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Study of phase-field lattice Boltzmann models based on the conservative Allen-Cahn equation
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Conservative phase-field (CPF) equations based on the Allen-Cahn model for interface tracking in multiphase
flows have become more popular in recent years, especially in the lattice-Boltzmann (LB) community.
This is largely due to their simplicity and improved efficiency and accuracy over their Cahn-Hilliard–based
counterparts. Additionally, the improved locality of the resulting LB equation (LBE) for the CPF models
makes them more ideal candidates for LB simulation of multiphase flows on nonuniform grids, particularly
within an adaptive-mesh refinement framework and massively parallel implementation. In this regard, some
modifications—intended as improvements—have been made to the original CPF-LBE proposed by Geier et al.
[Phys. Rev. E 91, 063309 (2015)] which require further examination. The goal of the present study is to
conduct a comparative investigation into the differences between the original CPF model proposed by Geier
et al. [Phys. Rev. E 91, 063309 (2015)] and the so-called improvements proposed by Ren et al. [Phys. Rev. E
94, 023311 (2016)] and Wang et al. [Phys. Rev. E 94, 033304 (2016)]. Using the Chapman-Enskog analysis,
we provide a detailed derivation of the governing equations in each model and then examine the efficacy of
the above-mentioned models for some benchmark problems. Several test cases have been designed to study
different configurations ranging from basic yet informative flows to more complex flow fields, and the results
are compared with finite-difference simulations. Furthermore, as a development of the previously proposed
CPF-LBE model, axisymmetric formulations for the proposed model by Geier et al. [Phys. Rev. E 91, 063309
(2015)] are derived and presented. Finally, two benchmark problems are designed to compare the proposed
axisymmetric model with the analytical solution and previous work. We find that the accuracy of the model
for interface tracking is roughly similar for different models at high viscosity ratios, high density ratios, and
relatively high Reynolds numbers, while the original CFP-LBE without the additional time-dependent terms
outperforms the so-called improved models in terms of efficiency, particularly on distributed parallel machines.
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I. INTRODUCTION

Multiphase flows occur in many industrial and environ-
mental settings. Examples include cavitation, flow through
porous media, bubble columns, boiling heat transfer, and
bubble reactors in micro devices. One common technique for
modeling two-phase flows is interface tracking, which can
broadly be classified in one of two categories: sharp-interface
[1,2] and diffuse-interface [3,4] methods. Sharp-interface
methods aim to replicate the true tiny scale of interfaces in
multiphase flows but might face numerical challenges and
instabilities when dealing with rapid topological changes at
the interface due to discontinuous properties of fluids. On the
other hand, diffuse-interface models make a compromise by
defining an interface width in such a way to make fluid proper-
ties vary smoothly across the interface, typically over a larger
scale than occurs in reality, however, with the added benefit
that they do not suffer numerical instability problems to the
same extent as their sharp-interface counterparts. This smooth
interfacial thickness provides many advantages when trying to
model large deformations of the interface in multiphase flows.
The dynamics of the finite interface can often be modeled with
a nonlinear advection-diffusion equation to describe the evo-
lution of the phase field; common implementations include the

Cahn-Hilliard (C-H) [5] or Allen-Cahn (A-C) [6] models.
A variety of different numerical approaches can be taken to
solve these equations. Here we focus on the lattice-Boltzmann
method (LBM).

Over the past few decades, phase-field LB models have
attracted a great deal of attention, demonstrating high ac-
curacy and efficiency. Phase-field LB models based on the
C-H equation (CHE) are abundant in the literature (e.g.,
Refs. [7–10]); however, restrictions on density and viscosity
ratios that can be simulated can be significant for some of
these models.

In the CHE, the evolution of the concentration consists of
two stages: First, there is a fast phase separation, and in the
second stage a phase coarsening occurs. The total mass of the
system is conserved [11]. Despite these advantages, the CHE
includes the need to calculate fourth-order spatial derivatives
which present numerical challenges, potentially compromis-
ing one of the LB’s main advantages of locality, which typi-
cally enables highly scalable parallel computing. Meanwhile,
the second-order A-C equation (ACE) [6] is better suited to lo-
cal computations in the LB framework. A shortcoming of the
ACE was that in its original form it is not conservative. How-
ever, since then, it has been modified for use as a phase-field
model [12] and reformulated in conservative form [13]. Geier
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et al. [14] were the first to propose a phase-field LB model
based on the conservative A-C equation (CACE) and show its
mass conservation properties. As part of their approach, one
must calculate the normal to the interface which requires the
gradient of the phase field. Geier et al. [14] presented two
different formulations based on finite differences and central
moments. The central moment approach takes advantage of
the locality of the collision operator in the LB model, which is
appealing for massive parallel implementation. However, the
finite-difference version, which does not preserve locality, was
shown to be more accurate in several benchmark problems.
Later, Ren et al. [15] proposed a multiple-relaxation-time
(MRT) LB model based on the CACE. They argued that the
Geier et al. [14] LB model does not recover the CACE in
complete detail. To rectify this, they modified the equilibrium
distribution function and added additional source terms to the
model to recover the CACE more accurately. These source
terms include a temporal derivative of the phase field, whose
calculation is again not ideal for parallel implementation. At
the same time, Wang et al. [16] published a similar idea
based on the Bhatnagar-Gross-Krook (BGK) collision model
and presented a comparative study between the A-C– and
C-H–based LB models. Comparing the two aforementioned
models [15,16], it can be seen that the former [15] is the MRT
version of the latter [16]. Hereafter, we refer to the original
model proposed by Geier et al. as model A [14] and refer
to the BGK version of the model proposed by Ren et al.
[15] as model B [16]. Recently, Liang et al. [17] proposed
a phase-field LB model, based on the modified CFP-LBE.
Wang et al. [18] also presented a brief overview of the recent
progress in phase-field LB modeling and its applications. Both
of these works claimed, without any numerical investigation,
that the model proposed by Geier et al. [14] is inaccurate due
to the emergence of artificial terms in the recovered interface-
tracking equation (i.e., not the desired CACE). As part of this
work we will delve deeper into such findings and show that
the effect of these additional terms is practically negligible.

To date, most existing multiphase LB models are based on
the Cartesian coordinate system, although numerous practical
problems exist for which axisymmetry is perhaps more natural
[19–25]. In these problems, instead of using fully three-
dimensional (3D) LB models, 2D axisymmetric formulations
can be effective, making computations much more efficient.
However, adapting LB methods from the Cartesian frame
to the axisymmetric frame requires the addition of source
terms to the governing equations, the structure of which
are not a priori clear. Many axisymmetric LB models have
been proposed, mostly for single-phase flows [26]. The first
axisymmetric multiphase model was presented by Premnath
and Abraham [27], where they added appropriate source terms
into the He et al. [28] model in the Cartesian coordinate
to account for the axisymmetric contribution of inertia, vis-
cosity, and surface tension. Huang et al. [22] proposed an
improved axisymmetric LB model and used this model to
simulate bubble rising. The aforementioned models, however,
are limited to low density ratios. Mukherjee and Abraham [29]
introduced source terms associated with density and velocity
gradients to present an axisymmetric model that was stable
at higher density ratios at the expense of a more complicated
discretization stencil [8]. Recently, Liang et al. [30] presented

an axisymmetric multiphase LB model based on the CHE that
was quite different from previous ones, in that none of the
additional source terms required calculation of additional gra-
dients, making it simpler and more consistent to implement.
Moreover, the axisymmetric CHE and Navier-Stokes (N-S)
equations can be precisely derived from their model. This
model is able to handle moderate density ratios; however, it
remains unstable at high ones. Liang et al. [31] proposed an
axisymmetric multiphase model based on the CACE which
can handle high density ratios, departing from the Cartesian
model of Ren et al. [15].

In this paper, an investigation of two phase-field LB models
is performed to compare the accuracy of the Geier [14] model
(model A) and the Ren [15] and Wang [16] models (model
B) for interface tracking. In particular, we perform Chapman-
Enskog analysis to recover the ACE as related to each LB
model, clearly demonstrating the differences between them.
We design a series of numerical experiments to study the
effect of the distinct terms for different benchmark problems.
Doing so, we explain why the effect of the additional terms
is negligible via a theoretical analysis. In the final section, a
new axisymmetric model based on the ACE is proposed that
is able to handle high density and viscosity ratios.

