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Kinetic modeling of the electric double layer at a dielectric plasma-solid interface
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For a collisionless plasma in contact with a dielectric surface, where with unit probability electrons and ions
are, respectively, absorbed and neutralized, thereby injecting electrons and holes into the conduction and valence
bands, we study the kinetics of plasma loss by nonradiative electron-hole recombination inside the dielectric.
We obtain a self-consistently embedded electric double layer, merging with the quasineutral, field-free regions
inside the plasma and the solid. After a description of the numerical scheme for solving the two sets of Boltzmann
equations, one for the electrons and ions of the plasma and one for the electrons and holes of the solid, to which
this transport problem gives rise to, we present numerical results for a p-doped dielectric. Besides potential,
density, and flux profiles, plasma-induced changes in the electron and hole distribution functions are discussed,
from which a microscopic view on plasma loss inside the dielectric emerges.

DOI: 10.1103/PhysRevE.102.023206

I. INTRODUCTION

At the interface between a low-temperature plasma and a
macroscopic solid an electric double layer forms consisting of
a plasma-bound electron-depleted and a solid-bound electron-
rich region. In the simplest scenario, the charge separation
arises because electrons, outrunning ions on the plasma side,
are more efficiently deposited into the surface than they
are extracted from it by the neutralization of ions which
effectively leads to the injection of missing electrons, that
is, in the language of solid-state physics, to the injection of
holes. At the end a potential profile builds up equalizing the
electron and ion fluxes issued by the plasma source with the
electron-hole recombination flux inside the solid. The double
layer is hence caused by the plasma but controlled by the
solid.

Little is quantitatively known about the scenario although
the positive part of the double layer—the plasma sheath—has
been studied in great detail ever since the work by Langmuir
and Mott-Smith [1]. Most of the studies focus on the merging
of the sheath with the quasineutral bulk plasma [2–6]. The
effect of the solid is studied only insofar as its emissive
properties, electron and ion reflection and secondary electron
emission, affect the stability of the sheath [7–12]. The reason-
ing behind it is the assumption that processes inside the solid
occur on spatiotemporal scales too small or too fast to affect
the physics of the plasma [13]. For the plasma species the solid
is thus only a sink or source characterized by probabilities
for absorption, reflection, and emission which, in principle,
can be measured [14–16] or calculated [17–19]. There are
only a few theoretical approaches [20–23] treating the solid
and the plasma as two sides of an interface to be analyzed
together, as it is done for the interface between two gaseous
plasmas [24–28], where, however, neither side is constrained
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by a crystal structure leading to forbidden energy ranges for
the charge carriers on one side of the interface.

Mapping the charge dynamics of the solid in contact with
the plasma to a set of parameters is no longer justified in
situations where the scales of the plasma and the solid become
comparable or where the solid is an integral part of the plasma
device of interest, as it is, for instance, the case in attempts
to combine gaseous with solid-state electronics [29–33]. In
particular, if the miniaturization of the devices continues [34],
the transit times through the plasma and the transport and
relaxation times inside the solid may become comparable.
Between two encounters of an electron or ion with the solid,
the electrons inside it stay then in excited states, making the
surface parameters depend on the actual charge dynamics
inside the solid. Hence, it has to be resolved on the same
kinetic level as the charge dynamics of the plasma.

Recently, we set up a theoretical framework showing how
such a calculation can be organized for a plasma-facing di-
electric solid [21]. It is based on two sets of spatially separated
Boltzmann equations, one for the electrons and ions inside the
plasma and one for the conduction band electrons and valence
band holes inside the dielectric. The two sets are coupled by
the electric field, entering the force terms of the Boltzmann
equations, and matching conditions at the interface, which
describe electron transmission and reflection in either way
as well as hole injection due to the neutralization of ions.
To demonstrate the feasibility of the approach, we applied
it to a collisionless, perfectly absorbing interface with an ad
hoc recombination condition to prevent—in a collisionless
situation—the unlimited growth of the charge carriers inside
the solid. Although conceptually incomplete at this point, it
seemed useful because a numerical solution of the Boltzmann
equation could be avoided.

The purpose of the present work is to remedy this short-
coming by applying the theoretical framework to an interface
which is left collisionless only on the plasma side, where it
can be justified, because electrons are strongly depleted, scat-
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tering hence only weakly, while ions collide predominantly
with neutrals, which is important only in particular situations
[35–37]. But by including collisions on the solid side, we
can now couple the creation of charge carriers by the plasma
source to the physical process destroying them inside the
solid. It is the balancing of the two at quasistationarity which
determines quantitatively the charge and potential profiles on
both sides of the interface.

The paper is structured as follows. In Sec. II, divided into
two sections, we present in Sec. II A a simplified kinetic
model for the double layer at a dielectric plasma-solid inter-
face and in Sec. II B the numerical strategy for its solution.
Energy and momentum relaxation due to scattering on optical
phonons [38] and nonradiative electron-hole recombinations
due to traps in the energy gap along the lines of a kinetic
version [39] of the Shockley-Read-Hall model [40,41] are
taken into account by the kinetic equations while charge
injection is treated phenomenologically by source functions
entering the boundary conditions. The numerical approach
utilizes an idea of Grinberg and Luryi [42] for solving itera-
tively Boltzmann equations with distribution functions known
at the two end points of the integration domain, successfully
applied to solid-solid interfaces [43–45]. Its utility in the
present context is based on the observation that at the inter-
face the distribution functions can be assumed to be known
from the previous iteration loop and successively updated
until convergence is reached. Combined with the boundary
conditions fixing the distribution functions deep inside the
solid and the plasma, a transport problem arises to which the
Grinberg-Luryi approach can be applied in each half space.
Care is, however, required for treating singular points arising
either from turning points or the vanishing of the electric
field due to the embedding between field-free bulk regions.
Numerical results are given in Sec. III for a p-doped dielectric.
Potential, charge density, and flux profiles are shown together
with the distribution functions for the dielectric’s surplus
carriers originating from the plasma. Section IV concludes the
presentation and mathematical details are provided in three
Appendixes.

II. THEORY

The notation used for the description of the electric double
layer at a floating dielectric plasma-solid interface is summa-
rized in Fig. 1. Also shown is the simplification required due
to numerical constraints, forcing us to restrict the modeling
on the solid side to the region close to the band edges. The
injection of charge carriers into the solid has thus to be taken
into account by phenomenological source functions.

