict the coupled influences between the stretch-dependent
adsorption and finite-strain deformation of porous materials,
e.g., swelling or shrinkage of coal during CO2 pressurization.
One advantage of these macroscopic models is the feasibility
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of comparison with experimental data, and the numerical
results can be directly applied to optimize the transfer process
of deformable porous media. However, as a typical multiscale
process [18], it still lacks a suitable computational tool with
which to investigate the kinetics of gas adsorption and des-
orption covering the micro-, meso-, and macroscales [19].

With respect to the microscale model for deformable
porous media, the current literature mainly focuses on the
sorption behaviors of adsorbate molecules on the surface
of flexible adsorbent materials using molecular simulation,
resulting in the structural transformation of adsorbent mate-
rials by changing the potential energy of interaction between
the adsorbate and adsorbent [20–22]. Although molecular
simulation has become an insightful method for clarifying the
molecular-level mechanisms of adsorption-induced deforma-
tion, it is difficult to model the momentum, heat, and mass
transfer processes coupled with ad- and desorption in the
changing pore structures due to the computational resource
limitations [19].

Compared to micro- and macroscale simulation, the lattice
Boltzmann (LB) model, as an accurate and efficient mesoscale
approach [23–27], has a potential advantage in elaborating
the momentum, heat, and mass transfer in porous media,
especially at the pore scale [28–30]. To date, the LB model
has been applied to investigate the flow and heat and mass
transfers in deformable porous media. With respect to pore-
scale studies of flow in deformable porous media [31–33],
Boutt et al. [34] proposed a LB discrete element method for
modeling the fluid-solid mechanics in saturated deformable
porous media consisting of movable rigid particles. There-
after, Khan and Aidun [35–37] applied a parallel hybrid lattice
Boltzmann–finite element method to study the deformation
behavior of saturated porous media consisting of compact
elastic particles or cylinders, and a link-bounce-back scheme
was used to treat the fluid-solid coupling in the porous struc-
ture. These pore-scale simulation studies mainly focused on
the fluid flow behaviors in deformable porous media using the
LB model of momentum transfer. However, there have been
few attempts to examine the mass transfer coupling adsorption
and desorption processes in deformable porous media at the
pore scale.

To address these issues, this work investigates the pore-
scale mass transfer and desorption behaviors in deformable
porous media using the LB method. Although selected LB
models have been presented to study the adsorption process
in nondeformable porous media [38–43], a suitable numerical
scheme is still needed to describe the fluid-structure inter-
action at the interface between the carrier gas and the mov-
ing absorbent particles. Different from the link-bounce-back
scheme in the existing literature [35–37], an improved im-
mersed boundary method (IBM) is introduced and combined
with a three-dimensional multiple-relaxation-time (MRT)–LB
model to treat the fluid-solid coupling during the desorption
process. In addition, a LB model for the convection diffusion
equation is applied to consider the mass transfer of adsorbate
into the macropores and micropores of the porous adsorbent.
This numerical model is validated using selected benchmark
cases. Finally, LB simulation is performed to study the mass
transfer and desorption processes in the shrinkage deforma-
tion of the porous structure caused by the movement of

rigid particles. The effects of the dynamically changing pore
structure on the mass transfer and desorption efficiency are
numerically illustrated in this work. This paper extends the
application of the LB model for ad- and desorption processes,
and offers a potential method for numerical study of the
adsorption and desorption processes in deformable porous
media at the pore scale.

II. MATHEMATICAL MODELING

A. Governing equations

Generally, a typical adsorption or desorption process con-
tains two sections [38]. First, the fluid flow of the carrier
gas and the convection diffusion of the adsorbate occur in
the macropores outside of the adsorbent particles. Second,
intraparticle diffusion and adsorption and desorption of the
adsorbate occur in the micropores inside the adsorbent parti-
cles. In the desorption process, when the internal adsorbate
molecules migrate to the external surface of the particle,
the adsorbate is desorbed from the adsorbent particle and
transferred into the macropores consisting of solid particles.
The desorption rate at the surface is governed by adsorption
kinetics theory.

In the macropores of the porous media consisting of adsor-
bent particles, the macroscopic governing equations for the
fluid flow and mass transfer (without a source or sink term)
of the adsorbate are expressed by the continuity equation, the
nonsteady Navier-Stokes (NS), and the convection-diffusion
equations [19], as follows:

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)(u) = − 1

ρ0
∇(p) + υ∇2u + F, (2)

∂Cs

∂t
+ ∇(uCs) = Ds∇2Cs, (3)

where u and p indicate the fluid velocity and pressure, re-
spectively; ρ0 is the fluid density; υ is the kinetic viscosity;
and F is the external body force density. In Eq. (3), Cs is the
concentration of the adsorbate, and Ds is the related diffusion
coefficient of the adsorbate in the macropores.

In addition, the intraparticle mass transfer coupled with
the adsorption and desorption behaviors are considered as
intracrystalline diffusion using the homogeneous solid dif-
fusion model (HDSM) [44]. HDSM theory assumes that the
adsorbent particle with microscopic pores has a homogeneous
structure. The migration of the adsorbate molecule into the ad-
sorbent particle is achieved by “creeping” from one adsorption
site to another [38]. At the mesoscale, this migration behavior
in the homogeneous adsorbent particle can be described using
Fick’s law, and the migration balance equation can be written
as follows:

∂N

∂t
= Dsp∇2N, (4)

where N is the adsorbed phase amount per unit volume of
adsorbent particle and Dsp is the equivalent diffusion coeffi-
cient in the adsorbent particles. The adsorption and desorp-
tion reaction at the particle surface can be described using
the Langmuir adsorption kinetics model [39]. The Langmuir
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adsorption kinetics approach explains adsorption by assuming
the adsorption and desorption behaviors as two elementary
processes. The adsorbent is considered as an ideal solid
surface composed of a series of distinct sites capable of bind-
ing the adsorbate. For the adsorption process, the adsorption
rate rad on the adsorbent surface is directly proportional to
the adsorbate concentration over the surface Cs,w and the
residual combined sites, where the residual combined sites
can be described using the difference between the saturation
adsorption amount Nm and the adsorbed phase amount at the
surface Nw. As a result, the adsorption rate can be determined
by Eq. (5a). The desorption rate rde is directly proportional to
the adsorbed phase amount at the surface, which can be de-
scribed by Eq. (5b). Under the nonequilibrium state, the mass
flux of adsorbate at the adsorbent surface is determined by
Eq. (5c).

rad = kaCs,w(Nm − Nw ), (5a)

rde = kd Nw, (5b)

Ds
∂Cs,w

∂�n = ∂Nw

∂t
d�n = (rad − rde)d�n, (5c)

where ka and kd denote the adsorption and desorption rate
constants, respectively.

B. IBM-LB model for fluid flow

In this work, a three-dimensional D3Q19 MRT-LB model
is used to simulate the fluid flow in the macropores as de-
scribed in Eqs. (1) and (2). The evolution equation can be
written as [45]

fi(x + eiδt, t + δt ) − fi(x, t )

= −(M−1SM)i j
[

f j (x, t ) − f eq
j (x, t )

] + δtFi (6)

where fi (x, t) denotes the volume-averaged density distribu-
tion function at the position x and the time t , δt is the time step,
and Fi denotes the discretized body force acting on each lattice
direction which will be discussed in the following paragraphs.
In addition, M is an orthogonal transformation matrix of the
D3Q19 scheme, and S is a diagonal relaxation matrix; they are
given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0

0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)

S = diag(s0,s1, . . . ,s18), (8)

s0 = s3 = s5 = s7 = 0, s1 = s2 = s9−15 = 1

τ
, s4 = s6 = s8 = s16−18 = 8

2τ − 1

8τ − 1
, (9)

where si(0 < si < 2) is the term of the relaxation rate, then τ in above Eq. (9) denotes a relaxation parameter which can be used
to determine the kinetic viscosity υ:

τ = υ

c2
s δt

+ 0.5, (10)
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where cs is the lattice sound speed. Moreover, the equilibrium
distribution equation can be written as

f (eq)
i = ωiρ

[
1 + eiu

(cs)2 + (eiu)2

2(cs)4 − uu

2(cs)2

]
, (11)

where ωi denotes the weight coefficient of the D3Q19 model
and ei denotes the discretized velocity, which are given by [46]

ωi =

⎧⎪⎨
⎪⎩

1
3 , i = 0
1

18 , 1 � i � 6
1

36 , 7 � i � 18

, (12)

ei =

⎧⎪⎨
⎪⎩

(0, 0, 0) i = 0,

(±1, 0, 0), (0,±1, 0), (0,0,±1) 1 � i � 6,

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 7 � i � 18,

.

(13)

The macroscopic density and viscosity of the carrier gas
are given by

ρ =
∑

i

fi, ρu =
∑

i

fiei. (14)

The fluid-structure interaction boundary scheme plays a
key role in the accurate treatment of the moving interface be-
tween the adsorbent particle and the flow field in macropores.
Fortunately, the immersed boundary method (IBM) has shown
to be a powerful tool for simulating this problem [47]. In
recent years, researchers have made many efforts to enhance
the availability of the IBM-LB coupling scheme [48–51]. For
example, Cheng et al. [52,53] proposed a two- (2D) and
three-dimensional (3D) IBM-LB coupling method which can
be applicable for flow simulation with rapid boundary mo-
tion. Then, they improved this IBM-LB scheme to overcome
insufficient interpolation accuracy using an iterative force
correction procedure [54]. The improvement of the IBM-LB
method was demonstrated to satisfy with good accuracy at
wall boundaries. As a consequence, this improved IBM-LB
model is employed to implement the interaction force at the
wall boundary of adsorbent particles.

In the IB scheme, the fluid flow is solved at a fixed Eulerian
mesh utilizing Navier-Stokes equations as shown in Eqs. (1)
and (2). Meanwhile, to describe the curvilinear boundary sur-
rounding the surface of adsorbent particles, Lagrangian nodes
�b are set as objects immersed in the fluid. The interaction
between the external body force density of fluid at Eulerian
nodes and IB force density F IB at Lagrangian nodes is written
as [55]

F(x, t ) =
∫

�

FIB(s, t )δ[x − X(s, t )]ds, (15)

where X and s denote the position and arc length of the
Lagrange nodes, respectively. Moreover, the relationship be-
tween boundary velocity at Langrangian nodes U IB and Eule-
rian velocity of fluid is expressed as

UIB(X, t ) =
∫

	 f

u(x, t )δ[x − X(s, t )]dx. (16)

In the above equations, the δ(r) is the Dirac delta function,
which may be written as [53]

δ(x, y, z) = 1

h3
φ
( x

h

)
φ
( y

h

)
φ
( z

h

)
, (17)

δ(r) =

⎧⎪⎨
⎪⎩

(3 − 2|r| +
√

1 + 4|r| − 4r2)/8, 0 � |r| � 1

(5 − 2|r| +
√

−7 + 12|r| − 4r2)/8, 1 � |r| � 2

0, |r| � 2

.

(18)

where h is the meshing space and is equal to the lattice size.
Based on the discussion from previous literature [49,55], �s
(i.e., the arc length between two adjacent Lagrangian points)
is set to be 0.5h in this work. In order to introduce external
force density of fluid into the LB model, the discretized body
force on the right side of the LB evolution equation, Eq. (6),
can be obtained using

Fi = 1
2 [hi(x + eiδt, t + δt ) + hi(x, t )], (19)

hi = ωi{A + 3B · [(ei − u) + 3(ei · u)ei]}, (20)

where A means the source term in the continuity equation and
B means the external forcing term in the momentum equation.
Based on the above-mentioned work of Cheng et al. [52], A =
0 and B = f are selected in this paper.