II. CARTESIAN EQUATIONS

The CACE governing the transport of phase field φ(x, t ) is
given by [13]

∂φ

∂t
+ ∇ · (φu) = ∇ · [M(∇φ − λn)], (1)

with

λ = 1 − 4(φ − φ0)2

W
, (2)

where t is the time, u is velocity, M is mobility, W is the
interfacial width, φ0 = (φh + φl )/2 indicating the location of
the interface, and n = ∇φ

|∇φ| is the unit vector normal to the
interface. The subscripts l and h stand for the light and heavy
phases, respectively.

The continuity and momentum equations for incompress-
ible multiphase flows can be written as

∇ · u = 0, (3)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · {μ[∇u + (∇u)T ]}

+ Fs + Fb, (4)

where Fs and Fb are surface tension and body forces, respec-
tively; p is the hydrodynamic pressure; and μ is the dynamic
viscosity. In this study, the surface tension force is given by
[32]

Fs = μφ∇φ, (5)

where μφ = 4β(φ − φl )(φ − φh)(φ − φ0) − κ∇2φ is the
chemical potential for binary fluids. β = 12σ/W and κ =
3σW/2 are coefficients related to surface tension and interface
thickness.

In the following we will present LB model A (Sec. II A)
and LB model B (Sec. II B) to recover Eq. (1). It should
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be noted that in order to compare the interface tracking
equations, both in the Cartesian and axisymmetric systems,
the hydrodynamic LBE used in this paper is the same as that
used in model B. In all cases we use finite differences to
calculate the normal to the interface, and for simplicity only
the BGK collision operator is considered.

A. LB model A

The LBE proposed by Geier et al. [14] for interface track-
ing based on the CACE is

hi(x + ciδt, t + δt ) − hi(x, t ) = −hi(x, t ) − heq
i,A(x, t )

τ

+
(

1 − 1

2τ

)
δtFi,A(x, t ),

(6)

with the source term

Ri,A(x, t ) = δtλwici · n, (7)

where hi is the phase-field distribution function in the ith
direction, τ is the phase-field relaxation time, wi is the
weight coefficient, and ci is the mesoscopic velocity set. For
the D2Q9 lattice used in this work w0 = 4/9, w1−4 = 1/9,
w5−8 = 1/36, and the mesoscopic velocity set is [33]

ci = c

⎧⎨
⎩

(0, 0), i = 0
(cos θi, sin θi ), θi = (i − 1)π/2, i = 1 – 4
(cos θi, sin θi )

√
2, θi = (2i − 9)π/4, i = 5 – 8

,

(8)

where c = δx/δt and δx and δt are the length scale and
time length scale of the underlying lattice, respectively.
The equilibrium distribution function for model A heq

i,A is
defined as

heq
i,A = wiφ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

]
, (9)

where cs = c/
√

3 for this system, the mobility is defined as

M = c2
s

(
τ − 1

2

)
δt, (10)

and the phase field is computed by taking the zeroth moment
of the distribution function

φ =
∑

i

hi. (11)

Using the computed phase field, the density of the fluid is
calculated by linear interpolation as

ρ = ρl + φ − φl

φh − φl
(ρh − ρl ). (12)

Using the Chapman-Enskog expansion, Appendix A, we
can recover the continuum level equation associated with
this LB model. Details of this expansion are provided in
Refs. [15,16]. The outcome of the expansion yields the fol-
lowing continuum level equation for the evolution of the phase

field:

∂φ

∂t
+ ∇ · (φu) = ∇ · [M(∇φ − λn)]

+ M

c2
s

∇ ·
[
∂ (φu)

∂t
+ ∇(φuu)

]
. (13)

By comparing the recovered equation (13) with the CACE
(1), it can be seen that the additional terms appearing in the
recovered equation are

M

c2
s

∇ ·
[
∂ (φu)

∂t
+ ∇(φuu)

]
. (14)

B. LB model B

The following LB equation was proposed by Wang et al.
[16] to recover the CACE:

hi(x + ciδt, t + δt ) − hi(x, t ) = −hi(x, t ) − heq
i,B(x, t )

τ

+
(

1 − 1

2τ

)
Ri,B(x, t ). (15)

where the source term is defined by

Ri,B(x, t ) = δtwi

c2
s

ci ·
[

c2
s λn + ∂ (φu)

∂t

]
, (16)

The local equilibrium distribution function heq
i for this model

can be defined as

heq
i,B = wiφ

[
1 + ci · u

c2
s

]
. (17)

The mobility and phase field are derived the same as
before. For this model we can also perform the Chapman-
Enskog expansion to recover the CACE given by Eq. (1).

C. Model A and model B differences

Comparing models A and B, two primary differences stand
out:

(1) Comparing Eq. (7) and Eq. (16), model B has an
additional time-dependent source term, ∂ (φu)

∂t . This removes
the time-dependent term from Eq. (13) that emerges in the
asymptotic expansion of model A.

(2) Looking at Eq. (9) and Eq. (17), the local equilibrium
distribution functions heq

i are different for these models, where
model A has quadratic terms in velocity, while model B does
not. Removing the quadratic terms eliminates the ∇(φuu)
from Eq. (13) in model A.

In this paper, we aim to understand the effects of these
additional terms in the CACE. Model A, by not having a
time-dependent term in the LB equation, provides a plat-
form to reduce computational costs and memory requirements
in high-performance computing, and previous studies have
demonstrated the success and promise of model A [34–36].
However, these additional terms that arise from the expansion
are troubling and present a potential problem that must be
better understood. In our investigation on the effects of these
two terms, we use the hydrodynamic equations proposed in
Ref. [17].

023305-3



AMIRHOSEIN BEGMOHAMMADI et al. PHYSICAL REVIEW E 102, 023305 (2020)

III. AXISYMMETRIC EQUATIONS

Here the theory for isothermal multiphase flow in ax-
isymmetric systems is presented. By transforming (x, y, z) →
(r, θ, z), where r, z, θ denote the radial, axial, and azimuthal
directions, respectively, one can write the CACE (1) for an
axisymmetric coordinate system. Assuming flow does not
have any swirl motion and azimuthal velocity is zero; the
axisymmetric conservative A-C equation (ACACE) can then
be written as [31]

∂tφ + ∂α (φuα ) + φur

r
= ∂α[M(∂α (φ) − λnα )]

+ M

r
[∂rφ − λnr] (18)

or in the following simpler form [31]:

∂t (rφ) + ∂α (rφuα + Mφδαr ) = ∂α[M(∂α (rφ) − rλnα )], (19)

where α = [r, z].
The continuity and momentum equations in the axisym-

metric coordinate system can be expressed as [31,37]

∂α (uα ) = −ur

r
, (20)

∂t (ρuα ) + ∂β (ρuβuα ) = −∂α (p) + ∂β[ρν(∂βuα + ∂αuβ )]

+ F̃sα + Fbα + Faxi,α, (21)

with

Faxi,α = νρ(∂ruα + ∂αur )

r
− 2ρνurδαr

r2
− ρuruα

r
, (22)

where F̃sα is the modified surface tension force given by F̃sα =
(μ − κ

∂rφ

r )∂αφ.

LB model for interface tracking

Here we propose the equivalent axisymmetric model asso-
ciated with LB model A. The LBE can be written as

hi(x + ciδt, t + δt ) − hi(x, t ) = −hi(x, t ) − heq
i,A(x, t )

τ

+
(

1 − 1

2τ

)
δtFi,A(x, t ),

(23)

with the forcing term given by

Fi,A(x, t ) = wirciα[nαλ]. (24)

The equilibrium distribution function is defined as

heq
i,A = �i,Aφ + wi

ciαMδαr

c2
s

,

�i,A = rwi

[
1 + ciαuα

c2
s

+ (ciαuα )2

2c4
s

− uαuα

2c2
s

]
. (25)

The following LB model is proposed by Liang et al. [31]
which is the axisymmetric extension of their Cartesian model
[16] and is known as model B in this article:

hi(x + ciδt, t + δt ) − hi(x, t ) = −hi(x, t ) − heq
i,B(x, t )

τ

+
(

1 − 1

2τ

)
δtFi,B(x, t ),

(26)

with forcing term

Fi,B(x, t ) = wir
ciα[∂t (φuα + Mφδαr/r) + c2

s nαλ]

c2
s

, (27)

and equilibrium distribution function

heq
i,B = �i,Bφ + wi

ciαMδαr

c2
s

, �i,B = rwi

[
1 + ciαuα

c2
s

]
.