A. Formulation of the transport problem

Within the coordinate system of Fig. 1, the plasma-solid
interface is located at z = 0 with the solid and plasma filling
up the half spaces z < 0 and z > 0. The interface is abrupt
with material parameters constant and isotropic within each
half space. The spatial dependencies arise from the electric
potential energy Uc(z) for which we set Uc(0) = 0. Introduc-
ing a species index s ∈ {i, e, h, ∗} for ions, electrons, valence
band holes, and conduction band electrons, the potential en-

FIG. 1. Illustration of the potential energy profiles for an electric
double layer at a floating dielectric plasma-wall interface (not to
scale). Shown are the edges of the conduction (U∗) and valence
(Uvb) bands, the edge for the motion of valence band holes (Uh), the
position of the trap levels (Et ), and the potential energy for electrons
(Ue) and ions (Ui) on the plasma side. The origin of the energy axis
is the potential just outside the solid, χ is the electron affinity, and
Eg the energy gap. The positions z1 and zp are the end points of the
double layer and zw is the location of the plasma source. Also shown
are the potential energies at these positions, playing an important role
in the modeling. As explained in the main text, we cannot resolve the
energy space up to the energies where carriers are actually injected
from the plasma into the solid. In the simplified model for the solid
side, shown in the shaded area, we inject carriers at artificially low
energies by source functions included in the matching conditions at
z = 0.

ergy Us can be defined for each species. Its relation to Uc is
given by the following expressions, taking into account the
energy offsets shown in Fig. 1: Ui = Uc, Ue = −Uc, Uh =
Uc + Eg + χ , and U∗ = −Uc − χ , where χ is the electron
affinity and Eg is the band gap of the dielectric. We use Us as
a variable synonymous to Us(Uc). The merging of the double
layer with the quasineutral, field-free regions occurs at z1 on
the solid side and at zp on the plasma side. Since the solid
and the plasma accumulate net negative and positive charge,
respectively, Uc(z) is monotonously increasing with z.

Instead of z we can thus use Uc to track the spatial depen-
dency of all physical quantities, with the mapping between the
two given by the once-integrated Poisson equation,

dUc

dz
=

(
16π

ε(z)

∫ Uc (z)

U0(z)
dUn(U )

)1/2

= E (Uc), (1)

where ε(z) = �(z) + ε �(−z), with �(z) the usual step func-
tion, is the dielectric function of the interface. The func-
tion U0(z) = Up�(z) + U1�(−z) denotes the potential energy
where the net charge vanishes, that is, where quasineutrality
holds. On the solid side, this is at z = z1 leading to Uc = U1,
where U1 < 0 is the band bending, while on the plasma side it
occurs at z = zp and hence at Uc = Up > 0. The function E (z)
is the (negative) electric field for which

εE (0−) = E (0+) (2)

023206-2



KINETIC MODELING OF THE ELECTRIC DOUBLE LAYER … PHYSICAL REVIEW E 102, 023206 (2020)

holds at the interface and the (negative) total charge to be
integrated over reads for a p-doped interface

n(Uc) = [ne(Uc) − ni(Uc)]�(Uc)

+ [n∗(Uc) − nh(Uc) + nA]�(−Uc), (3)

where nA is the concentration of the acceptors.
It is advantageous to introduce in the coordinate system of

Fig. 1 separate distribution functions, F<
s and F>

s , for the left-
and right-moving particles with the sign of the perpendicular
momentum kz encoded in the superscript. Since the interface
is homogeneous in the lateral directions it is also rotationally
invariant in the plane perpendicular to the z axis. The distri-
bution functions depend thus only on the magnitude of the
lateral momentum K. Instead of it, we use the lateral kinetic
energy T = h̄2K2/2ms as a variable, where ms is the mass of
a particle of species s. In atomic units, measuring length in
Bohr radii, energy in rydbergs, and mass in electron masses,
the Boltzmann equation can be cast into

±vs(Uc, E , T )E (Uc)
∂

∂Uc
F≷

s (Uc, E , T ) = I≷coll, (4)

where kz is replaced by the total energy E , I≷coll is the collision
integral, and

vs(Uc, E , T ) = 2
√

m−1
s (E − Us − T ) (5)

is the velocity perpendicular to the interface. Due to the
variable transformation (1) from z to Uc the force term in
Eq. (4) accounts automatically for the Poisson equation, and
due to the use of E as a variable, no velocity drift term occurs.

The collision integral I≷coll, describing scattering and recom-
bination processes, depends on either side of the interface on
the distribution functions of both species. It can be separated
into in- and out-scattering parts, �

≷
s and γ

≷
s F≷

s , respectively,
turning the Boltzmann equation (4) into its final form,

±vs(Uc)E (Uc)
∂

∂Uc
F≷

s (Uc) = �≷
s (Uc) − γ≷

s (Uc)F≷
s (Uc),

(6)
where we have omitted the dependencies on E , T , and F≷

s .
In Appendix A we give �

≷
s and γ

≷
s for scattering on optical

phonons [38] and recombination via traps in the energy gap
[39], which is a kinetic formulation of the Shockley-Read-
Hall model [40,41].

Once the solutions of Eq. (6) are known, the densities

ns(Uc) = ms

8π2

∫
dEdT

F>
s (Uc, E , T ) + F<

s (Uc, E , T )

vs(Uc, E , T )
(7)

can be obtained, from which the electric field E (Uc) follows
by integrating Eq. (1), closing thereby the set of equations.

Essential parts of the transport problem are the boundary
conditions at Uc = U1 and Uc = Uw and the matching condi-
tion at Uc = 0. The boundary conditions are given by

F>
s (U1) = F LM

s (U1) for s = h, ∗, (8)

F<
s (Uw ) = F LM

s (Uw ) for s = i, e, (9)

with

F LM
s (Uc) = nLM

s

(
4π

kBTsms

)3/2

exp

(
−E − Us

kBTs

)
(10)

a half Maxwellian with temperature Ts and density nLM
s .

The general matching conditions for the distribution func-
tions at Uc = 0 are given in Ref. [21]. We specify them now to
the special case of an interface, where electrons can pass the
interface only from the plasma side and ions are neutralized
at the interface with unit probability. Carriers approaching the
interface from the solid side are specularly reflected. From
the plasma side, this describes a perfectly absorbing interface,
where every impinging particle is absorbed and nothing is
emitted.