Furthermore, to achieve the conventional IBM-LB cou-
pling scheme accurately, an iteration procedure is adopted
to correct the external forcing term in the computational
process of fluid-structure interaction [55]. In order to satisfy
the nonslip boundary condition, the relationship between the
desired boundary force Fd

IB and the intermediate boundary
force at the present iterative step F∗

IB should be written as

Fd
IB(X, t ) = F∗

IB(X, t ) + 2
Ud

IB(X, t ) − U∗
IB(X, t )

δt
, (21)

where Ud
IB denotes the desired boundary velocity at the Lan-

grangian nodes, which is a known variable in this simulation,
and U∗

IB denotes the intermediate velocity at the present
iterative step. In this iteration procedure, the intermediate
boundary force at the present time step is corrected contin-
ually utilizing the intermediate boundary force and velocity
at the previous time step based on Eq. (21). Then the fluid
external force and fluid velocity affected by the IB boundary
are recalculated by the updated intermediate boundary force,
and the new intermediate velocity can be obtained from the
local fluid velocity utilizing an interpolation algorithm. When
the difference between the desired boundary velocity and the
intermediate velocity at the present time step is less than the
convergence condition or the maximum iterative number has
been reached, the iteration procedure is deemed to finish.
The iterative force correction method has been elaborated
upon clearly in the literature [54], and the flow chart of this
procedure is presented in Fig. 1.

C. LB model for mass transfer

In this paper, a D3Q7 MRT-LB model is used to con-
sider the mass transfer of adsorbate into the macropores and
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FIG. 1. Procedure of the coupled IB-LB scheme.

micropores of a porous adsorbent. The evolution equation for
describing interparticle mass transport in the macropores can
be written as follows [56]:

gi(x + eiδt, t + δt ) − gi(x, t )

= −(�−1��)i j
[
g j (x, t ) − geq

j (x, t )
]
, (22)

where gi(x, t) means the concentration distribution function
of the adsorbate, and the equilibrium distribution function
geq

i (x, t ) is given by

geq
i (x, t ) = Cs

[
Ji + ei · u

2

]
, Ji =

{
J0 i = 0
(1 − J0)/6 i = 1 − 6 .

(23)

In addition, Г and � in the above evolution equation are the
orthogonal transformation matrix and the diagonal relaxation
matrix of D3Q7 scheme, which are given by

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

6 −1 −1 −1 −1 −1 −1

0 2 2 −1 −1 −1 −1

0 0 0 1 1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

� = diag(λ0, λ1, . . . , λ6), (25)

where λi are the relaxation rates, and λ1 = λ2 = λ3 = 1/τg.
The related diffusion coefficient can be obtained using Ds =
(1 − J0)(τg − 0.5)/3, and the macroscopic concentration of
the adsorbate is written as follows:

Cs =
∑

i

gi. (26)

Moreover, the adsorption kinetics at the surface of the
particle can be considered as the Neumann boundary con-
dition for the convection-diffusion process in macropores as
shown in Eq. (5). A LB boundary scheme proposed by Zhang
et al. [57] is employed to determine the unknown equilibrium
distribution function at the wall boundary, and the distribution
function entering from the outside of the surface, g�i(x, t + δt ),
can be given by

g�i(x, t + δt ) = −g+
i (x, t ) + 2ωi

(
Cf + 0.5

∂Cs,w

∂n
δx�n · ei

)
,

(27)

where g+
i (x, t ) is the known distribution function entering the

surface of the particle, and which is in opposite direction to
the unknown distribution function g�i(x, t + δt ) (i.e., e�i = −ei)
[57]. Cf is the concentration of adsorbate at the fluid node
neighboring the surface of the particle.

On the other hand, the intraparticle mass migration can
also be described as an equivalent diffusion process, and the
macroscopic velocity in adsorbent particles is ignored. Hence,
the above D3Q7 LB model without fluid velocity can be
applied to solve the intraparticle migration balance equation
as shown in Eq. (4). The transient adsorbed phase amount at
the intraparticle wall boundary Nw is calculated based on the
Langmuir adsorption kinetics model in Eq. (5).

D. Verification cases

In this section, the flow past a fixed circular cylinder at the
middle of straight channel, a classic benchmark case of IBM
simulation to solve fluid dynamics problems, is performed to
validate the applicability of this adopted IBM-LB coupling
scheme. The key dimensionless parameters used in this case
are defined as follows [49]:

Cd = Fd

0.5ρ0U 2
0 D

, Cl = Fl

0.5ρ0U 2
0 D

, Re = U0D

ν
,

LN = Lw

D
, (28)
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where Cd and Cl denote the drag coefficient and the lift
coefficient, respectively; Re denotes the Reynolds number
as a usual dimensionless number in fluid mechanics; U0 is
the fluid velocity at the inlet of the straight channel; D is
the diameter of a circular cylinder; Lw is the length of the
recirculation region; and Fd and Fl denote the drag force and
lift force of fluid flow exerted on the fixed circular cylinder,
respectively. These discretized acting forces can be derived
by the following [58]:

Fd = −
∑

l

FIB,x(Xl )�Sl , Fl = −
∑

l

FIB,y(Xl )�Sl . (29)

In this simulation, the rectangular computational domain
is taken as 40D × 20D for a uniform Cartesian mesh of
size 800 × 400, and the circular cylinder with diameter D is
located at the coordinates of (10D, 10D ), where the diameter
of the circular cylinder is set as 40 lattice units. The upper

and bottom wall of the straight channel are applied as a
no-slip wall boundary, the inlet fluid velocity is set to 0.1,
and a free outflow boundary is applied at the outlet of this
channel. These boundary schemes are implemented using the
nonequilibrium extrapolation method [59]. It should be noted
that the momentum transfer along the z axis in the above
D3Q19 scheme is ignored to simulate this 2D benchmark
case and that the numerical results are presented in the x-y
symmetric plane perpendicular to the z axis.