(28)

For both models, the phase field is derived as

φ = 1

r

∑
i

hi. (29)

Similarly to their Cartesian model (Sec. II B), they added a
time derivative to their axisymmetric model and second-order
velocity terms are not included in the equilibrium distribution
function. In order to compare the axisymmetric interface
tracking equations of models A and B, we use a BGK version
of the hydrodynamic axisymmetric LB proposed in Ref. [31].

IV. NUMERICAL RESULTS

Seven distinct benchmark problems are designed to com-
pare the accuracy of the presented LB models under varying
Peclet numbers, density ratios, and viscosity ratios. Bench-
mark problems and their aims are summarized in Table I.

Models C and D are discussed in the following subsection.
For interface tracking tests, the relative error is calculated

TABLE I. Benchmark problems and purposes.

Benchmark problem Purpose

Moving bubble in a uniform vertical flow Evaluate the accuracy of interface tracking of models A, B, C, and D
Moving bubble in a uniform diagonal flow Evaluate the accuracy of interface tracking of models A, B, C, and D
Zalesak’s a slotted disk rotation Compare the accuracy of interface tracking of for the models A and B
Vortex drop Compare the accuracy of interface tracking of for the models A and B
Static droplet Investigate accuracy of multiphase models and test for spurious velocities
Bubble rising in a continuous phase Evaluate the accuracy of two-phase flow in a realistic application
Static circular interface Evaluate the accuracy of axisymmetric interface tracking models
Droplet oscillation Validate axisymmetric multiphase models
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TABLE II. The range of interfacial thickness, mobility, and
density ratio.

Density ratio Mobility (M) Interface thickness (W )

1–10 0.01–0.02 3
10–100 0.02–0.03 4
100–1000 0.03–0.05 5

between the numerical results and initial condition by using
this formula [14]:

||δφ||2 =
√∑

x,y(φ − φ0)2∑
x,y φ2

0

, (30)

where φ0 is the initial value of the phase field. φ is defined
such that φh − φl = 1 and we take φh = −φl = 0.5 for all
of the interface tracking test problems [14,16]. When hydro-
dynamic effects are considered, φh = −φl = 0.5 can cause
instabilities for high density ratios [32], and therefore φh =
1, φl = 0 is selected for the high-density-ratio cases of the
static droplet, bubble rising in a continuous phase, and droplet
oscillation tests.

The mobility and interface thickness are free parameters,
whose values are dictated by considerations related to accu-
racy and stability. Choosing too small a value for interface
thickness leads to numerical instabilities, especially for higher
values of density ratio. On the other hand, it is desirable to use
a sufficiently small interface to mimic a real sharp interface
between two fluids in terms of preserving accuracy. Similarly,
having too large a mobility leads to numerical dissipation,
which is undesirable. Fakhari et al. [35], based on an extensive
study, recommend interface thickness and mobility values for
different ranges of density ratios as listed in Table II.

Here we focus on high-density-ratio simulations and so
use W = 5 and M = 0.03–0.05. Also, numerically speaking,
these LB models based on the CACE have the second-order
convergence rates [14,16].

A. Results I: Interface-tracking equation

In this section, four LB models based on the CACE are
considered in order to test the effects of the additional terms
that emerge in model A. These models are shown in Table III.
Model A is the model proposed by Geier et al. [14] and
model B is the one proposed by Wang et al. [16] as we
have discussed and presented so far. Model C is the recovered
interface-tracking equation with only the additional temporal
term and model D is the one with only the additional spatial

derivative term. Models C and D will allow us to explore the
explicit influence of the two additional terms.

The first four separate tests of Table I are considered.
Various Peclet numbers (Pe) will be considered, where

Pe = U0W

M
, (31)

where U0 is the velocity in the y direction. All results are
presented in terms of our characteristic advective timescale,

Tf = L0

U0
, (32)

where L0 is the length of domain in terms of lattice cells.
When we change the Peclet number in the presented cases,
only U0 varies and all other variables are kept constant.

1. Moving bubble in a uniform vertical flow

A circular interface (bubble) with radius r = 25 is located
in a computational domain of size of Nx × Ny = 64 × 384,
which is centered at x0 = 0, y0 = 150. Only half the domain is
simulated and a symmetry boundary condition is imposed on
the left (x = 0) and right boundaries. All other boundaries are
treated as periodic. The mobility is set as M = 0.03 and the
interface thickness as W = 5. A uniform vertical flow in the
y direction of magnitude U0 = 0.03 is specified. The starting
phase field is given by

φ(x, y) = 0.5 + 0.5 tanh

[
2

r −
√

(x − x0)2 + (y − y0)2

W

]
,

(33)

In Fig. 1, the circular interface, (φh + φl )/2, is shown
for Pe = 1 at five different times (t = 5Tf , t = 10Tf , t =
15Tf , t = 20Tf , t = 25Tf ); for all these times the bubble
arrives at the same location. We find that the circular interfaces
are almost identical for all of the cases in time up to t = 25Tf ,
which means that the additional terms do not seem to play an
important role and are negligible for Pe = 1.

As can be seen in Fig. 2, for Pe = 5, the circular interfaces
continue to have good agreement for models A and B, but the
circular interface deviates from its initial shape for models C
and D. Interestingly, although the manner of deviation seems
opposite for each of these models, for model C, the interface
is stretched in the x direction, while for model D, this stretch
is in the y direction. Intuitively, this suggests that each of
the additional terms has opposing effects, perhaps explaining
why the results for models A and B are so similar. When Pe

TABLE III. Models and associated recovered interface-tracking equations.

Model Recovered interface-tracking equation

A [14] ∂φ

∂t + ∇ · (φu) = ∇ · [
M(∇φ − λn)

] + ∇ ·
[

∂ (φu)
∂t

]
M
c2

s
+ ∇2(φuu) M

c2
s

B [16] ∂φ

∂t + ∇ · (φu) = ∇ · [M(∇φ − λn)]

C ∂φ

∂t + ∇ · (φu) = ∇ · [
M(∇φ − λn)

] + ∇ ·
[

∂ (φu)
∂t

]
M
c2

s

D ∂φ

∂t + ∇ · (φu) = ∇ · [M(∇φ − λn)] + ∇2(φuu) M
c2

s

023305-5



AMIRHOSEIN BEGMOHAMMADI et al. PHYSICAL REVIEW E 102, 023305 (2020)

FIG. 1. Moving bubble in a uniform vertical flow. Model A is shown with a black solid line, model B is shown with a red dashed line,
model C is shown with a blue dash-dot-dot line, and model D is shown with a green long-dashed line (all lines are on top of each others).
Pe = 1. Left to right is t = 5Tf , t = 10Tf , t = 15Tf , t = 20Tf , and t = 25Tf .

increases to 20 (Fig. 3) a similar match between models A and
B and mismatch for models C and D is observed, although at
the latest time for model C a sharp point begins to emerge,
which may be indicative of an instability.

Finally, for the last numerical experiment, Pe = 50
(Fig. 4), models A and B continue to be identical, while
models C and D continue to cause stretching in opposite
directions, however, with an additional unphysical undulation
instability imposed. Again, the two additional terms appear to
act opposite to one another, stabilizing the numerical solution.

The relative error for models A and B are provided in
Table IV for varying Peclet numbers. It shows that the location
of final interface and initial interface are in good agreement,
however, more importantly, that any errors that do exist are
virtually identical for both cases with only negligible gain
from model B. Errors for cases C and D are not presented as
these are clearly unphysical and are only shown to demon-

strate the balancing nature of the additional two terms in
model A.