Anticipating the potential energy profile of a double layer
with negative and positive net charge inside the solid and the
plasma, respectively, the matching conditions for the electron
distribution functions read

F>
e (0, E , T ) = 0 for E > 0, (11)

F<
∗ (0, E , T ) = F>

∗ (0, E , T ) + S<
∗ (0, E , T ), (12)

while for the ion and hole distribution functions they become

F>
i (0, E , T ) = 0, (13)

F<
h (0, E , T ) = F>

h (0, E , T ) + S<
h (0, E , T ), (14)

where we introduced source functions encoding electron and
hole injection,

S<
s (Uc, E , T )

= nin
s

(
4π

kBTsms

) 3
2

exp

(
−

(
E − Us − I in

s

)2 − T 2

	2
in

)
, (15)

with injection densities nin
s chosen such that jin

h = ji and jin
∗ =

je. The electron and ion fluxes from the plasma, je and ji, are
given by

js(Uc) = ms

∫
dEdT

8π2
[F>

s (Uc, E , T ) − F<
s (Uc, E , T )],

(16)
and jin

s is obtained from Eq. (16) by setting F>
s = 0 and F<

s =
S<

s . For simplicity we take phenomenological Gaussians (in
energy space) with width 	in centered around E − Us = I in

s
and T = 0 as source functions.

Ideally, the injection energies Is would be the real ones,
set by the ion’s ionization energy, in case of resonant ion-
ization, and the dielectric’s electron affinity. Both are usually
a couple of eV away from the band edges. The relaxation
and recombination kinetics, on the other hand, making at the
end the space charge inside the solid quasistationary with
the plasma sheath, requires a resolution on the order of the
phonon energy, which is typically 0.1 eV. Resolving on that
scale the whole energy range up to the actual injection points
is computationally very expensive. To keep the numerical
costs at an acceptable level, we move the injection energies Is

below an energy cutoff dictated by numerical constraints. The
principal mechanism of the model, relaxation and subsequent
recombination of plasma-injected surplus charges inside the
plasma-facing solid, remains intact.
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B. Numerical strategy

We now sketch the numerical approach employed to solve
the transport problem, focusing on the overall strategy to
determine the various parameters required to self-consistently
embed the double layer between field-free, quasineutral bulk
regions. Technical details concerning the plasma side and the
integration routines are relegated to Appendixes B and C.

The plasma source issues at Uc = Uw ions and electrons
belonging to half Maxwellians characterized by Te,i and nLM

e,i .
Input parameters are only the temperatures. The densities are
determined from the model in a two-step procedure. First, en-
forcing the absence of an electric field and the quasineutrality
at Uc = Up < Uw, giving rise to the two conditions,

E (Up) = 0, (17)

n(Up) = 0, (18)

and combining them with the flux equality,

je(Uc) = ji(Uc), (19)

the density ratio α = nLM
i /nLM

e , to be interpreted as the
strength of the plasma source, and the two potential param-
eters Up and Uw can be determined. In a second step, the
matching (2) of the electric field across the interface, feeding
in information from the solid side, is used to self-consistently
determine the absolute values of nLM

e and nLM
i . The double

layer is thus caused by the plasma source, which issues the
fluxes, but controlled by the electric field just inside the solid,
which fixes the strength of the source. Processes inside the
solid affect thus the plasma sheath even in the absence of
secondary electron emission.

On the solid side, we use half Maxwellians at Uc = U1. The
temperatures characterizing them are again input parameters,
while the densities are determined by the absence of an elec-
tric field and the quasineutrality, yielding the three conditions

E (U1) = 0, (20)

n(U1) = 0, (21)

nLM
h nLM

∗ = n2
int, (22)

with the intrinsic density

nint = 1

4

(
kBT∗
π

)3/2

(m∗mh)3/4 exp

(
− Eg

2kBT∗

)
, (23)

where we set T∗ = Th. From the three equations the two
densities nLM

∗ and nLM
h as well as the band bending U1 can

be determined. The parameters of the source functions S<
∗,h

are either input parameters (I in
∗,h, 	in) or fixed by flux conti-

nuity (nin
∗,h). All free parameters are thus determined and the

double layer is self-consistently embedded between the two
quasineutral, field-free regions.

Due to the collisionality, the modeling on the solid side
requires only one potential energy parameter, the band bend-
ing U1. The distribution functions F≷

∗,h(Uc, E , T ) can be taken
as half Maxwellians at Uc = U1 because the vanishing of the
field makes them in Eq. (6) to annihilate the collision integrals.
With half Maxwellians, satisfying detailed balance, this can be

enforced. However, with the plasma side being collisionless,
the distribution functions cannot be half Maxwellians at Uc =
Up while also maintaining equal densities and fluxes there.
They have to be put in at Uc = Uw > Up by the Schwager-
Birdsall construction [2] leading to two potential energy pa-
rameters, Up and Uw.

In order to get the density and potential profiles to be em-
ployed in the embedding conditions just listed, the Boltzmann
equation (6) has to be solved. On the plasma side this can be
done analytically. Following the approach of Schwager and
Birdsall [2], it leads to the expressions listed in Appendix B.
Had we also included collisions there, a numerical solution
along the lines we now present for the solid side would be in
order.

The numerical approach for solving the Boltzmann equa-
tions for electrons and holes inside the dielectric is an iterative
scheme, originally proposed by Grinberg and Luryi [42] for
transport problems where distribution functions are known at
the two end points of the integration domain. It has proven
its feasibility for solid-solid interfaces [43–45] and can be
based on a rewriting of the Boltzmann equation (6) for right-
and left-moving distributions in the form (in the following
s = ∗, h)

F>
s (Uc) = ξs(Uc,Uc − �)F>

s (Uc − �)

+
∫ Uc

Uc−�

dU

E (U )

�>
s (U )

vs(U )
ξs(Uc,U ) (24)

and

F<
s (Uc) = ξs(Uc + �,Uc)F<

s (Uc + �)

+
∫ Uc+�

Uc

dU

E (U )

�<
s (U )

vs(U )
ξs(U,Uc) (25)

with the integrating factor

ξs(Uc,U ′
c ) = exp

(
−

∫ Uc

U ′
c

dU

E (Ūc)

γ
≷
s (U )

vs(U )

)
, (26)

where � is an arbitrary energy shift, but at the end it will
be the basic discretization step in the Uc direction. The two
equations are an exact rewriting of the original Boltzmann
equations utilizing (i) the fact that in the variable Uc they
are ordinary first order differential equations and (ii) that the
integrating factor ξs(Uc,U ′

c ) satisfies group properties. For
brevity, the E and T dependencies of the various functions
are again suppressed.