In the iteration procedure of this IBM-LB coupling
scheme, the maximum number of iterations N should be
appropriately selected to correct the IB force at the fluid-solid
boundary. To estimate the effectiveness of this improved IB-
LB scheme, the flow passing the circular cylinder is simulated
using this iteration procedure with different iteration numbers
N [54]. Under the computational process, the intermediate
average error Eave at the IB points of the cylinder wall can
be defined as follows:

Eave =
√∑Nb

l=1

[(
U c

n,x − U d
n,x

)2 + (
U c

n,y − U d
n,y

)2 + (
U c

n,z − U d
n,z

)2]
Nb

, (30)

where Un denotes the normalized velocity along orthogonal
directions at the IB points, c and d denote the numerical
values and the desired reference values, and Nb denotes the
total number of IB points. When the Reynolds number is fixed
at Re = 40, the relationship between the average error and
the iteration number is plotted in Fig. 2. It can be observed
that the intermediate average error decreases rapidly as a
function of time and that the average error decreases with
increasing iteration number. The result implies that a larger
iteration number improves the accuracy of force correction
at the wall boundary. At N = 20, the average error is less
than 1.0 × 10−6, which can be considered an acceptable error.
Herein, all cases in this paper follow these selections.

It is well known that the flow regime past the fixed cir-
cular cylinder is controlled by the Reynolds number. The
streamlines near the circular cylinder at different Re numbers

FIG. 2. Relationship between the average error and the iteration
numbers.

(Re = 20, 40, 100) are shown in Fig. 3. It is found that the
fluid flow remains under steady state when Re = 20 and 40,
and the length of the recirculation region behind the circular
cylinder increases at a higher Reynolds number. However,
when the Reynolds number exceeds a critical value (Re > 49)
[60], the fluid flow enters an unstable state, and the periodical
von Kármán vortex is formed, as shown in Fig. 3(c). Table I
compares the corresponding drag coefficient, lift coefficient,
and length of the recirculation region obtained in our work
with the previous literature. The results show that our results
are in agreement with those previous results.

To validate the mass transfer coupling with the ad- and
desorption process by taking advantage of the LB model,
the mass transfer problem in a rectangular passage with an
adsorption boundary at the bottom wall is simulated and com-
pared with the analytical solution. The analogous verification
case was adopted to investigate the LB model to solve the
mass transfer coupling with adsorption behavior in previous
studies [19,38], the schematic diagram of which is illustrated
in Fig. 4(a). The side length of this rectangular passage
is defined as L. The upper wall is set as a nonpermeable

TABLE I. Comparison of the results of flow around a circular
cylinder.

20 40 100

Re Cd LN Cd LN Cd Cl

Ren et al. [48] 2.126 0.913 1.568 2.331 – –
Yu et al. [19] 2.151 0.943 1.616 2.33 1.415 –
Tao et al. [49] 2.169 0.971 1.623 2.38 1.406 0.351
Linnick and Fasel [50] 2.16 0.93 1.54 2.28 1.38 0.337
Xu and Wang [51] 2.23 0.92 1.66 2.21 1.423 0.34
Present 2.172 0.933 1.556 2.203 1.451 0.342

023309-6



NUMERICAL STUDY OF MASS TRANSFER AND … PHYSICAL REVIEW E 102, 023309 (2020)

FIG. 3. The streamlines around the cylinder: (a) Re = 20; (b)
Re = 40; (c) Re = 100.

FIG. 4. Validation case of the mass transfer problem coupled
with adsorption and desorption: (a) schematic diagram of the mass
transfer problem with adsorption process; (b) comparison of the LB
simulation result with the Lévêsque solution.

boundary, which means that the mass flux is zero. The bottom
wall is set as the adsorption boundary, and the adsorption rate
at this wall can be written as follows:

Ds
∂C|y=0

∂y
= ka C|y=0, (31)

where the adsorption rate constant ka is imposed as 1.0 in
this case and the diffusivity Ds is imposed as 0.15 in this
case. Moreover, the adsorbate concentration at the inlet of the
passage is imposed as C0, and the concentration gradient is set
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FIG. 5. Porous media structures for mass transport and desorp-
tion simulations.

as 0 at the outlet boundary using the nonequilibrium extrap-
olation method [59]. The flow velocity distribution along the
y axis can be expressed as shown [38]:

u(y) = −4umaxy(y − L)/L2, (32)

where umax denotes the maximum velocity at the axes (y =
L/2). Using LB simulation for the convection-diffusion pro-
cess with 120 × 120 × 30 grids, the normalized mass flux (Jm)
at the bottom boundary along the x axis can be obtained to
compare with the Lévêsque solution [61], which is derived by

Jm = L

C0

∂C

∂n
= 0.854

(
umaxL2

xDs

)
, (33)

where the origin of x in the above equation is located at the
inlet of this passage. As shown in Fig. 4(b), the normalized
mass flux profile predicted by this LB model agrees with
the Lévêsque solution. The simulation result shows that this
D3Q7 LB method can be used to model the mass transfer
coupling with the ad- or desorption process.