2. Moving bubble in a uniform diagonal flow

The next case study is diagonal translation of a circular
interface. A circular interface is placed in a constant velocity
field u = (U0,U0) in the corner of a computational domain of
size Nx × Ny = 200 × 200. The interface thickness and char-
acteristic length are W = 5 and W

L0
= 0.025, respectively. The

periodic boundary conditions are imposed on all boundaries.
The circular interface after t = 10Tf is shown in Figs. 5(a)
and 5(b) for Pe = 5 and Pe = 50, respectively. For Pe = 5,
the interface location for all models agree closely, which is
consistent with the previous numerical experiment. For Pe =
50, the interfaces for cases C and D deviate, while A and B
remain very similar. Again, the deviation of models C and D
appears to be in opposition to one another, reinforcing that the

FIG. 2. Moving bubble in a uniform vertical flow. Model A is shown with a black solid line (circular shape in the center), and model
B is shown with a red dashed line (circular shape in the center). Models A and B are on top of each other. Model C is shown with a blue
dash-dot-dot line (horizontal elliptical shape), and model D is shown with a green long-dashed line (vertical elliptical shape). Pe = 5. Left to
right is t = 5Tf , t = 10Tf , t = 15Tf , t = 20Tf , and t = 25Tf .
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FIG. 3. Moving bubble in a uniform vertical flow. Model A is shown with a black solid line (circular shape in the center), and model
B is shown with a red dashed line (circular shape in the center). Models A and B are on top of each other. Model C is shown with a blue
dash-dot-dot line (horizontal elliptical shape), and model D is shown with a green long-dashed line (vertical elliptical shape). Pe = 20. Left to
right is t = 5Tf , t = 10Tf , t = 15Tf , t = 20Tf , and t = 25Tf .

two additional terms in model A balance and cancel each other
out. The results here are consistent with the last numerical
experiment.

For the evaluation of the accuracy of the models, the
relative error for models A and B are shown in Table V. The
errors are small and very close for both models, although
model B does marginally outperform model A.

In the following, an analysis of the additional terms related
to model A is performed to further investigate their effects.
These additional terms can be written as follows:

M

c2
s

∇ ·
[
∂ (φu)

∂t
+ ∇(φuu)

]
= M

c2
s

∇ ·
{

u
[
∂φ

∂t
+ ∇ · (φu)

]

+ φ

(
∂u
∂t

+ u · ∇u
)}

. (34)

This shows the additional terms can be written in a manner
composed of [ ∂φ

∂t + ∇ · (φu)], which is equal to the left-hand
side of the CACE [see Eq. (1)], and ( ∂u

∂t + u · ∇u), which
is equal to the left-hand side of momentum equation [see
Eq. (4)]. Hereafter, ∇ · {u[ ∂φ

∂t + ∇ · (φu)]} is referred to as
part 1 of the additional terms and ∇ · [φ( ∂u

∂t + u · ∇u)] as
part 2. As shown in Ref. [35], this LB model is valid for
Mach number (Ma = |u|

cs
) less than Ma < 0.3 when it pairs

with the hydrodynamic equations. If, however, the LB model
corresponding to the interface-tracking equation is solved in
the absence of the N-S equation (e.g., an externally imposed
independent flow field as in the above tests), it can provide
stable solutions for Ma > 0.3 depending on the choice of
mobility (see Table II). Based on numerical experimentation
and experience, the solution is stable for Ma < 0.7 for a

FIG. 4. Moving bubble in a uniform vertical flow. Model A is shown with a black solid line (circular shape in the center), and model
B is shown with a red dashed line (circular shape in the center). Models A and B are on top of each other. Model C is shown with a blue
dash-dot-dot line (irregular shape expanded in the x direction), and model D is shown with a green long-dashed line (irregular shape expanded
in the y direction). Pe = 50. Left to right is t = 5Tf , t = 10Tf , t = 15Tf , t = 20Tf , and t = 25Tf .
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TABLE IV. Relative error of the two models for the moving
bubble in a uniform vertical flow test.

Model Pe = 1 Pe = 5 Pe = 20 Pe = 50

A 0.0001 0.0012 0.0043 0.0067
B 0.0001 0.0012 0.0042 0.0064

mobility of M = 0.03 (see Sec. IV A 1 Pe = 50). In order to
consider hydrodynamic effects in the two-phase model, the
velocity of the flow field should be less than 0.1732 due to the
Mach number restriction Ma < 0.3. Here, let us assume that
part 2 of the additional terms is negligible (see Appendix C)
and Eq. (34) is reduced to

M

c2
s

∇ ·
[
∂ (φu)

∂t
+ ∇(φuu)

]
= M

c2
s

∇ ·
{

u
[
∂φ

∂t
+ ∇ · (φu)

]}
.

(35)

In order to analyze the new form of these additional terms,
we invoke dimensional analysis. Length and velocity scales
are given by L and U , respectively. Therefore, the correspond-
ing advective timescale is T = L/U . All scales are chosen
such that the normalized variables are on the order unity.
For instance u∗ = u/U , ∇∗ = ∇L, and t∗ = tU/L. Therefore,
the nondimensional form of the partial differential equation
(PDE) corresponding to model A (see Table III) can be
written as:

∂φ

∂t∗ + ∇∗ · (φu∗) = 1

Pe
∇∗ ·

{[
∇∗φ − 1 − 4(φ − φ0)2

W ∗ n
]}

+ Ma2

Pe
∇∗ ·

{
u∗

[
∂φ

∂t∗ + ∇ · (φu∗)

]}
.

(36)

TABLE V. Relative error of the two models for the moving
bubble in a uniform diagonal flow test.

Model Pe = 5 Pe = 50

A 0.0004 0.0038
B 0.0004 0.0032

Based on the nondimensional CACE, one can write the
additional terms as:

Ma2

Pe
∇∗ ·

{
u∗

[
∂φ

∂t∗ + ∇∗ · (φu∗)

]}

= Ma2

Pe
∇∗ ·

(
u∗ 1

Pe
∇∗ ·

{[
∇∗φ − 1 − 4(φ − φ0)2

W ∗ n
]})

.

(37)

Therefore, this part of the additional terms, [ ∂φ

∂t∗ + ∇∗ ·
(φu∗)], has a relationship with O( 1

Pe ). To analyze these error
terms carefully, two regimes of Peclet number are considered.
The first regime is Pe ∼ O(1) and the second regime is Pe �
O(1).

(i) Pe ∼ O(1): In the first regime, advection and diffusion
effects are comparable. To implement small Peclet number,
the velocity magnitude should be set based on the limitations
of the numerical method associated with the mobility and the
interface thickness [35], as previously explained in Sec. IV.
The resulting velocity magnitude will be small for the cases
presented. Consequently, the Mach number is small (Ma � 1)
and the error terms that have a second-order relationship with
Mach number should be negligible. Thus, the additional terms
for models A, C, and D are very small and all of the models
are roughly identical in terms of predicting the interface.