The iteration scheme we employed for solving Eqs. (24)
and (25) is illustrated in Fig. 7 in Appendix C. To obtain
the distribution function F>

s (Uc) in the interval U1 < Uc < 0,
Eq. (24) is iterated from Uc = U1 to Uc = 0, while F<

s (Uc) is
obtained from Eq. (25) by iterating it from Uc = 0 to Uc =
U1, using at the starting points the boundary and matching
conditions specified above, and in the collision integrals the
distribution functions of the previous iteration loop. Special
care has to be exercised by the discretization of the integrals
near singular points, where the left hand side of Eq. (6)
vanishes, leading to singularities in the integrals. Due to
the collisions encoded in the functions γ

≷
s (Uc) and �

≷
s (Uc)

the variables E and T are not spectators of the integration
procedure, as the simplified notation of Eqs. (24) and (25)
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TABLE I. The two sets of material parameters A and B we used
in our numerical calculations. For the Debye lengths the acceptor
density nA is used instead of the intrinsic density nint . For set B only
values different from set A are displayed.

Set A Set B

Eg (eV) 1 2
h̄ω0 (meV) 75
Et (eV) 0.4 0.3
ε 11.8
ε∞ 12
nA (cm−3) 1013 1014

nint (1010 cm−3) 4.922 10−8

Nt (cm−3) 1020

σs (cm2) 10−15

kBT∗,h (eV) 0.025
m∗,h (me) 1
λw

D (μm) 1.821 0.576

may suggest. In total, we have to iterate in a three-dimensional
domain spanned by the variables Uc, E , and T . Further details
and delicacies of the integration routines are discussed in
Appendix C.

III. RESULTS

We now apply our model to a p-doped dielectric plasma-
solid interface characterized by the parameters of Table I.
Although we do not attempt to describe specific materials in
contact with specific plasmas, the parameters are chosen to
represent a typical semiconductor facing a hydrogen plasma.
The parameters of the source functions (15), determined by
the continuity of fluxes at Uc = 0, are summarized in Table II
while the specifics of the plasma are given in Table III. The
values of the potential energy Uc at z = z1, zp, zw, denoting
respectively the band bending, the sheath potential, and the
drop of the sheath of the plasma source, listed in Table IV,
are not input parameters. They arise from the self-consistent
matching of the solid and the plasma.

The trap density Nt in Table I is artificially high because
the coordinate transformation (1), mapping an infinite z half
space to a finite Uc interval, restricts de facto the modeling to
the region where the band bending is significant. In general,
this is favorable. But for the recombination process it is a
problem since the recombination length λR, given in a rough
approximation by

λR ≈ vs

γ
trap
s

≈ 1

σsNt
, (27)

is for the realistic cross section σs ≈ 10−15 cm2 and the real-
istic trap density Nt ≈ 1016 cm−3 too large. It is on the order

TABLE II. Parameters of the source functions S<
∗ and S<

h describ-
ing the injection of electrons and holes from the plasma into the solid.

	in (eV) I in
∗ (eV) I in

h (eV)

0.06 0.2 0.15

TABLE III. Parameters of the collisionless hydrogen plasma in
contact with the dielectrics A and B specified in Table I. For set B
only values different from set A are listed.

System kBTe (eV) kBTi (eV) me (me) mi(me) λ
p
D (μm)

Set A 2 0.025 1 1836 9.107
Set B 5.562

of millimeters while the Debye length λw
D , setting the scale of

the space charge layer, and hence of our simulation domain,
is only a few micrometers. To ensure complete recombination
in the numerically resolved domain, necessary to prevent a
pile-up of charges inside the solid, we have to increase thus
Nt by four orders of magnitude. While the deviation from
realistic parameters may alter the numerical magnitude of the
results, such as the width of the double layer, the important
physical processes are appropriately represented.

Let us start the discussion of the numerical data with the
self-consistent electric fields shown in Fig. 2 for parameter
sets A and B. The matching condition (2) is satisfied for both
sets. Due to the higher acceptor concentration of set B, the
Debye length is shorter, yielding a narrower space charge and
a smaller band bending. The large fields on the solid side are
in both cases mainly caused by the charge carriers due to the
doping and not due to the surplus carriers coming from the
plasma. On the plasma side, the field is due to the sheath in
front of the solid. The Schwager-Birdsall boundary condition
[2] leads to the nonmonotonous behavior around Uc ≈ 6.8 eV.
It is an artifact arising from the inflection point in the potential
profile required to model in a collisionless plasma a field-free,
quasineutral region representing the bulk plasma. Due to the
coordinate transformation (1), the range of Uc values shown
in the plot corresponds essentially to two infinite half spaces
in the variable z. Mapping an infinite system to a finite one is
an advantage of the change of coordinates.

Having found self-consistent embeddings of the double
layer, we now turn to the distribution functions for electrons
and holes inside the solid. Without plasma the electron and
hole distribution functions are to a very good approximation
half Maxwellians, determined by the intrinsic carriers and
the doping. Once the solid is in contact with the plasma, the
distribution functions deviate from it due to the injection of
carriers from the plasma and the band bending in response to
the sheath potential. Since the two parameter sets yield rather
similar results, we discuss below only data for one set.

Figure 3 shows for parameter set A the deviations of the
distribution functions from the half-Maxwellian background
directly at the interface at Uc = 0 and inside the solid at

TABLE IV. Numerical values of the self-consistently determined
potential energies at z = z1, z = zp, and z = zw for the parameter sets
A and B of Tables I and III. Again, for set B only values different
from set A are given.

System U1 (eV) Up (eV) Uw (eV)

Set A 0.1125 4.906 7.103
Set B 0.05
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FIG. 2. Electric field multiplied by the dielectric function across
the interface for parameter sets A and B, plotted respectively in black
and orange (grey), showing the matching (2) to be satisfied. The
maximum at Uc ≈ 6.8 eV comes from the Schwager-Birdsall bound-
ary condition. Since Up ≈ 5 eV effectively corresponds already to
z ≈ ∞ the maximum has no physical meaning. It is an artifact of
implementing in a collisionless plasma a field-free, quasineutral bulk
region.

Uc = 21.5 meV. To visualize physical effects more clearly,
we plot F≷

∗,h for the two fixed values of Uc as functions of
Tz = E − U∗,h − T and E − U∗,h, with U∗ = −χ − Uc, Uh =
Uc + Eg + χ , and E running from U∗,h to Emax = 0.4 eV.
Besides the peak at E − Us = I in

s due to the source functions,
clearly seen in the data for Uc = 0, three further features
can be identified: First, there is a series of peaks due to the
scattering of the injected carriers on phonons. This is the

energy and momentum relaxation of the carriers following
injection from the plasma. Second, there is a step at Tz =
0, separating the distributions for left- (Tz < 0) and right-
moving (Tz > 0) carriers (encoded in the artificial sign of
Tz). Because right-moving distributions have to be populated
by backscattering events, which for interaction with optical
phonons are rather unlikely, they are always smaller than
the left-moving distributions populated by forward scattering.
Third, the functions are maximal for E − Us ≈ 0 since the
carriers accumulate at the band edges.