III. NUMERICAL DETAILS

Using the validated LB model at the pore scale, this pa-
per investigates the mass transport and desorption processes
affected by the shrinkage deformation of porous absorbent
media. As a theoretical exploration, several porous structures
consisting of spherical adsorbent particles are constructed as
the computational domain of this work. One of the typical
porous structures is plotted as shown in Fig. 5. This porous
structure consists of 22 staggered particles in a body- centered
cubic arrangement, and the initial porosity is 0.77. At the
initial time of this simulation (i.e., time = 0 s), the adsorbent
particles have a saturation adsorption amount Nm, and the
uniform initial concentration of adsorbate C0 is imposed in
the macropores of the porous structure.

The deformation of the porous structure is implemented by
the movement of adsorbent particles at a constant deformation
speed along the z axis and the x axis. As illustrated in Fig. 5,
for the porous structure deforming along the z axis, the rigid
adsorbent particles at the top level move toward the bottom
boundary first at the initial time of deformation, and the
moving velocity is denoted as–Ud . The other particles are

TABLE II. Macroscopic boundary conditions of LB simulation.

Boundary location Boundary conditions

z = 0 (Bottom boundary) uz=0 = 0, ∂P
∂z |z=0 = 0

Ds
∂C
∂z |z=0 = 0

z = H (Top boundary) ∂u
∂z |z=H = 0, pz=H = P0

C|z=H = C0/10
x = 0, x = L ∂u

∂x |x=0,L = 0

Ds
∂C
∂x |x=0,L = 0

y = 0, y = W Periodic boundary condition

driven when the upper adsorbent particles come into contact
with them. On the other hand, when the porous structure
deforms along the x axis, the outward adsorbent particles (i.e.,
the particles are close to the right and left boundaries) move
toward the center of the porous structure, and the moving
velocity of each particle is denoted as ±Ud/2. It should be
noted that elastic and plastic deformation are ignored for these
rigid adsorbent particles and that the relative slip between the
contacting particles is not considered in this work. Therefore,
the contacting particles have the same speed in the shrinkage
deformation process of the porous structure.

In this hypothetical porous structure, the upper wall (z =
H) is imposed as the outflow boundary of the computational
domain, which means that the adsorbate desorbing from the
adsorbent particles is emitted through this boundary. In this
work, a sufficient mass transfer rate is assumed at the surface
of the porous media. As a consequence, the adsorbate concen-
tration of the top wall is set as the Dirichlet boundary con-
dition (Cout = C0/10, and C0 is the initial concentration). For
the momentum transfer model, a constant pressure (P0) is im-
posed at this top boundary. Moreover, the bottom boundaries
are imposed as nonpermeable walls of the mass transfer model
and the no-slip walls for the momentum transfer simulation.
The detailed macroscopic boundary conditions are presented
in Table II. As mentioned above, these macroscopic boundary
conditions are implemented using the nonequilibrium extrap-
olation method [59].

Because the lattice units of the variables are used in the
LB simulation, the dimension conversion between physical
units and lattice units is a necessary step for the LB model in
solving an actual problem in the physical world. In this work,
the realistic physical variables are taken from the literature
[38,39,43], in which the adsorbate is selected as methane
gas and the adsorbent particles are selected as Cu-benzene-
1,3,5-tricarboxylic acid particles. Using the dimensionless
transformation method, the related lattice variables in this
simulation are listed in Table III, where �Nr/�x3 denotes the
adsorbed amount per unit volume [38].

IV. RESULTS AND DISCUSSION

A. Desorption in nondeformable porous structure

First, based on the porous structures as shown in Fig. 5,
the mass transport and desorption processes are simulated
in a nondeformable porous structure (i.e., Ud = 0), and the
transient average concentration of the adsorbate in the macro-
pores and the average adsorption amount of particles are
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TABLE III. Dimensionless lattice units and physical parameters for this simulation.

Parameter Physical symbol Physical value Lattice symbol Lattice value Scaling relation

Grid step �x 2 × 10−6 m �xn 1 �xr = �x/�xn

Time step �t 4.32 × 10−8 s �tn 1 �tr = �t/�tn

Domain length L 2 × 10−4 m Ln 100 L = Ln�xr

Diameter of adsorbent particles D 4.8 × 10−5 m Dn 24 D = Dn�xr

Kinematic viscosity υ 1.7 × 10−5 m2 s−1 υn 0.1836 υ = υn�x2/�t
Diffusion coefficient of adsorbate Ds 4.11 × 10−5 m2 s−1 Ds,n 0.44 Ds = Ds,n�x2/�t
Equivalent diffusion coefficient Dsp 1.32 × 10−8 m2 s−1 Dsp,n 1.4 × 10−4 Ds = Dsp,n�x2/�t

in the adsorbent particles
Saturation adsorption amount Nm 540 mol m−3 Nm,n 1 Nm = Nm,n�Nr/�x3

Initial concentration C0 0.54 mol m−3 C0,n 0.001 C0 = C0,n�Nr/�x3

Adsorption rate constant ka 2.5 × 103 m3 mol−1 s−1 ka,n 0.058 ka = ka,n/(�tr�Nr/�x3)
Desorption rate constant kd 5 × 103 s−1 kd,n 2.16 × 10−4 kd = kd,n/�tr

reported in Fig. 6(a). As shown in this figure, the average
adsorbate concentration in the porous structure increases
sharply during the early stage of desorption and rapidly

FIG. 6. The mass transport and desorption processes in nonde-
formable porous structure: (a) the transient average concentration
of adsorbate and amount of adsorption of particles; (b) the transient
average concentration distribution along the z axis.

reaches a peak concentration at the time of 0.35 × 10−4 s.
The average concentration decreases as the desorption process
continues, and the declining rate gradually decreases with the
increase in desorption time. In contrast, the average adsorp-
tion amount decreases monotonically in the whole desorption
process.