(ii) Pe � O(1): In the second regime, the Peclet number is
relatively large and the advection term is dominant. In order

FIG. 5. Moving bubble in a uniform diagonal flow at t = 10Tf . (a) Pe = 5 and (b) Pe = 50. Model A is shown with a black solid line
(circular shape in the center), and model B is shown with a red dashed line (circular shape in the center). Models A and B are on top of each
other. Model C is shown with a blue dash-dot-dot line, and model D is shown with a green long-dashed line (figure is a zoom-in). (a) All the
lines are on top of each other. (b) Models A and B are on top of each other. Model C is a horizontal elliptical shape when the x axis rotates
135◦ counterclockwise. Model D is a horizontal elliptical shape when the x axis rotates 45◦ counterclockwise.
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FIG. 6. Zalesak’s disk at Pe = 75. (a) Model A. (b) Model B.
Black solid line is initial condition and red line is t = Tf . Lines are
on top of each other.

to increase the Peclet number, the velocity magnitude should
be larger than in regime (i); again due to the restrictions on
mobility and interface thickness [32,35], the velocity should
be larger than the first regime in order to increase the Peclet
number. Therefore, the additional terms are not negligible
due to having a larger Mach number. If we keep one of
the additional terms {( ∂φ

∂t∗ ) or [∇∗ · (φu∗)]}, then these terms

are not small anymore. However, regardless of Ma2

Pe , as seen
from Eq. (37) the new form of additional terms scale as ( 1

Pe ).
As a result, for large Peclet number, error terms [ ∂φ

∂t∗ and
∇∗ · (φu∗)] should cancel each other out as the right-hand side
of Eq. (37) is very small ( 1

Pe � 1).
In the numerical experiment of a moving bubble in a

uniform flow (see Sec. IV A 1), the flow field is steady state
and constant. Therefore, part 2 of the additional terms is zero.
For this test, two regimes of Peclet number are considered to
analyze the additional terms. In the first regime, Pe ∼ 1; to
keep Pe = 1, the velocity magnitude is set to U0 = 0.006. As a
result, Ma = 0.0104. Because the error terms are proportional
to Ma2

Pe = 11 × 10−5, they become negligible. As we expect,
the additional terms for models A, C, and D are very small and
all of the models are roughly identical in terms of predicting
the interface. In the second regime, Pe � O(1), the case with
Pe = 50 is considered, and therefore the velocity magnitude
is set to (U0 = 0.3 m/s). As a consequence, the Mach number
is Ma = 0.5196 and the additional terms are proportional
to Ma2

Pe = 5.4 × 10−3. This Mach number is one order of
magnitude greater than the first regime. Therefore, models C
and D cannot capture the interface as the error terms are not
small; however, these error terms do cancel each other out for

model A because of the large Peclet number. This is consistent
with our results (see Fig. 4 for model A). Consequently, model
A captures the interface almost identically to model B.

From the above discussion, it can be concluded that models
C and D cannot capture the interface accurately for large
Peclet number; however, model A and B can predict near-
identical interfaces for varying Peclet numbers. When a hy-
drodynamics effect is considered, the Mach number is less
than 0.3 due to numerical method restrictions [35]. Because
of the relationship of the additional terms with Ma2

Pe , these ad-
ditional terms are in the range of first regime and they should
be negligible. Therefore, from here onward, only models A
and B will be considered.

3. Zalesak’s a slotted disk rotation

A very common test for validation of interface tracking
is the Zalesak’s rotation of a slotted disk [38]. As an initial
condition, a slotted disk of radius r = 80 is placed in the
center of a periodic computational domain of size L0 × L0 =
200 × 200. A slot width of 20 is placed in the center of the
disk and the height of slot (h) is 80 (h = r). The interface
thickness and characteristic length are W = 5 and W

L0
= 0.025,

respectively. A rotational velocity, given by

ux = −U0π

(
y

L0
− 0.5

)
, uy = U0π

(
x

L0
− 0.5

)
, (38)

is imposed.
The initial interface and interface at time t = Tf (one full

rotation) are shown in Fig. 6. It can be seen that for both
models A and B, the final shape of interface is in good
agreement with the initial condition.

In Fig. 7 the time evolution of the Zalesak’s disk for Pe =
75 for models A and B is shown to compare the accuracy
of these models qualitatively. Visually, the results are almost
indistinguishable. To further investigate the accuracy of these
models, the height of slot is increased to 105 lattice (h =
1.3125r). The time evolution of disk is shown in Fig. 8. It can
be seen that despite of narrow height of the disk, there is no
oscillation on the interface and both of the models are stable.
The relative error at different times is tabulated in Table VI,
which shows that the two models produces almost the same
error.

4. Vortex drop

A common benchmark problem to test the accuracy of
two-phase flow is the so-called vortex drop. This test problem
highlights the accuracy of two-phase models by requiring
resolution of thin filaments, which arise due to stretching

FIG. 7. Rotation of disk with time. Left to right is t = 1
4 Tf , t = 1

2 Tf , t = 3
4 Tf , and t = Tf . The black line is model A and the red line is

model B. Lines are on top of each other.
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FIG. 8. Rotation of disk with time. Left to right is t = 1
4 Tf , t = 1

2 Tf , t = 3
4 Tf , and t = Tf . The black line is model A and the red line is

model B. Lines are on top of each other.

and tearing processes. Initially, a circular drop is placed off-
center in an oscillatory vortex. The oscillatory velocity field is
defined as:

ux = cos2

(
π

x − x0

L0

)
sin

(
2π

y − y0

L0

)
cos

(
πt

Tf

)
,

uy = cos2

(
π

y − y0

L0

)
sin

(
2π

x − x0

L0

)
cos

(
πt

Tf

)
, (39)

where Tf is the nondimensional time and x0 = L0
2 , y0 = 3L0

4 .
U0 is set to 0.1. The initial radius of the interface is r = L0

8
and the interface thickness is set to W = 5. The domain size
is L0 × L0. At t = 0.5Tf the reversed velocity is imposed,
aiming to bring the stretched drop back to its initial location at
t = T . The cos( πt

Tf
) term reverses the velocity field smoothly.

The evolution of the drop is shown in Fig. 9 for different
resolutions. The results show the initial shape of drop is
preserved at final time t = Tf with some noticeable oscilla-
tions for the relatively coarser grids. The relative error for

TABLE VI. Relative error of the two models for the Zalesak’s a
slotted disk rotation test.

Model t = 1
4 Tf t = 1

2 Tf t = 3
4 Tf t = Tf

A : h = r 0.0011 0.0026 0.0046 0.0070
B : h = r 0.0011 0.0026 0.0046 0.0070
A : h = 1.3125 r 0.0014 0.0030 0.0053 0.0079
B : h = 1.3125 r 0.0014 0.0031 0.0054 0.0080

FIG. 9. Time evolution of the vortex drop. Left to right is t = 0, t = 1
4 Tf , t = 1

2 Tf , t = Tf . Top to bottom L0 = 100 ( W
L0

= 0.05), L0 = 200

( W
L0

= 0.025), L0 = 400 ( W
L0

= 0.0125), L0 = 800 ( W
L0

= 0.00625). The black line is model A and the red dashed line is model B. Lines are on
top of each other.
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TABLE VII. Relative error of the two models for the
vortex drop test.

Model L0 = 100 L0 = 200 L0 = 400 L0 = 800

A 1.245 1.1100 0.5305 0.1404
B 1.244 1.1100 0.5306 0.1404

different resolutions is shown in Table VII. The errors for
model A and model B are virtually identical.

B. Results II: Interface-tracking equation coupled
with the hydrodynamic equation

In the following examples, hydrodynamic effects are also
considered. Two cases are chosen: a static droplet test, a
common benchmark for LB models, and a bubble rising in
a continuous phase, which is a more realistic flow exam-
ple, demonstrating the ability to simulate a complex flow of
practical interest. Note that the Cartesian formulation of the
hydrodynamic axisymmetric LB proposed in Ref. [31] is used
in this part.

1. Static droplet

The static droplet is widely used to validate multiphase
models [17,39,40]. Here we will simulate this problem with a
large density ratio. A stationary droplet is located at the center
of a computational domain of size Nx × Ny = 100 × 100. The
radius of the droplet is R = 25, the interface thickness is W =
5, and the characteristic length is W

L0
= 0.05. The boundary

conditions are set as bounce back (no-slip boundary) on all
boundaries. The initial phase field variable is set as

φ(x, y) = 0.5 + 0.5 tanh

[
2

R −
√

(x − x0)2 + (y − y0)2

W

]
,

(40)
The density ratio is set to ρh

ρl
= 1000 and νh = νl = 0.1 and

M = 0.03.
Figure 10 shows the interface after 500 000 iterations and it

is immediately obvious that there is good agreement for both
models A and B with the initial interface. This demonstrates
that mass is well conserved for both models A and B, as
the location of the initial interface is identical to the final
interfaces. The relative error for the both models are shown
in Table VIII.

In many LB frameworks, spurious velocities occur near
interfaces, which is a problem for two-phase flows. Generally
this velocity can be eliminated by using a potential form of
surface tension force and a mixed finite-difference scheme
[8]. For this benchmark, the magnitude of this velocity is

TABLE VIII. Relative error of the two models for the static
droplet test.