That there are less right- than left-moving injected carriers
can be also seen in Fig. 4, where we plot for parameter set
A the directional electron and hole densities scaled to the
reference densities given in the caption. The densities have
been calculated from the distribution functions F≷

∗,h using
Eq. (7) and subtracting from them the background densities
due to the doping. All the surplus densities are maximal at
Uc = 0, that is, directly at the interface, and monotonously
decrease to zero by approaching the bulk of the solid. In the
inset the difference of the densities of left- and right-moving
carriers is shown. It is positive and of the same order for
both polarities, showing that both types of surplus carriers
move preferentially to the left. From the plot we also see
that injected electrons dominate injected holes as it should
be for a double layer, where the positive, electron-depleted
branch residing in front of the solid at Uc > 0 has to be
balanced by a net negative space charge inside the solid at
Uc < 0. The profiles demonstrate also that at quasistationarity
the permanent influx of electrons and holes from the plasma

FIG. 3. Distribution functions for the injected electrons (upper panels) and holes (lower panels) for parameter set A at Uc = 0, that is,
at the interface and at Uc = 21.4 meV. Instead of E and T the variables E − Us and Tz = E − Us − T are used, where we attached to the
latter a sign to denote the distributions of left- (Tz < 0) and right-moving (Tz > 0) particles. The injection peaks at E − U∗ = I in

∗ = 0.2 eV
and at E − Uh = I in

h = 0.15 eV are clearly visible in the data for Uc = 0. Away from the interface, the peak gradually vanishes. Replicas due
to phonon emission and absorption can be also seen, as well as the drop at Tz = 0, signaling right-moving states to be less populated than
left-moving ones. Colors (shading) are used only for visibility reasons and the triangular shape is due to energy conservation.
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FIG. 4. Total (solid lines) and directional (long and short dashed
lines) densities of the injected carriers for the parameter set A.
For plotting purposes we introduced reference densities nref

∗ = 6 ×
1012 cm3 and nref

h = 1012 cm3. The positive difference of left- and
right-moving densities �ns, shown in the inset, is on the same order
of magnitude for electrons [blue (dark grey)] and holes [red (grey)],
indicating that for both polarities surplus carriers move more likely
to the left than to the right.

does not lead to a pile-up of carriers inside the solid. Carrier
recombination prevents this.

The net density and potential profiles of the double layer as
a whole, embracing the solid and the plasma side, are shown
in Fig. 5 as a function of z scaled to the corresponding Debye
lengths. Since the results are similar for the two parameter sets
we show again only data for set A. Due to the difference in
the screening lengths, λw

D ≈ 1.8 μm and λ
p
D = 9.107 μm (see

Tables I and III), the charge neutrality of the double layer is
not directly obvious but indeed satisfied due to the matching
condition (2) which also gives rise to the different slopes of
the potential energy profile for z = 0− and z = 0+. The spatial
scale of the double layer is set by the screening lengths. From

U1
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U
c

0
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-2λD
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n[
n 0w
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λD
p

FIG. 5. Potential energy (upper panel) and net charge density
(lower panel) for parameter set A as a function of z in units of the
Debye lengths, λw

D = 1.821 μm and λ
p
D = 9.107 μm. The kink in

Uc at z = 0 signals the matching condition (2). To fit the density
profiles into a single plot, we scaled them on the solid side by
nw

0 = 1013 cm−3 and on the plasma side by np
0 = −1012 cm−3.

 20

 25

 30

 35

ln
(n

s c
m

3 )

 0
 1
 2
 3
 4

U1 U1/2 0

j s 
[1

019
cm

-2
s-1

]

Up Uw

 0

 1

U1 0

F t

FIG. 6. Mobile charge carriers (upper panel) and the fluxes
(lower panel) as a function of Uc for parameter set A. Data for
electrons (holes, ions) are plotted in blue (red) [dark grey (grey)].
Inside the solid, electrons prevail for U1/2 < Uc < 0, while for Uc <

U1/2 holes dominate, indicating the p-doped bulk. The quasineutral
bulk plasma emerges on the other side of the interface for Uc ≈
Up. Also seen is the negative sheath in front of the plasma source
at Uc = Uw . The electron and ion fluxes of the plasma merge at
Uc = 0 with the electron and hole fluxes of the solid, which then
decay nonconcurrently due to the variation of the occupancy of the
traps shown in the inset, placing empty (occupied) traps, required
for electron (hole) recombination, further away from (closer to) the
interface.

the numerical values given in Tables I and III we see that for
both parameter sets the width is on the order of 1–10 μm with
the plasma side five (set A) to ten times (set B) thicker than the
solid side. Notice the fast and slow decay of the density profile
on the solid side in contrast to the more or less homogeneous
decay on the plasma side. It indicates that electrons and holes
do not recombine spatially concurrently in our model. This is
due to an approximation, leaving the trap occupancy constant
during the iteration (see Appendix A for details, as well as the
discussion below).

The merging of the double layer with the bulk regions on
either side of the interface and the working of the recombi-
nation process are shown in Fig. 6, where we plot, for both
sides of the interface, as a function of Uc the profiles of
the carrier densities and fluxes. Recall, due to the coordinate
transformation, that the effectively infinite half spaces in the
spatial coordinate z are mapped onto finite intervals on the Uc

axis. The embedding can be clearly seen in the upper panel.
On the solid side, only for U1/2 < Uc < 0 is the electron
density n∗ [blue (dark grey)] larger than the hole density nh

[red (grey)], while for Uc < U1/2 the ordering is reversed.
Taking the acceptor density nA into account, which balances
the hole density due to doping but is not included in the plot to
make the scales comparable, the quasineutral p-doped region
emerges for Uc approaching U1. On the plasma side, on the
other hand, ions [red (grey)] dominate electrons [blue (dark
grey)] for 0 < Uc < Up, while for Uc ≈ Up a quasineutral
region appears merging, for Uc approaching Uw, the negative
sheath in front of the plasma source installed at Uc = Uw by
the Schwager-Birdsall construction.