This history curve of the desorption process can be ex-
plained by the coupled mass transfer and desorption behaviors
at the different time stages. At the initial time, the equilib-
rium adsorption concentration at the surface of the particles
with the saturation adsorption amount is far greater than
the initial concentration (C0) in the macropores. Therefore,
the abundant adsorbate at the surface is quickly released
into the macropores at the early stage of desorption (i.e.,
time less than 0.35 × 10−4 s). It is obvious that the des-
orption rate is governed by Langmuir adsorption kinetics.
This desorption rate will reduce with the decreasing adsorp-
tion amount at the surface of the particles and the increas-
ing concentration in the macropores. Because the constant
concentration (Cout) at the top boundary is lower than the
adsorbate concentration in the macropores, the adsorbate
migrates out of the porous structure under Fick’s law of
diffusion, and the diffusion desorption rate is determined
by the effective diffusion coefficient of the adsorbate in
the macropores. When the rate of adsorbate diffusing from
the porous structure is greater than the desorption rate of
adsorbate releasing from the particles, the concentration in
the macropores decreases after the peak concentration is
reached. Moreover, as the adsorption amount at the surface
of the particles approaches the equilibrium state as time
passes, the decreasing desorption rate decreases the adsor-
bate amount released into the macropores, and as a result,
the adsorbate concentration declines at the later stage of
desorption (i.e., time greater than 0.35 × 10−4 s). When the
time exceeds 0.21 × 10−3 s, the adsorbate concentration is
less than the initial concentration (C0), as shown in Fig. 6(a).
In addition, Fig. 6(b) shows the distribution of the transient
average concentration of the x-y cross section along the z
axis. The higher concentration gradient in the macropores
is present near the top boundary, which illustrates the mass
flux gradually increasing as the position of the macropores
moves closer to the top boundary with a constant concen-
tration. The three-dimensional dimensionless concentration
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FIG. 7. The adsorbate concentration contour in macropores (left) and the adsorption amount contour inside adsorbent particles (right) in a
nondeformable porous structure: (a) time = 0.065 × 10−3 s; (b) time = 0.194 × 10−3 s; (c) time = 0.65 × 10−3 s.

contours in the macropores are displayed in Fig. 7, show-
ing the obvious concentration gradient profiles near the out-
put and the decrease of concentration in the macropores
with time. Moreover, Fig. 7 also shows that the adsorption
gradient gradually increases along the radial direction of
the adsorbent particles. These results show that the decreas-

ing adsorption amount at the surface of the particles leads
to adsorbate diffusion from the center to the external sur-
face of the particles, which is governed by the intracrys-
talline diffusion behavior. Due to the notably low equivalent
diffusion coefficient (Dsp) in the adsorbent particles com-
pared with Ds as listed in Table III, the migration of the
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FIG. 8. The transient average concentration of adsorbate and
amount of adsorption of particles in a porous structure deforming
along the z axis: (a) the transient average concentration of adsorbate;
(b) the transient adsorption amount of particles.

adsorbate molecules inside the particles is a notably slow
process, thereby causing the concentration in the macrop-
ores and the adsorption amount inside the adsorbent parti-
cles to decline slowly at the later stage of the desorption
process [39].

B. Effects of shrinkage deformation along the z axis

Based on the simulation results of the nondeformable
porous structure, the effects of shrinkage deformation of the
porous structure (as shown in Fig. 5) along the z axis (i.e.,
the deformation direction is opposite to the mass transport di-
rection) on the coupled desorption processes are investigated
under different velocities (Ud ). Figure 8 shows the transient
average concentration of the adsorbate and amount of adsorp-
tion of particles in the porous structure deforming along the
z axis. As shown in Fig. 8(a), the time history curves of the
average concentration in the deformable porous structures are
similar to those in the nondeformable porous structure before

the average concentration reaches the peak concentration.
However, these time history curves present a significant dif-
ference in the concentration downturn period. In addition, the
transient average concentration in the macropores increases
with the increasing velocities of the particles. Accordingly,
Fig. 8(b) reports that the decreasing rate of the average amount
of adsorption of particles slows at higher particle velocities.
The numerical results show that the shrinkage deformation
does not have an obvious effect on the desorption process
governed by the adsorption kinetics during the concentration
upturn period. In the concentration downturn period, the mass
transfer behavior is hindered as a result of absorbent particles
moving to the bottom boundary.

The concentration contour of the adsorbate in the macrop-
ores and the adsorption amount inside the adsorbent particles
at different times are plotted in Fig. 9. The moving particles
change the macroscopic pore structure and lead to the varying
concentration distribution in the macropores. As the upper
particles move toward the lower level, the pore sizes between
them are reduced to limit the mass transfer out of the contrac-
tive pore space. As well, the isosurfaces of fluid velocity along
the z axis (i.e., uz) at different times are presented in the right
column of Fig 9. The cyclic convection around the moving
adsorbent particles is obvious. Furthermore, the intensity of
this convection can be described quantitatively using the local
Péclet number (i.e., PeL) as follows:

PeL = L
∣∣Uf

∣∣
D

, (34)

where Uf denotes the fluid velocity. Figure 10 plots the
local Péclet number along the z axis at different times. It
can be observed that the moving particles cause a higher
convection zone during the shrinkage deformation process.
With the downward movement of the absorbent particles, the
peak Péclet number also shifts toward the bottom boundary.
Moreover, Figs. 10(a)–10(c) imply that the role of convection
is distinctly enhanced with an increase in the moving velocity
of the particles. As shown in Fig. 9, due to the downward
movement of the absorbent particles, the fluid surrounding
these moving particles forms convection toward the bottom
boundary under the role of solid-fluid coupling. On the other
hand, under the role of cyclic convection, there are small
regions away from moving particles in which the fluid flows
in the positive z direction. It should be mentioned that the
regions near the moving particles have the higher adsorbate
concentration and the larger flow velocity of carrier gas in
the opposite direction to the top boundary. As a result, this
convection surrounding these moving particles improves the
mass transport resistance in the desorption process, and thus
the higher concentration zone can be observed below the
moving particle level. The effect of the deformation of the
pore structure on the detailed transient concentration distri-
butions in the macropores along the z axis are illustrated in
Fig. 11. The transient concentrations along the z axis present
a higher concentration zone caused by the deformation of
the pore structure, and the peak concentration of this higher
concentration zone slips toward the bottom boundary (z =
0) with the downward movement of the absorbent particles.
Moreover, the higher concentration in the macropores gives
rise to a higher equilibrium concentration at the surface of