Model t = 500 000

A 0.0004
B 0.0004

FIG. 10. The phase-field contour after 5 000 000 iterations is
shown. Model A is shown with a black solid line, model B is shown
with a red dashed line, and the initial condition is denoted with a
black dot. Lines are on top of each other.

computed by |u|max = (
√

u2
x + u2

y )max and for both models A
and B the maximum spurious velocity is on the order of 10−6.

2. Bubble rising in a continuous phase

Next we consider the case of a single rising bubble under
buoyancy, which has received much previous attention, both
numerically and experimentally [21,41,42]. This problem is
generally classified in terms of two dimensionless parameters,
the Bond number, Bo, and Morton number, Mo, which are
defined as [21,22]

Bo = gρhD2

σ
, Mo = gμ4

h

ρhσ 3
, (41)

where g is gravitational acceleration, D is the initial diameter
of the bubble, and μ is the dynamic viscosity. The Reynolds
number, Re, can be computed from the relation Mo = Bo3

Re4 .
The size of computational domain is Nx × Ny = 200 ×

800. The radius of the initial bubble is 50 and is located
at (0,100). The left vertical boundary at x = 0 is treated
as symmetric; periodic boundary conditions are imposed on
the top and bottom with a no slip boundary on the right
vertical side for the hydrodynamic LB equation. For the LB
phase-field equation, top and bottom boundary conditions
are periodic, the left side is set to be symmetric, and a no
flux boundary condition is imposed on the right vertical side
of the domain. Other parameters are set as W = 5, M =

TABLE IX. Several cases for bubble rising in a continuous phase
test with density ratio ρh

ρl
= 1000.

Case Bo Mo Re νh νl g

A1 32.2 8.2 × 10−4 79.88 0.025 0.25 4.0 × 10−6

A2 243 266 15.24 0.0656 0.656 1.0 × 10−6

A3 641 43.1 49.72 0.06 0.6 9.0 × 10−6

A4 116 4.63 × 10−3 135.5 0.0184 0.184 6.25 × 10−6
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FIG. 11. Evolution of bubble rising in a continuous phase. Left
to right is (a) case A1, (b) case A2, (c) case A3, and (d) case B4.
Nondimensional times for (a), (b), and (c) are t∗ = 0, 1.5, 3, 4.5, 6,
and 7.5 and for (d) are t∗ = 0, 1.5, 3, 5.5, and 10. Solid black line
is model A and dashed red line is model B. Lines are on top of each
other.

0.03, and W
L0

= 0.00625. The density ratio is 1000 and other
important parameters are presented in Table IX. Figure 11
shows the temporal evolution of bubble shapes for the four
cases presented in Table IX. For all cases, the initial bubble
rises with interface deformation until reaching its equilibrium
shape. As with previous examples for all cases and all times,
any differences between model A and model B are almost
negligible.

To demonstrate the ability of the presented LB models
to capture realistic interfaces, the terminal shape of bubbles
are compared to experimental results from Ref. [41] and
front tracking simulation results from Ref. [21] in Table X.
Generally our predictions are in good agreement with these
experimental measurements and classical numerical predic-
tions. However, there are some minor deviations (although
more significant than the very minor differences between
models A and B).

Finally, as noted in Table XI in our simulations the mass
ratio ( InitialMass

FinalMass ) of the system is roughly constant for both
models across different conditions (A1, A2, A3, and A4),
meaning mass is well conserved for both model A and
model B.

It can be concluded that model A and model B can cap-
ture the interface for the complex bubble dynamics fairly
accurately.

TABLE X. Terminal bubble shapes observed in experiments predicted by front tracking method and LB methods. The solid black line is
model A and the solid red line is model B. Lines are on top of each other.
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TABLE XI. Mass ratio for the two models at different cases for
the bubble rising in a continuous phase test.

Model A1 A2 A3 A4

A 1.000000107 1.000000058 1.000000112 1.000000226
B 1.000000107 1.000000058 1.000000112 1.000000226

C. Results III: Axisymmetric model

In this section, in order to investigate the accuracy of
axisymmetric models in terms of interface tracking, the pre-
sented LB model (model A) as well as the model proposed
by Liang et al. [31] (model B) are considered for two basic
benchmark problems.

Note that model B contains two time-dependent terms
on the source term of LB equation. However, the presented
axisymmetric model (model A) does not include these time-
dependent terms due to these terms are relatively small [see
Eq. (27)]. Thus, the proposed axisymmetric model outper-
forms on the so-called improved models in terms of efficiency,
particularly on distributed parallel machines.

1. Static circular interface

To test the accuracy of axisymmetric interface model, a
semicircular interface is placed on the axis of a computational
domain. The system is static with no flow. Therefore, the
semicircular interface should stay in the same location and the
mass should remain constant throughout the simulation. How-
ever, in our investigation we notice that the mass reduces over
time. To investigate this problem for axisymmetric models, a
semicircular interface with five different mesh grid resolutions
is considered and the interface is compared to the initial
condition after 39 000 iterations with interface thickness of
W = 5. The computational domain is Nr × Nz = L0/2 × L0

and the initial interface radius is L0/4. Time evolution of
the normalized mass, M/M0 = Mass(t )

Mass(0) , and RMS error [see
Eq. (30)] for both models are shown in Fig. 12 and Table XII,
respectively. In all presented cases, the results between models
A and B are virtually identical, as before. However, as can be

FIG. 12. Time history of the normalized mass for both models.

TABLE XII. RMS of the two models for the static circular
interface test.

Model L0 = 16 L0 = 32 L0 = 64 L0 = 128 L0 = 256

A 0.3477 0.0919 0.02974 0.0081 0.0022
B 0.3478 0.0919 0.02974 0.0081 0.0022

seen in Table XII, for the L0 = 16 case, the RMS error for
model A and B is starkly large. As the number of grid points
increases the RMS error becomes small; however, there is still
a reduction in mass. For the case L0 = 16, the mass of the
system reduces tremendously to almost 82% its initial value,
while for L0 = 256 the maximum change in mass is in the
order of 0.1%, which is negligible. To the authors’ knowledge,
this lack of mass conservation in axisymmetric phase-field
methods has not been addressed in the literature so far. In the
following, we investigate the underlying reasons causing this
issue.

In the A-C equations (1) or (18) and (19), the λn term
on the right-hand side is supposed to impose a predefined
interface profile, obtained from minimization of free energy of
the system [14]. At equilibrium, the interface profile reaches
this predefined profile and on the right-hand side these equa-
tions theoretically becomes zero. However, in a numerical
setup this does not happen due to the numerical calculation
of the gradient term and round-off errors. In systems with the
Cartesian coordinate system [Eq. (1)], this issue is not seen
as significant [14]. However, under axisymmetric coordinate
things are different [Eqs. (18) and (19)]. Without loss of
generality, we assume that the velocity is zero everywhere and
that the interface is parallel to the z axis. Therefore, Eq. (18)
[the same explanation holds for Eq. (19)] can be simplified to

∂tφ = ∂r[M(∂rφ − λnr )] + M

r
(∂rφ − λnr ). (42)

Comparing Eq. (42) with its counterpart in a Cartesian
coordinate system, we find that the last term on the right-hand
side is a additional term due to the transformation: We posit
that it causes the mass conservation violation. At equilibrium,
the interface profile can be expressed as a hyperbolic tangent
[14]:

φeq = φ0 ± φ0 tanh

[
2(r − r0)

W

]
, (43)

where r0 is the radial distance corresponding to φ0. Evaluating
the additional term for the equilibrium profile gives

M

r
(∂rφ

eq − λnr ) = 0, (44)

where nr = ±1. In a numerical setup, however, the above
equation cannot be zero and, in contrast to a Cartesian system,
its value depends on r such that it exponentially approaches
zero as r increases. To show this more clearly, consider two
different locations of the interface, i.e., r0 = 10 and r0 = 20.
Figure 13(a) shows the interface profile and the value of the
additional terms as functions of r for M = 0.03 and W = 5.
As can be seen clearly in Fig. 13(a), the further the interface
gets away from the axis, the less the value of this additional
term will be. This is why having a higher grid resolution helps
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FIG. 13. (a) Profile of the phase field and additional term as a function of r for two different interface locations of r0 = 10 and r0 = 20.
(b) Highest absolute value of the additional term for different interface locations.

yield better mass conservation, although it must be noted
that the axisymmetric equation never stops violating mass
conservation as long as resolution is finite. This is consistent
with our observations.