023206-7



K. RASEK, F. X. BRONOLD, AND H. FEHSKE PHYSICAL REVIEW E 102, 023206 (2020)

The workings of the recombination process can be inferred
from the flux profiles plotted in the lower panel of Fig. 6.
Electron and ion fluxes are equal on the plasma side and con-
tinuously merge at Uc = 0 with the electron and hole fluxes.
From the flux continuity je(0) = ji(0) = j∗(0) = jh(0), the
parameter α = nLM

i /nLM
e , characterizing the strength of the

plasma source, can be obtained. For the data shown in Fig. 6
we find α = 11. Due to electron-hole recombination inside
the solid the fluxes decay. The hole flux decays faster than
the electron flux, indicating that holes are destroyed closer to
the interface than electrons. That the recombination of holes
and electrons is spatially separated we have already noticed in
the density profiles of Fig. 4. It can be explained by looking
at the trap occupancy shown in the inset of Fig. 6. Holes
have to recombine with an electron from the trap, that is, they
require an occupied trap site, while electrons need empty trap
sites. From the inset we see traps highly occupied close to the
interface. Thus, in our model, holes preferentially recombine
there, while electrons, requiring empty traps, have to move
further into the solid, where the probability of finding them is
higher.

In reality, the two fluxes should decay equally fast. That
in our model this is not the case is due to the approximation
we used to determine the trap occupancy. Instead of the
full electron and hole distribution functions, we employed
in Eq. (A14) only the half Maxwellians arising from the
doping background. By neglecting the contributions of the
injected carriers, which are small but nevertheless present,
the trap occupancy is not determined self-consistently. In the
present formulation of our model, it can thus not react to
the injected carriers. Inserting the full distributions, however,
would have led to nonlinear collision integrals, artificially
dominating the kinetics due to the high trap densities Nt we
have to use to ensure complete recombination in the part of the
simulation domain which is numerically resolved. Since the
kinetic scenario we wanted to develop—destruction of plasma
flux impinging on a dielectric by electron-hole recombination
inside it—is not affected by the inconsistency, we did not
include this additional complexity into the model.

IV. CONCLUSION

We have presented a self-consistent kinetic model for the
electric double layer at a dielectric plasma-solid interface that
embraces plasma generation on one and plasma loss on the
other side of the interface. Conduction band electrons and
valence band holes are injected into the solid with unit prob-
ability for each impinging electron and ion, while from the
solid side, charge carriers cannot cross the interface. Inside the
solid, electrons and holes scatter on optical phonons, leading
to energy and momentum relaxation, before they recombine
nonradiatively via traps in the energy gap of the dielectric.
The microscopic picture encoded in our model is thus the one
of a plasma source whose fluxes are equalized and balanced
by the recombination of electron and hole fluxes in the space
charge region of the solid.

Computational constraints in the numerical solution of
the Boltzmann equation on the solid side forced us to treat
charge injection by phenomenological source functions. The
basic kinetics—injection of surplus charge carriers into the

solid, followed by relaxation and recombination establishing
a quasistationary double layer—is, however, still present in
the simplified model. Based on an iterative scheme, geared
towards solving Boltzmann equations with distribution func-
tions specified at the end points of the integration domain,
we presented the numerical solution of the kinetic equations,
focusing in particular on the handling of singular points. A
similar strategy could be applied on the plasma side in case it
is made collisional.

Although quantitatively we cannot yet make hard predic-
tions, because of the limitations of the phenomenological
source functions, the high trap density, the perfect absorber
assumption, and the idealistic treatment of the electronic
structure of the interface, which neglects, for instance, ad-
sorbate layers likely to be present in a plasma environment,
the numerical results show the feasibility of the scheme.
From the distribution functions of the holes and the electrons
we calculated the solid-bound density and potential profiles
merging the plasma sheath from the solid side. Combined with
approaches describing the merging of the sheath with the bulk
plasma in more detail than we have done, taking, for instance,
ion-neutral collisions into account, a complete picture of the
double layer can thus be developed. While we demonstrated
the feasibility of the model on a floating dielectric wall, with
proper modifications it can also describe biased interfaces.
Current-voltage or charge-voltage characteristics could then
be calculated and compared with experiments.

The results demonstrate moreover that the charge kinet-
ics inside the solid and the plasma can be treated on an
equal footing, opening thus the door for a kinetic analysis of
miniaturized semiconductor-based plasma devices combining
gaseous and solid-state electronics.
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APPENDIX A: COLLISION INTEGRALS

For the numerics it is convenient to split the collision
integrals into in- and out-scattering parts,

I≷coll = �≷
s (Uc, E , T ) − γ≷

s (Uc, E , T )F≷
s (Uc, E , T ), (A1)

defining implicitly the functions �
≷
s and γ

≷
s entering the

Boltzmann equation (6). Starting with the standard forms
of the collision integrals it is straightforward to work out
expressions for �

≷
s and γ

≷
s . Below we give them for the

scattering processes included in this work: electron (s = ∗)
and hole (s = h) scattering by polar optical phonons [38]
and nonradiative electron-hole recombination via traps in the
energy gap of the dielectric according to the Shockley-Read-
Hall mechanism [39–41].

In the dilute limit, applicable to the situation we study, the
collision integral for scattering by optical phonons becomes
[38]

Iscat
s (z, k) =

∫
d3k′

(2π )3
[W (k′, k)Fs(z, k′) − W (k, k′)Fs(z, k)],

(A2)
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where the rate for scattering from k to k′ is given by

W (k, k′) = V
2π

h̄

∣∣M(|k − k′|)∣∣2

×[(1 + nb)δ(Ek − Ek′ − h̄ω0)

+nbδ(Ek − Ek′ + h̄ω0)] (A3)

with

|M(q)|2 = h̄ω0

V

8πq2α̃h̄c(
q2 + q2

s

)2

(
ε0

ε∞
− ε0

ε

)
(A4)

the square of the matrix element for electron (hole)-phonon
coupling. The standard notation is used throughout in the
formulas, Ek is the kinetic energy of the electron (hole),
h̄ω0 is the energy of the (dispersionless, optical) phonon, and
nb = 1/(exp(h̄ω0/kBT∗) − 1) is the occupation number of the
phonon. In the expression for the matrix element, c is the
vacuum speed of light, α̃ is the fine structure constant, qs

is a screening momentum, and ε and ε∞ are the dielectric
constants at low and high frequencies, respectively. In the
atomic units used in the main text,

W (k, k′) = 16W0
q2(

q2 + q2
s

)2 [(1 + nb)δ(Ek − Ek′ − h̄ω0)

+ nbδ(Ek − Ek′ + h̄ω0)] (A5)

with W0 = 4h̄ω0(1/ε∞ − 1/ε). Since the carrier concentra-
tions are rather low, we neglect in the following the screening
wave number qs. Parts of the calculations can then be per-
formed analytically.