023309-11



MA, ZHAO, SU, CHEN, AND XU PHYSICAL REVIEW E 102, 023309 (2020)

FIG. 9. The adsorbate concentration contour in macropores (left), the adsorption distribution inside adsorbent particles (middle), and
the isosurfaces of fluid velocity uz (right) in porous structure deforming along the z axis (Ud = 0.046 m/s): (a) time = 0.065 × 10−3 s;
(b) time = 0.194 × 10−3 s; (c) time = 0.65 × 10−3 s.

the absorbent particles. Therefore, the desorption process and
mass migration inside the particles are slowed by the shrink-
age deformation of the pore structure during the concentration
downturn period.

C. Effects of shrinkage deformation along the x axis

Furthermore, this numerical model is used to study
the mass transport and desorption processes in the porous

structure deforming along the x axis (i.e., the deformation di-
rection is perpendicular to the mass transport direction) under
the same operation condition. Figure 12 presents the effect of
deformable velocity on the transient average concentration of
the adsorbate and the amount of adsorption of particles in the
porous structure. At the early stage of desorption, the transient
average concentrations in the deformable porous structure
match those in the nondeformable porous structure. Although
the dynamic deformation of the absorbent particles leads to
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FIG. 10. The local Péclet number along the z axis when the
porous structure deforms along the z axis: (a) Ud = 0.046 m/s; (b)
Ud = 0.023 m/s; (c) Ud = 0.015 m/s.

fluid flow (as shown in the isosurface profiles in the right
column of Fig. 13), the effect of this convection on the mass
transport and desorption behaviors is inconspicuous during
the concentration upturn period. However, the decreasing rate
of concentration shows a significant difference in porous

FIG. 11. The transient average concentration distribution along
the z axis when the porous structure deforms along the z axis: (a)
Ud = 0.046 m/s; (b) Ud = 0.023 m/s; (c) Ud = 0.015 m/s.

structures with varying moving velocity of particles at the
later stage of desorption, owing to the shrinkage deformation
along the x axis changing the structure of the macropores
and observably reducing the effective diffusion coefficient of
the adsorbate in the macropores. As shown in Fig. 13, the
distance along the x axis between two particles is shortened
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FIG. 12. The transient average concentration of adsorbate and
amount of adsorption of particles in a porous structure deforming
along the x axis: (a) the transient average concentration of adsorbate;
(b) the transient adsorption amount of particles.

during the deformation process. Because the adsorbate
migrates along the z axis, the pores in the x-y cross section are
the primary mass transfer channels. When the direction of the
shrinkage deformation is perpendicular to the mass transport
direction, these primary mass transfer channels are blocked.
Consequently, the mass transfer resistance is greatly improved
and hinders the diffusion of the adsorbate in the macropores.
Figure 14 plots the detailed transient concentration distribu-
tions in the macropores as the porous structure deforms along
the x axis. The results show that this concentration distribution
is different from that shown in Fig. 11. The concentration of
the adsorbate decreases as the position of the macropores is
located closer to the top boundary, and the higher concentra-
tion zone is not evident in the macropores. The decreasing rate
of the overall concentration distribution declines as the size of

the pore channels is decreased during shrinkage deformation,
thereby leading to retardation of the desorption process. As
a consequence, the transient adsorption amount of absorbent
particles is improved at a higher particle moving velocity at
the later stage of desorption, as shown in Fig. 12(b).

In addition, the numerical results show that the declining
rate of the adsorbate concentration in porous media deforming
along the x axis is lower than that along the z axis at the
later stage of desorption under the same operation condition.
To illustrate the role of the deformation direction in the
dynamic desorption process, the transient residual adsorption
amounts inside the adsorbent particles are compared under
different deformation directions and particle moving veloci-
ties. Figure 15 shows that the residual adsorption amount in
the porous structure deforming along the x axis is less than
that along the z axis at the lower particle moving velocity
(Ud = 0.015 m/s), and the gap between them decreases as
time passes. In contrast, an inverse trend is presented at the
higher particle moving velocity (Ud = 0.046 m/s). The higher
residual adsorption amount inside the adsorbent particles is
due to the decreasing mass transfer rate in the macropores
subdued by the shrinkage deformation of the porous media.
As a result, compared with the deformation along the z axis,
the adverse effect of the particle velocity on the efficiency
of the desorption process becomes more apparent when the
porous structure deforms along the x axis.

D. Effects of morphology of porous structures

The above simulations are performed using a fixed initial
porous structure. In this section, the mass transfer and desorp-
tion behaviors are compared in porous media with different
initial morphologies. The porous structure plotted in Fig. 5 is
denoted as case 1 in this section. As explained above, case
1 consists of absorbent particles in a body-centered cubic
arrangement, the initial porosity of which is approximately
equal to 0.77, as shown in Fig. 16(a). In addition, two other
porous structures are constructed and denoted as case 2 and
case 3. Case 2 consists of granular absorbent particles in a
simple cubic arrangement, and the initial porosity is equal to
0.81, as shown in Fig. 16(b). Case 3 consists of absorbent
particles in a staggered arrangement, and the initial porosity
is also equal to 0.81, as shown in Fig. 16(c).