Figure 13(b) shows the highest absolute value of the addi-
tional term as a function of r0 for the same value of mobility
and interface thickness as before. In summary, a phase-field
equation cannot conserve mass in its asymmetric form despite
its conservative nature in the Cartesian system. To tackle
this issue, Huang et al. [22] introduced a mass correction
step to bring back the lost mass to the domain. However,
this is an algorithmic correction that empirically makes the
model work rather than one based on sound physical and
mathematical reasoning, meaning that extrapolation to more
complex problems may not be straightforward.

2. Droplet oscillation

One of the typical classic validations for axisymmetric
multiphase LB models is droplet oscillation [27,43,44]. If
a liquid droplet is distorted from a circular shape into an
ellipse, then the droplet develops oscillatory behavior before
settling back to the original circular shape. Miller and Scriven
[45] presented a semianalytical solution for the oscillation
frequency of the nth mode of the droplet,

ωn = ω∗
n − 0.5α

√
ω∗

n + 0.25α2, (45)

where ω∗
n , the natural resonance frequency, is given by

ω∗
n =

√
n(n − 1)(n + 1)(n + 2)

R3
e[nρl + (n + 1)ρh]

σ , (46)

where Re is the equilibrium radius of the droplet and α is the
viscosity contribution defined as [45]

α = (2n + 1)2ρhρl
√

νhνl√
2Re[nρl + (n + 1)ρh](ρh

√
νh + ρl

√
νl )

, (47)

where n is the mode of oscillation. The second mode of
oscillation (n = 2) is considered here [31,43].

The computational domain is Nr × Nz = 200 × 100 and an
ellipsoidal droplet with the ratio of Rr = 25, Rz = 85 is placed
at the center of domain (100,0). The density ratio is ρh

ρl
= 1000

and other important simulation parameters are fixed as W =

5, W
L0

= 0.0125, σ = 0.3, M = 0.03, νh = 6 × 10−3, νl = 6 ×
10−2. The droplet evolution in time is shown in Fig. 14. Again,
the droplet behavior is consistent for models A and B for all
time steps.

The deviation of mass is less than 0.5%, which suggests
that the grid size may be sufficient for this simulation.

The variation of the half-axis length Rr versus time is
shown in Fig. 15, where the results with other initially given
values of Rr = 30, 45, 60 are also presented to examine the
effect of droplet size. Figure 15 shows that the amplitude of
the oscillation normalized by the corresponding equilibrium
radius Re fluctuates around 1 for all cases, and as expected,
the dimensionless maximum amplitude is reduced for a larger
droplet size.

FIG. 14. Evolution of droplet oscillation in the density ratio ρh
ρl

=
100 at (a) t = 0, (b) t = 1700, (c) t = 2700, and (d) t = 4000. Model
A is shown with a black line and model B is shown with a red dashed
line. Lines are on top of each other.

023305-14



STUDY OF PHASE-FIELD LATTICE BOLTZMANN MODELS … PHYSICAL REVIEW E 102, 023305 (2020)

FIG. 15. Time evolution of the half-axis length Rr at different
density ratios.

The numerical prediction of droplet oscillation frequency
with corresponding analytical results are shown in Table XIII
for different Re. The simulation results are compared to the
analytical solution and results presented by Liang et al. [31].
It can be seen that the computed frequency has a good
agreement with the semianalytical solution and the maximum
error is 8.4%. The calculated frequencies for our simulation
are very close to those from Liang et al. [31].

The influence of the density ratio on the oscillating fre-
quency is investigated. We use the present model to simulate
this case with three different densities, ρh

ρl
= 10, 50, 100, and

the droplet size is set to Rr = 30, Rz = 90. The numerical
predictions of the oscillating frequency obtained from the
present LB model with various density ratios are summarized
in Table XIV together with the corresponding analytical re-
sults and Liang [31] LB model. It can be seen that increasing
density ratio decreases the droplet oscillating frequency, and
the computed oscillating frequencies show good agreement
with the analytical results as well as Liang’s model [31] for
all density ratios, with a maximum error of about 9.0%.

V. CONCLUSION

In this work, a comparative study on two state-of-the-art
LB phase-field models based on the CACE is performed to
evaluate the accuracy of these models to track interfaces. It
has been shown that the recovered equation for model A (the

TABLE XIII. Comparison between oscillation frequency for
models A and B to the analytical solution ρh

ρl
= 100.

Re 43.3 56.7 68.7

104ωLBA 4.9823 3.3929 2.5161
104ωLiang [31] 4.9822 3.3929 2.5161
104ωana 5.3764 3.5864 2.6908

ErA = |ωLBA
−ωana |

ωana
× 100 8.4 4.99 6.49

ErLiang = |ωLiang−ωana |
ωana

× 100 8.4 4.99 6.49

TABLE XIV. Comparison between the computed oscillating fre-
quency ωLBA with Liang [31] and analytical solution at different
density ratios.

ρh
ρl

10 50 100

104ωLBA 15.2511 7.0428 4.8931
104ωLiang [31] 15.2504 7.0439 4.8923
104ωana 16.5854 7.5895 5.3764

ErA = |ωLBA
−ωana |

ωana
× 100 8.0 7.2 9.0

ErLiang = |ωLBLiang
−ωana |

ωana
× 100 8.0 7.2 8.9

Geier model [14]) has additional terms that emerge from the
expansion. Meanwhile, model B (the Wang [16] and Ren [15]
models) can recover the CACE exactly; however, this comes
at the expense of having an additional temporal term in the
source term of the LB equation that is undesirable from the
perspective of high-performance computing or adaptive mesh
refinement. Two regimes of Pe number are used to explain
why the additional terms in model A are negligible. When the
Pe number is small, the Ma number should be small due to
limitations of values that mobility and interface thickness can
take. As a consequence, the additional terms are negligible
because of a second-order relationship with the Ma number.
For large Pe number, the additional terms cancel each other
out due to a scaling with 1

Pe . Then, we demonstrated, through
a series of tests under varying Pe numbers, that the effects of
the additional terms are indeed negligible. Both models are
very comparable in terms of accuracy in interface tracking.

Additionally, we showed that the two models in their
axisymmetric form produce almost the same results which
again confirm that the additional terms appear in the recovered
interface-tracking equation of model A can be ignored. It
was shown that the phase-field interface tracking model
cannot conserve mass. We conducted an analysis to show that
violation of mass conservation is inherent in these phase-field
equations.

Overall, the two LB models that are the focus of this
study are roughly comparable in terms of tracking interfaces
in the Cartesian and axisymmetric coordinates. Model B is
very slightly more accurate, but we argue that model A also
has benefits over model B that, depending on the application
and interest, can outweigh this gain as it is more amenable to
high-performance computing and nonuniform grids processes
(e.g., Ref. [35]).
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APPENDIX A: MODEL A LBE

The evolution equation of the LB model for model A is
written as

hi(x + ciδt, t + δt ) − hi(x, t ) = −hi(x, t ) − heq
i,A(x, t )

τ

+
(

1− 1

2τ

)
δtFi,A(x, t ). (A1)
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The following equations are the constraints of heq
i,A and Fi,A

for model A: ∑
i

heq
i,A = φ, (A2)

∑
i

cih
eq
i,A = φu, (A3)

∑
i

cicih
eq
i,A = c2

s φI + φuu, (A4)

∑
i

Fi,A = 0, (A5)

∑
i

ciFi,A = c2
s

∇φ

|∇φ|λ, (A6)

∑
i

ciciFi,A = 0. (A7)

The multiscaling expansion of the distribution function,
time derivative, space gradient, and discrete source term are
introduced such that

hi = h(0)
i + εh(1)

i + ε2h(2)
i + . . . , (A8)

∂t = ε∂i1 + ε2∂i2 , (A9)

∇ = ε∇1, (A10)

and

Fi,A = εF (1)
i + ε2F (2)

i , (A11)

where ε is a small expansion parameter. By Taylor expanding
Eq. (A1),

Dihi + δt

2
D2

i hi + · · · = − 1

τδt

(
hi − heq

i

) +
(

1 − 1

2τ

)
Fi,A,

(A12)

where Di = ∂t + ci · ∇. Substituting Eqs. (A8)–(A11) into
Eq. (A12), one gets(

ε∂i1 + ε2∂i2 + ε∇1
)[

h(0)
i + εh(1)

i + ε2h(2)
i + . . .