The functions γ
≷
s (Uc, E , T ) and �

≷
s (Uc, E , T ) appearing

in the Boltzmann equation (6) are the integrals of either
W (k, k′) or W (k′, k)Fs(z, k′) over k′. In the limit qs = 0, after
rewriting the momenta k and k′ in the coordinates Uc, E ,
T , E ′, and T ′, and distinguishing distributions for left- and
right-moving particles, we find

γ≷
s (Uc, E , T ) = 4W0

vs(Uc, E , 0)

[
nbarsinh

(√
E − Us

h̄ω0

)
+ (nb + 1)arsinh

(√
E − Us

h̄ω0
− 1

)]
, (A6)

showing that this function is the same for both directions of motion, and

�≷
s (Uc, E , T ) = W0

∑
±

(
nb + 1

2
± 1

2

) ∫ E−Us±h̄ω0

0

dT ′

vs(Uc, E ± h̄ω0, T ′)

[
F≷

s (Uc, E ± h̄ω0, T ′)
d−(Uc, E , T, T ′,±h̄ω0)

+ F≶
s (Uc, E ± h̄ω0, T ′)

d+(Uc, E , T, T ′,±h̄ω0)

]
(A7)

with

d±(Uc, E , T, T ′, h̄ω0) = [(T + T ′ + (
√

E − Us − T ′ + h̄ω0 ± √
E − Us − T )2)2 − 4T T ′]1/2 . (A8)

The second term of γ
≷
s and the in-scattering-by-absorption

term in �
≷
s , that is, the term with the minus sign, only

occurs for E − Us > h̄ω0. Note, the upper labels ≷ and ≶
of the distributions on the right-hand side of Eq. (A7) are
independent of the ± sign. They correspond to the ≷ of �

≷
s

on the left-hand side of the equation.
We now turn to the kinetic formulation [39] of the

Shockley-Read-Hall electron-hole recombination [40,41].
The collision integral coupling the trap occupancy Ft with the
electron distribution function F≷

∗ reads

I tr≷
∗ = (1 − F≷

∗ )	∗
GNt Ft − F≷

∗ 	∗
RNt (1 − Ft ) (A9)

while the one coupling Ft to the hole distribution function F≷
h

is

I tr≷
h = (1 − F≷

h )	h
GNt (1 − Ft ) − F≷

h 	h
RNt Ft . (A10)

Therein Nt is the trap density,

	s
R = σsv

tot
s (A11)

is the recombination rate for species s, and

	∗
G = σ∗vtot

∗ exp((Et − (E − Us + Eg))/kBT∗), (A12)

	h
G = σhv

tot
h exp ((−(E − Us) − Et )/kBTh), (A13)

are the corresponding generation rates, where σs is the capture
cross section, vtot

s is the total velocity [not to be confused with
vs(Uc, E , T ) which is the velocity in the z direction, that is,
vtot

s = vs(Uc, E , 0)], and Et is the energy level of the traps.
At quasistationarity, the trap occupancy is given by the

detailed balance condition. Integrating Eqs. (A9) and (A10)
over E and T and equating the results yields

Ft (Uc) =
(

m∗
∫

dEdT

v∗
	∗

RF>+<
∗

+ mh

∫
dEdT

vh
	h

G(2 − F>+<
h )

)

×
(

m∗
∫

dEdT

v∗
(	∗

RF>+<
∗ + 	∗

G(2 − F>+<
∗ ))

+ mh

∫
dEdT

vh

(
	h

RF>+<
h + 	h

G(2 − F>+<
h )

))−1

(A14)

with F>+<
s denoting F>

s (Uc, E , T ) + F<
s (Uc, E , T ). In the

detailed balance condition (A14), we account only for
the charge carriers due to the doping, described by half-
Maxwellian distribution functions. The surplus electrons and
holes coming from the plasma affect the balance only weakly
because of their low density. In leading approximation, they
can thus be neglected.
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Splitting Eqs. (A9) and (A10) into out- and in-scattering
contributions and distinguishing distributions for left- and
right-moving electrons and holes yield

γ
tr≷
∗ = 	∗

GNt Ft + 	∗
RNt (1 − Ft ), (A15)

γ
tr≷
h = 	h

GNt (1 − Ft ) + 	h
RNt Ft , (A16)

�
tr≷
∗ = 	∗

GNt Ft , (A17)

�
tr≷
h = 	h

GNt (1 − Ft ), (A18)

which after eliminating Ft by using Eq. (A14) gives the form
of the functions used in Eq. (6).

APPENDIX B: PLASMA SHEATH

To make the present work self-contained, we summarize
in this Appendix the formulas for the collisionless sheath
forming on the plasma side of the interface. The merging
of the plasma sheath—in the absence of collisions—with the
bulk plasma is established by a construction due to Schwager
and Birdsall [2]. It mimics the quasineutral, field-free bulk
plasma by an inflection point at Uc = Up arising between the
sheath at the interface at Uc = 0 and the sheath in front of a
plasma source imagined to sit at Uc = Uw.

The plasma source at Uc = Uw ejects electrons and ions
with the half-Maxwellian distributions (10). With the bound-
ary condition ns(Uw ) = nLM

s a trajectory analysis of the colli-
sionless Boltzmann equations on the plasma side [21] leads to
the density profiles

ni(Uc)

nLM
i

= f (a) −
√

a

π
, (B1)

where a = Uw−Uc
kBTi

, and

ne(Uc)

nLM
e

= e−(a′+b)

[
eb − f (b) +

√
b

π

]
(B2)

with a′ = Uw−Uc
kBTe

and b = Uc
kBTe

. The function

f (x) = 1

2
exerfc(

√
x) +

√
x/π (B3)

is connected to the complementary error function erfc(x) =
1 − erf (x). For the coordinate transformation (1) we need the
integrals over the profiles given by∫ Uw

Uc

dU
ni(U )

nLM
i kBTi

= f (a) − 1

2
(B4)

and∫ Uw

Uc

dU
ne(U )

nLM
e kBTe

= 1 − e−a′ + ea′+b[ f (b) − f (a + b)].

(B5)

To determine the inflection point at Uc = Up, the con-
ditions E (Up) = 0 and n(Up) = 0 have to be worked out.
Introducing xy = Ux/kBTy with x ∈ {p,w} and y ∈ {i, e} the

condition of the vanishing electric field yields

nLM
i

nLM
e

= kBTe

kBTi

1 − epe−we + e−we [ f (pe) − f (we)]

f (wi − pi ) − 1
2

, (B6)

whereas the vanishing of the net charge density becomes

nLM
i

nLM
e

= exp (pe − we + pi − we)
1 + �(

√
pe)

1 − �(
√

wi − pi )
.