Under the fixed moving velocity of the absorbent particles
(Ud = 0.023 m/s) along the z axis, the mass transfer and
desorption processes are simulated in the different initial
porous structures. Figure 17(a) shows the time history curves
of the average adsorbate concentration in the porous structures
of cases 1–3. The result presents a significant difference in
peak concentration affected by the morphology of the porous
structure. Due to the lower porosity and larger total adsorption
capacity, the porous structure of case 1 has a higher desorption
rate and lower effective diffusivity, thus resulting in a higher
transient adsorbate concentration. However, although it has
the same porosity and total adsorption capacity as the porous
structures of cases 2 and 3, case 3 presents a lower peak
concentration at the early stage of desorption. The reason
for this observation might be attributed to the difference in
local porosity between case 2 and case 3. At the early stage
of desorption, the concentration gradient appears mainly in

023309-14



NUMERICAL STUDY OF MASS TRANSFER AND … PHYSICAL REVIEW E 102, 023309 (2020)

FIG. 13. The adsorbate concentration contour in macropores (left), the adsorption distribution inside adsorbent particles (middle), and
the isosurfaces of fluid velocity ux (right) in porous structure deforming along the x axis (Ud = 0.046 m/s): (a) time = 0.065 × 10−3 s;
(b) time = 0.194 × 10−3 s; (c) time = 0.65 × 10−3 s.

the top of the porous structure. Due to the least number of
absorbent particles at the top level of case 3, the larger local
porosity in the top of the porous structure leads to a higher
mass transfer rate and a lower peak concentration during the
concentration upturn period.

In contrast, the transient adsorbate concentration in the
porous structure of case 3 is higher than that of case 2
during the concentration downturn period. In other words,
the mass transfer rate in case 3 is less than that in case 2
as the porous structure deforms along the z axis. This result
might be attributed to the different morphologies of the porous

structures. In general, the staggered arrangement of absorbent
particles could lead to a higher tortuosity of the porous struc-
ture, thereby improving the mass transfer resistance in the
porous media. Moreover, during the shrinkage deformation
process, compared with the porous structure with a simple
cubic arrangement (i.e., case 2), the shrinkage of the nonuni-
form and curving pore channels in cases 1 and 3 is likely to
cause blocking of the macropores and further hinder the mass
transfer of adsorbate out of the porous media. On the other
hand, case 2 presents a lower transient concentration in the
macropores at the later stage of the desorption process due to
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FIG. 14. The transient average concentration distribution when
the porous structure deforms along the x axis: (a) Ud = 0.046 m/s;
(b) Ud = 0.023 m/s; (c) Ud = 0.015 m/s.

the lower mass transfer resistance in the porous structure with
a simple cubic arrangement. As a result, the lower adsorbate
concentration in the macropores contributes to improving
the desorption rate of the absorbent particles, thus reducing
the amount of transient adsorption of particles for case 2 at
the later stage of desorption, as shown in Fig. 17(b).

FIG. 15. The role of deformation direction on desorption process.

V. CONCLUSION

A coupling IBM-LB model is proposed to investigate the
mass transfer and desorption behaviors in deformable porous
media. The applicability of this MRT-LB model is validated
using selected classic benchmark cases and comparison with
the results from the literature. Based on the validated IBM-LB
model, numerical simulations are performed to study the mass
transfer and desorption processes in shrinkage deformation
of a porous structure caused by the movement of rigid ad-
sorbent particles along different directions. The results show
that the time history curve of the adsorbate concentration
in the macropores can be divided into the upturn period
and the downturn period during the dynamic desorption pro-
cess. During the concentration upturn period governed by
Langmuir adsorption kinetics, the effects of the shrinkage
deformation of the porous structure along different directions
on the desorption behavior are not distinct. However, during
the concentration downturn period governed by the mass
transfer rate of the adsorbate, the shrinkage deformation of the
porous structure obviously decreases the rate of the desorption
process.

When the deformation direction is opposite to the direction
of mass transport (i.e., along the z axis), the contractive
pore space limits the mass transfer rate of the adsorbate in
the macropores. At the same time, due to the downward
movement of the absorbent particles, the convection around
the particles flowing in the direction opposite to the outlet
of the porous structure results in increasing mass transport
resistance in the desorption process. As a result, a higher
concentration zone can be observed below the moving particle
level, leading to the decreased desorption rate during the
concentration downturn period.

As the deformation direction is perpendicular to the mass
transport direction (i.e., along the x axis), the size of the
primary pore channels of mass transfer in the x-y cross
section is obviously reduced. Consequently, the mass transfer
resistance is greatly improved, thus hindering the diffusion
of adsorbate in macropores and distinctly causing retardation
of the desorption process during the concentration downturn
period. Compared with the deformation along the z axis, the
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FIG. 16. The porous structures with different initial morphology:
(a) case 1 (porosity of 0.77, body-centered cubic arrangement);
(b) case 2 (porosity of 0.81, simple cubic arrangement); (c) case 3
(porosity of 0.81, staggered arrangement).

adverse effect of shrinkage deformation on the efficiency of
the desorption process is more significant than in the porous
structure deforming along the x axis.

In addition, a comparative simulation is performed to in-
vestigate the mass transfer and desorption behaviors in porous
media with different morphologies. Under the same porosity

FIG. 17. The transient average concentration of adsorbate and
adsorption amount of particles in porous structures with different
morphology deforming along the z axis: (a) the transient average
concentration of adsorbate; (b) the transient adsorption amount of
particles.

and moving velocity of the absorbent particles, the porous
structure with a staggered arrangement of absorbent particles
presents a higher mass transfer resistance, thus decreasing the
desorption rate during the shrinkage deformation process.
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