]
+ δt

2
(ε∂i1 + ε2∂i2 + ε∇1)

[
h(0)

i + εh(1)
i + ε2h(2)

i + . . .
]

= − 1

τδt

[
h(0)

i + εh(1)
i + ε2h(2)

i + · · · − heq
]

+ ε

(
1 − 1

2τ

)
F (1)

i + ε2

(
1 − 1

2τ

)
F (2)

i . (A13)

Thus, the zeroth-, first-, and second-order equations in
parameter ε can be written as

ε0 : h(0)
i = heq

i , (A14)

ε1 : (∂t1 + ci · ∇1)h(0)
i = − 1

τδt
h(1)

i +
(

1 − 1

2τ

)
F (1)

i , (A15)

ε2 : ∂t2 h(0)
i + (∂t1 + ci · ∇1)h(1)

i + δt

2
(∂t1 + ci · ∇1)2h(0)

i

= − 1

τδt
h(2)

i +
(

1 − 1

2τ

)
F (2)

i , (A16)

Multiplying Eq. (A15) to δt
2 (∂t1 + ci · ∇1), one can obtain

δt

2
(∂t1 + ci · ∇1)2h(0)

i = − 1

2τ
(∂t1 + ci · ∇1)h(1)

i + δt

2
(∂t1 + ci · ∇1)

(
1 − 1

2τ

)
F (1)

i . (A17)

Substituting Eq. (A17) into Eq. (A16), we can rewrite it as

ε2 : ∂t2 h(0)
i +

(
1 − 1

2τ

)
(∂t1 + ci · ∇1)h(1)

i +
(

1 − 1

2τ

)
δt

2
(∂t1 + ci · ∇1)F (1)

i = − 1

τδt
h(2)

i +
(

1 − 1

2τ

)
F (2)

i , (A18)

The recovered equations at scale ε1 and ε2 can be obtained by summation of Eq. (A15) and Eq. (A18) over i, respectively,

∂t1φ + ∇1 · (φu) = 0, (A19)

∂t2φ +
(

1 − 1

2τ

)[
∇1 ·

∑
i

cih
(1)
i

]
+

(
1 − 1

2τ

)
δt

2
c2

s

[
∂t1 (φu) + ∇1φ

|∇1φ|λ
]

= 0. (A20)

By multiplying Eq. (A15) with ci and summing over i, one can get∑
i

cih
(1)
i = (−τδt )

[
∂t1 (φu) + ∇1

(
c2

s φI + φuu
) −

(
1 − 1

2τ

)(
c2

s

∇1φ

|∇1φ|λ
)]

, (A21)

where M = c2
s (τ − 1

2 )δt is the mobility. Substitution of Eq. (A21) into (A20) leads to

∂t2φ −
{
∇1 ·

[
M

(
∇1φ − λ

∇1φ

|∇1φ|
)]

+ ∇1[∂t1(φu)]
M

c2
s

+ ∇2
1(φuu)

M

c2
s

}
= 0. (A22)

Combining Eqs. (A19) and (A22) at t1 and t2, we can have

∂φ

∂t
+ ∇ · (φu) = ∇ ·

[
M

(∇φ − λn
)] + ∇

[
∂ (φu)

∂t

]
M

c2
s

+ ∇2(φuu)
M

c2
s

, (A23)

which shows the A-C equation associated to model A.
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APPENDIX B: AXISYMMETRIC LB MODEL A

Macroscopic values for the axisymmetric form of model A
are ∑

i

heq
i,A = rφ, (B1)

∑
i

ciαheq
i,A = rφuα + Mφδαr, (B2)

∑
i

ciαciαheq
i,A = c2

s rφ + rφuαuα, (B3)

∑
i

Fi,A = 0, (B4)

∑
i

ciαFi,A = c2
s nαλ, (B5)

∑
i

ciαciαFi,A = 0, (B6)

Substituting Eqs. (B1)–(B6) into Eqs. (23) and (24) and
summing over i leads to

∂t1 (rφ) + ∂α (rφuα + Mφδαr ) = 0, (B7)

∂t2 (rφ) + (1 − 1

2τ
)(∂α.

∑
i

ciαh1
i ) +

(
1 − 1

2τ

)
δt

2

× c2
s [∂t1 (rφuα + rφuαuα + Mφδαr ) + rnαλ] = 0. (B8)

By manipulating Eq. (B8), we can rewrite in the following
form:

∂t2 (rφ) − ∂αM[∂α (rφ) − rnαλ] − ∂α∂t1 (rφuα )

− ∂α (∂αrφuαuα ) − Mc2
s ∂α

[
∂t1 (Mφδαr )

] = 0. (B9)

Summation of (B7) and (B9) leads to axisymmetric form
of conservative A-C equation,

∂t (rφ) + ∂α (rφuα + Mφδαr )

= ∂αM(∂α (rφ) − rnαλ) + M

c2
s

∂α∂t1 (rφuα )

+ M

c2
s

∂α (∂αrφuαuα ) + M

c2
s

∂α[∂t1 (Mφδαr )]. (B10)

APPENDIX C: ADDITIONAL TERM

Part 2 of the error terms can be written as:

M

c2
s

∇ ·
[
φ

(
∂u
∂t

+ u.∇u
)]

. (C1)

The N-S equation for in-compressible two-phase flows is
as follows:

∂u
∂t

+ u · ∇u = −∇p

ρ
+ μφ∇φ + ν∇2u. (C2)

Dimensionless form of Eq. (C2) express as:

∂u∗

∂t
+ u∗.∇∗u∗ = −∇∗ p∗ + μφ

U 2
μφ∇∗φ + 1

Re
∇∗2u∗.

(C3)
Thus, dimensionless form of part 2 of error terms is

MU 2

c2
s L2

∇∗ ·
[
φ

(
∂u∗

∂t
+ u∗.∇∗u∗

)]
. (C4)

Plugging Eq. (C2) into Eq. (C4) and dividing by U/L leads
to:

Ma2

Pe
∇∗ ·

[
φ

(
− ∇∗ p∗ + μφ

U 2
∇∗φ + 1

Re
∇∗2u∗

)]
. (C5)

As we know, this LB model is applicable for the Ma < 0.3
[35]. Two regimes of Mach number are defined to analyze
this term. In the first regime (Ma � 0.3), this dimensionless
number ( Ma2

Pe � 1) is very small. As a result, the error terms
are negligible. In the second regime [Ma ∼ O(0.3)], this
dimensionless number ( Ma2

Pe ) is at least one order of magnitude
larger than the first regime. In order to evaluate the error term
in a relatively large Mach number [Ma ∼ O(0.3)], each of
the error terms in Eq. (C5) is considered separately. First,
viscous stress term has a relationship with ( 1

Re ). For the larger
velocity, the Reynolds number is relatively large Re > 10 and
[ Ma2

Pe ∇∗( 1
Re∇∗2u∗)] is negligible. Second, the surface tension

force is related to the chemical potential. This chemical
potential (μφ) is always μφ � 1 and multiplying this term
into the ( Ma2

Pe ), which is a small term, leads to the negligible

term. Third, the hydrodynamic pressure ( Ma2

Pe ∇∗ p∗). For the
relatively high velocity, the pressure term is degrading due to
incompressible condition. Multiplying second-order pressure
gradient to this parameter ( Ma2

Pe � 1) is also making this term
much smaller. Therefore, this term can be neglected.
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