(B7)

Augmenting Eqs. (B6) and (B7) with the flux balance (19),
using

je(Uc) = −nLM
e

√
kBTe

π
e−we (B8)

and

ji(Uc) = −nLM
i

√
kBTi

miπ
(B9)

to be obtained upon inserting Eqs. (B1) and (B2) into Eq. (16),
leads finally to three equations for the four unknowns Uw, Up,
nLM

e , and nLM
i . In the model of Schwager and Birdsall [2],

which does not include the solid, only three of the parameters
can thus be fixed. Considering the ratio α = nLM

i /nLM
e as the

strength of the plasma source, Uw, Up, and α are usually
the parameters calculated. In our model, extending into the
solid, the matching of the electric field (2) at Uc = 0, that is,
the charge neutrality of the double layer, yields, however, an
additional equation. At the end, we can thus determine all four
parameters.

APPENDIX C: INTEGRATION ROUTINES

In this Appendix we describe the integration routines used
in the numerical treatment of Eqs. (24) and (25), focusing on
the discretization and the handling of singular points.

The three-dimensional integration domain, spanned by the
variables Uc, E , and T , is shown in Fig. 7. For all three the
discretization step � is used, to be taken as a fraction of
h̄ω0. The potential energy Uc ranges from U1 to zero, the total
energy E is at least Us and in principal unbound, and the lateral
kinetic energy T takes values from zero to E − Us. To keep
the integration domain also in the variable E finite, we use an
energy cutoff of 0.4 eV for the total kinetic energy T + Tz of
the charge carriers measured from the bottom of the bands.

When discretizing the integrals, singular points have to
be carefully treated. The square-root singularity due to the
vanishing of vs(Uc, E , T ) at T = E − Us can be removed by
the substitution

Z = √
U0 ± U , (C1)

where the + sign and U0 = E − T + χ are used for electrons,
and the − sign and U0 = E − T − Eg − χ are used for holes.
The Uc integrals in Eqs. (24) and (25) are then solved in
one step, without further interpolation points, by linearization.
Some integrals are, however, still singular because ξs is an
exponential function of a possibly diverging integral. They
have to be done by hand. Two types of integrals have to be
distinguished: integrals where E (U ) �= 0 and integrals where
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FIG. 7. Schematic illustration of the three-dimensional integra-
tion domain for conduction band electrons spanned by the variables
Uc, E , and T . The domain is cut by the surface v∗(Uc, E , T ) =
0 leading to turning points at T = E − U∗(Uc ) separating the re-
gion where electrons are allowed to move shown in dark [T <

E − U∗(Uc )] from the forbidden region [T > E − U∗(Uc )]. For the
valence band holes the domain is divided by the function T = E −
Uh(Uc ) giving rise to a different shape. The elementary discretization
step, to be the same in all three dimensions, � = h̄ω0/n with h̄ω0

the phonon energy. The energy cutoff E cutoff
k = Nh̄ω0 is used for the

total kinetic energy T + Tz of the carriers measured from the bottom
of the bands, limiting thereby the variable E . For the results presented
in this work we typically used n = 8, N = 14 yielding around 1003

discretization points.

E (U ) = 0 which occur, however, only at the end point U =
U1.

First, we consider the case E (U ) �= 0. The integrand in ξs

as well as the product of the functions in front of ξs can be
linearized. Then, integrals of the form

∫ Z1

Z0

dZ ( f0 + Z f1) exp (−(g0 + Zg1)(Z1 − Z )) (C2)

appear for Eq. (24), while integrals of the type

∫ Z1

Z0

dZ ( f0 + Z f1) exp (−(g0 + Zg1)(Z − Z0)) (C3)

are found for Eq. (25). The abbreviations, subsuming numeri-
cal coefficients arising from the linearization, should be clear
from the context. For instance, f0 = �

≷
s (Uc)/(E (Uc)vs(Uc)).

Using the identities

∫
dx exp(ax + bx2) = 1

2

√
π

b
exp

(
− a2

4b

)
erfi

(
a + bx

2
√

b

)
(C4)

and∫
dxx exp(ax + bx2) = 1

2b
exp(ax + bx2) − 1

4

a

b

√
π

b

× exp

(
− a2

4b

)
erfi

(
a + bx

2
√

b

)
,

(C5)

the integrals can be related to the imaginary error function
erfi(x) to be calculated as follows: For positive b we use
the Dawson function F (x) = √

π exp(−x2)erfi(x)/2 while for
negative b we employ the identity erfi(ix) = i erf (x). The error
function erf (x) in turn is evaluated by routines of standard
libraries. For large arguments, where the routines have prob-
lems, we expand erf (x) together with the factor exp (−a2/4b)
into a power series.

To deal with the integrals where E = 0, we assumed
and verified a posteriori that E starts linearly with Uc. The
divergence of 1/E in the integral of the exponent of ξs is
then canceled by the same divergence in the Uc integrals of
Eqs. (24) and (25). A linear approximation for E (Uc � U1)
together with Eq. (C1) implies E (Z ) ∼ Z2 − Z2

0 . Linearizing
the remaining parts of the integrands relates the integrals to
the incomplete β function,

Bx(α + 1, 1 − β ) =
∫ x

0
dy

yα

(1 − y)β
, (C6)

or—in the case Z0 = 0 (that is, for T = E − Us)—to the
incomplete 	 function

	(a, x) =
∫ 1/x

0
dyy−a−1 exp

(
−1

y

)
. (C7)

The parameters a, α, β, and Z0, again numerical coefficients
arising from the linearization, can be straightforwardly albeit
tediously determined. Depending on the arguments, the β

function is evaluated either in terms of a continued fraction
representation or in terms of the hypergeometric function,
using

Bx(a, b) = xa

a
2F1(a, 1 − b, a + 1, x). (C8)

Likewise, the incomplete 	 function is obtained from a con-
tinued fraction expansion in cases where the evaluation with
routines from standard libraries fails.

After the integrals have been evaluated in the form just
described we have an algebraic set of equations which can
be iterated in the three-dimensional domain shown in Fig. 7.
The particular shape of the domain depends on the species
through the function Us. We found convergence to be reached
faster if the iteration process does not destroy detailed balance
in the phonon collision integrals. We thus put—for phonon
collisions only—in Eqs. (24) and (25) the term −γ

≷
s F≷

s into
the function �

≷
s .
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